

УДК: 530.182 MSC 2010: 39А23, 39А33

Автоколебания в неявно сингулярно возмущенных динамических системах на плоскости

В.В.Гоцуленко

Для неявно сингулярно возмущенных автономных систем обыкновенных дифференциальных уравнений второго порядка найдены некоторые достаточные условия существования у них релаксационных периодических решений (автоколебаний), определяемых с помощью некоторой вспомогательной динамической системы, реализующей скользящий режим. Показано, что определенные таким образом периодические движения обладают типичными свойствами релаксационных автоколебаний, определяемых автономными системами обыкновенных дифференциальных уравнений с малым параметром при старшей производной.

Ключевые слова: неявно сингулярно возмущенная система, скользящий режим, релаксационное периодическое решение, автоколебания

1. Введение

Во многих реальных механических, радиотехнических, биологических и других объектах наблюдаются периодические колебательные процессы, в которых медленное, плавное изменение состояния объекта в течение конечного промежутка времени чередуется с быстрым, скачкообразным изменением его состояния за бесконечно малое время. Такие колебательные процессы получили название разрывных или релаксационных колебаний [1, 2].

Простейшей математической моделью, описывающей релаксационные колебания, являются автономные системы обыкновенных дифференциальных уравнений с малым параметром $\varepsilon \to 0$ при части производных [2, 3]:

$$\frac{dx}{dt} = f(x, y), \quad \varepsilon \frac{dy}{dt} = g(x, y). \tag{1.1}$$

Периодические по времени решения сингулярно возмущенных систем типа (1.1) называются релаксационными автоколебаниями [1, 4].

Получено 29 января 2014 года После доработки 4 марта 2014 года

Гоцуленко Владимир Владимирович gosul@ukr.net Институт технической теплофизики НАН Украины 03057, Украина, г. Киев, ул. Желябова, д. 2a Классическим примером системы, имеющей релаксационные автоколебания, служит система уравнений ван дер Поля [2, 5]:

$$\frac{dx}{dt} = -y, \quad \varepsilon \frac{dy}{dt} = x - \frac{y^3}{3} + y. \tag{1.2}$$

Вопрос о существовании релаксационных автоколебаний в системе (1.1) решается в терминах вырожденной системы [3], являющейся гибридной системой уравнений:

$$\frac{dx}{dt} = f(x,y), \quad g(x,y) = 0.$$
 (1.3)

Траектории системы (1.3) в фазовом пространстве \mathbb{R}^2 естественно трактовать как пределы фазовых траекторий невырожденной системы (1.1) при $\varepsilon \to 0$. В частности, фазовая траектория релаксационных автоколебаний системы (1.1) при $\varepsilon \to 0$ стремится к замкнутой траектории системы (1.3), состоящей из чередующихся участков двух типов: участков, проходимых фазовой точкой системы (1.3) за конечное время (каждый из них лежит на кривой, определяемой уравнением g(x, y) = 0), и участков, проходимых фазовой точкой системы (1.3) мгновенно. Каждый из участков начинается в точке срыва, то есть в точке, где

$$g(x,y) = 0, \quad \frac{\partial g(x,y)}{\partial y} \neq 0.$$

Решение системы (1.3), соответствующее такой замкнутой траектории (предельному циклу) и состоящее из описанных выше участков «быстрых» и «медленных» движений, называется разрывным периодическим решением [3].

В монографии [3] определены условия существования релаксационных автоколебаний в системе (1.1). Также получены при $\varepsilon \to 0$ асимптотические формулы для характеристик таких автоколебаний — периода, амплитуды и т. д. Асимптотические формулы для периода и амплитуды релаксационных автоколебаний в системе уравнений (1.2) впервые получил А. А. Дородницын [5].

В данной работе рассматриваются условия появления релаксационных периодических решений в системах обыкновенных дифференциальных уравнений вида

$$\frac{dx}{dt} = f(x,y), \quad \frac{dy}{dt} = g(x,z), \tag{1.4}$$

где $y = \varphi(z)$ — непрерывно дифференцируемая функция, не имеющая однозначной обратной функции. Переходом к новым переменным система (1.4) приводится к следующей неявно сингулярно возмущенной системе [6]:

$$\frac{dx}{dt} = f(x,\varphi(z)), \quad \varphi'(z)\frac{dz}{dt} = g(x,z).$$
(1.5)

Системы типа (1.5) возникают во многих физических приложениях. Так, в частности, проблема возбуждения продольных автоколебаний в замкнутой гидросистеме с воздушной подушкой на входе в лопастной насос [7] и автоколебания (помпаж) одноступенчатого центробежного насоса в режиме кавитации [8] приводят к рассмотрению именно системы вида (1.4) или (1.5).

Возможность появления в системе (1.5) релаксационных периодических решений обусловлена возникновением малого параметра $\varepsilon = \varphi'(z(t)) \to 0$ при $z(t) \to z^*(z^*; \varphi'(z^*) = 0,$ то есть когда компонента z(t) фазовой траектории находится вблизи критической точки z^* функции $\varphi(z)$). По терминологии А. Ф. Филиппова [9], система (1.5) является системой обыкновенных дифференциальных уравнений с разрывной правой частью. При определенных ограничениях на правые части таких систем возможны различные способы расширить понятие их решения [9, 10]. Так, в частности, при выполнении определенных соотношений, о которых речь пойдет ниже, в таких системах может возникнуть, специфический вид движений — так называемый скользящий режим [9–12]. Скользящий режим, например, может возникнуть, если в окрестности кривой, на которой терпят разрыв правые части системы, фазовые траектории направлены навстречу друг другу. В этом случае при попадании на кривую разрыва фазовая точка не может в течение любого (даже сколь угодно малого) интервала времени двигаться по любой из траекторий, примыкающих к данной кривой. Это обусловлено тем, что при любом смещении всегда возникает движение, возвращающее фазовую точку на кривую разрыва.

В значительном числе работ (см., например, [10]), посвященных исследованию разрывных систем, различным авторам удалось получить математическое описание процессов скольжения, причем в одних случаях эти уравнения постулировались, а в других обосновывались предельным переходом. Постановка такой задачи во всех случаях сводится к нахождению некоторой системы дифференциальных уравнений с непрерывными правыми частями, которые, несмотря на разрывность правых частей исходной системы, описывают движение в скользящем режиме. Наиболее распространенным в литературе в настоящее время является доопределение разрывных систем, предложенное А. Ф. Филипповым [9].

Отметим однако, что в перечисленных выше случаях при описании скользящего режима существенным ограничением (в том числе и для метода Филиппова) является предположение, что правые части разрывных систем терпят разрыв непрерывности первого рода [9–12]. Ниже мы получим уравнения скользящего режима для систем вида (1.5), правые части которых терпят разрыв непрерывности второго рода.

2. Постановка задачи

В некоторой области $\mathcal{O} \subset \mathbb{R}^2(x, y)$ рассматривается автономная система обыкновенных дифференциальных уравнений второго порядка

$$\frac{dx}{dt} = f(x, y), \quad \varphi(y)\frac{dy}{dt} = g(x, y), \tag{2.1}$$

где функции f(x, y), g(x, y) и $\varphi(y)$ предполагаются непрерывными и достаточно гладкими, чтобы локально в данной области выполнялись условия теоремы существования и единственности решения задачи Коши для рассматриваемой системы. При этом также предполагается, что функция $\varphi(y)$ имеет изолированный простой нуль: $y^*: \varphi(y^*) = 0$, $\varphi'(y^*) \neq 0$.

2.1. Обобщение скользящего режима по Филиппову и условия его существования

Рассмотрим на плоскости $\mathbb{R}^2(x,y)$ систему дифференциальных уравнений

$$\frac{dx}{dt} = F(x,y), \quad \frac{dy}{dt} = G(x,y). \tag{2.2}$$

Ħ

Предполагается, что вне некоторой кривой S, определяемой уравнением s(x, y) = 0, функции F(x, y) и G(x, y) являются непрерывными и достаточно гладкими, чтобы локально

_ НЕЛИНЕЙНАЯ ДИНАМИКА. 2014. Т. 10. № 2. С. 157–175 __

выполнялись условия теоремы существования и единственности решения задачи Коши для рассматриваемой системы. Также предполагается, что на самой кривой S правые части системы (2.2) допускают разрывы первого рода. Таким образом, в каждой точке кривой $\forall (x, y) \in S$ существуют конечные пределы

$$\begin{split} F^{+}(x,y) &= \lim_{x' \to x, y' \to y: \ s(x',y') > 0} F\left(x',y'\right), \qquad F^{-}(x,y) = \lim_{x' \to x, y' \to y: \ s(x',y') < 0} F\left(x',y'\right), \\ G^{+}(x,y) &= \lim_{x' \to x, y' \to y: \ s(x',y') > 0} G\left(x',y'\right), \qquad G^{-}(x,y) = \lim_{x' \to x, y' \to y: \ s(x',y') < 0} G\left(x',y'\right), \end{split}$$

причем, вообще говоря,

$$F^+(x,y) \neq F^-(x,y)$$
 и $G^+(x,y) \neq G^-(x,y)$

Обозначим, соответственно, через \mathbf{e}_x и \mathbf{e}_y единичные орты ортогональных координатных осей x и y. Тогда вектор фазовой скорости системы (2.2) представим в виде

$$\mathbf{X}(x,y) = F(x,y)\mathbf{e}_x + G(x,y)\mathbf{e}_y.$$

Скользящий режим в системе (2.2) возникает, если на кривой S проекции векторов $\mathbf{X}^{\pm}(x,y) = F^{\pm}(x,y)\mathbf{e}_x + G^{\pm}(x,y)\mathbf{e}_y$ на нормаль к ней имеют разные знаки и направлены навстречу друг к другу. В аналитической форме условия возникновения скользящего режима, согласно [11], могут быть записаны в виде

$$\operatorname{grad} s \cdot \mathbf{X}^+ \leqslant 0, \quad \operatorname{grad} s \cdot \mathbf{X}^- \ge 0$$
(2.3)

или в скалярной форме

$$\frac{\partial s}{\partial x}F^{+}(x,y) + \frac{\partial s}{\partial y}G^{+}(x,y) \leqslant 0, \quad \frac{\partial s}{\partial x}F^{-}(x,y) + \frac{\partial s}{\partial y}G^{-}(x,y) \ge 0.$$
(2.4)

По определению скользящего режима, движение фазовой точки происходит по кривой разрыва S, так что вектор фазовой скорости \mathbf{X}_s этого движения является касательным к данной кривой в каждый момент времени. Таким образом, «по Филиппову» [9] данный вектор представляется линейной комбинацией

$$\mathbf{X}_s = \mu \mathbf{X}^+ + (1 - \mu) \mathbf{X}^-, \qquad (2.5)$$

где параметр μ определяется из условия grad $s\cdot \mathbf{X}_s=0.$ Несложно проверить, что окончательно

$$\mathbf{X}_{s} = \frac{\operatorname{grad} s \cdot \mathbf{X}^{-}}{\operatorname{grad} s \cdot (\mathbf{X}^{-} - \mathbf{X}^{+})} \mathbf{X}^{+} - \frac{\operatorname{grad} s \cdot \mathbf{X}^{+}}{\operatorname{grad} s \cdot (\mathbf{X}^{-} - \mathbf{X}^{+})} \mathbf{X}^{-}.$$
 (2.6)

Следовательно, согласно (2.6), движение в скользящем режиме описывается следующей системой уравнений:

$$\frac{d\mathbf{r}}{dt} = \mathbf{X}_s, \text{ где } \mathbf{r}(t) = x(t)\mathbf{e}_x + y(t)\mathbf{e}_y;$$
(2.7)

то же в скалярной форме:

$$\frac{dx}{dt} = F_s(x, y), \quad \frac{dy}{dt} = G_s(x, y), \tag{2.8}$$

где положено

$$F_{s}(x,y) = \frac{\left(\frac{\partial s}{\partial x}F^{-} + \frac{\partial s}{\partial y}G^{-}\right)F^{+}(x,y)}{\frac{\partial s}{\partial x}\left(F^{-} - F^{+}\right) + \frac{\partial s}{\partial y}\left(G^{-} - G^{+}\right)} - \frac{\left(\frac{\partial s}{\partial x}F^{+} + \frac{\partial s}{\partial y}G^{+}\right)F^{-}(x,y)}{\frac{\partial s}{\partial x}\left(F^{-} - F^{+}\right) + \frac{\partial s}{\partial y}\left(G^{-} - G^{+}\right)},$$
$$G_{s}(x,y) = \frac{\left(\frac{\partial s}{\partial x}F^{-} + \frac{\partial s}{\partial y}G^{-}\right)G^{+}(x,y)}{\frac{\partial s}{\partial x}\left(F^{-} - F^{+}\right) + \frac{\partial s}{\partial y}\left(G^{-} - G^{+}\right)} - \frac{\left(\frac{\partial s}{\partial x}F^{+} + \frac{\partial s}{\partial y}G^{+}\right)G^{-}(x,y)}{\frac{\partial s}{\partial x}\left(F^{-} - F^{+}\right) + \frac{\partial s}{\partial y}\left(G^{-} - G^{+}\right)}.$$

При этом начальные условия для системы уравнений (2.8) следует брать на кривой S, то есть $(x(0), y(0)) \in S$.

Отметим, что приведенный выше формализм утрачивает силу, когда хотя бы одна из функций F(x, y) или G(x, y) на кривой S терпит разрыв второго рода. Данная ситуация имеет место как раз для рассматриваемой системы (2.1), так как в этом случае

$$F(x,y) = f(x,y), \quad G(x,y) = g(x,y)/\varphi(y),$$

и, следовательно, функция G(x, y) терпит разрыв второго рода в точках прямой S_{y^*} , определяемой уравнением $s(x, y) = y - y^* = 0$.

Для определения уравнений скользящего режима для системы (2.1) введем в рассмотрение функции

$$(\forall \varepsilon > 0) \quad F_{\varepsilon}^{\pm}(x, y^{*}) = F(x, y^{*} \pm \varepsilon), \quad G_{\varepsilon}^{\pm}(x, y^{*}) = G(x, y^{*} \pm \varepsilon)$$

и векторные поля

$$\mathbf{X}_{\varepsilon}^{\pm}\left(x,y^{*}\right) = F_{\varepsilon}^{\pm}\left(x,y^{*}\right)\mathbf{e}_{x} + G_{\varepsilon}^{\pm}\left(x,y^{*}\right)\mathbf{e}_{y}.$$

Тогда вместо соотношений (2.3) для системы (2.1) получаются следующие условия существования скользящего режима:

$$(\exists \varepsilon^* > 0 \colon \forall 0 < \varepsilon \leqslant \varepsilon^*) \quad \text{grad} \ s \cdot \mathbf{X}_{\varepsilon}^+ \leqslant 0, \quad \text{grad} \ s \cdot \mathbf{X}_{\varepsilon}^- \geqslant 0;$$

учитывая, что в данном случае grad $s = \mathbf{e}_{y}$, окончательно получаем

$$(\exists \varepsilon^* > 0 \colon \forall 0 < \varepsilon \leqslant \varepsilon^*) \quad G_{\varepsilon}^+(x, y^*) \leqslant 0, \quad G_{\varepsilon}^-(x, y^*) \ge 0.$$
(2.9)

Также вместо вектора (2.5) для системы (2.1) вводим в рассмотрение семейство векторных полей

$$(\forall \varepsilon > 0) \quad \mathbf{X}_{s,\varepsilon} = \mu_{\varepsilon} \mathbf{X}_{\varepsilon}^{+} + (1 - \mu_{\varepsilon}) \mathbf{X}_{\varepsilon}^{-},$$

где параметры μ_{ε} подбираются так, чтобы выполнялись соотношения

$$(\forall \varepsilon > 0) \quad \text{grad } s \cdot \mathbf{X}_{s,\varepsilon} = 0.$$

Наконец, полагая

$$\mathbf{X}_{s}\left(x, y^{*}\right) = \lim_{\varepsilon \to 0} \mathbf{X}_{s,\varepsilon}\left(x, y^{*}\right),\tag{2.10}$$

Ħ

получаем, что система (2.7) с правой частью, определенной по правилу (2.10), описывает скользящий режим для системы (2.1).

____ НЕЛИНЕЙНАЯ ДИНАМИКА. 2014. Т. 10. № 2. С. 157–175 __

Теперь, вновь воспользовавшись соотношением grad $s=\mathbf{e}_y,$ окончательно получаем, что

$$\mathbf{X}_{s,\varepsilon} = \frac{1}{1 - \frac{G_{\varepsilon}^+}{G_{\varepsilon}^-}} \mathbf{X}_{\varepsilon}^+ - \frac{1}{\frac{G_{\varepsilon}^-}{G_{\varepsilon}^+} - 1} \mathbf{X}_{\varepsilon}^-,$$

откуда

$$F_{s,\varepsilon} = \frac{1}{1 - \frac{G_{\varepsilon}^+}{G_{\varepsilon}^-}} F_{\varepsilon}^+ - \frac{1}{\frac{G_{\varepsilon}^-}{G_{\varepsilon}^+} - 1} F_{\varepsilon}^-, \quad G_{s,\varepsilon} = \frac{1}{1 - \frac{G_{\varepsilon}^+}{G_{\varepsilon}^-}} G_{\varepsilon}^+ - \frac{1}{\frac{G_{\varepsilon}^-}{G_{\varepsilon}^+} - 1} G_{\varepsilon}^- \equiv 0.$$

Далее, учитывая, что

$$\lim_{\varepsilon \to 0} \frac{G_{\varepsilon}^{+}}{G_{\varepsilon}^{-}} = \lim_{\varepsilon \to 0} \left[-\frac{g\left(x, y^{*} + \varepsilon\right)}{g\left(x, y^{*} - \varepsilon\right)} \frac{\frac{\varphi\left(y^{*} - \varepsilon\right) - \varphi\left(y^{*}\right)}{-\varepsilon}}{\frac{\varphi\left(y^{*} + \varepsilon\right) - \varphi\left(y^{*}\right)}{+\varepsilon}} \right] = -\frac{g\left(x, y^{*}\right)}{g\left(x, y^{*}\right)} \frac{\varphi'\left(y^{*}\right)}{\varphi'\left(y^{*}\right)} = -1, \quad (2.11)$$
$$\lim_{\varepsilon \to 0} F_{\varepsilon}^{+}\left(x, y^{*}\right) = \lim_{\varepsilon \to 0} F_{\varepsilon}^{-}\left(x, y^{*}\right) = F\left(x, y^{*}\right) = f\left(x, y^{*}\right),$$

получаем, что скользящий режим в системе (2.1) определяется следующими уравнениями:

$$\frac{dx}{dt} = f(x, y^*), \quad y(t) \equiv y^*.$$
 (2.12)

2.2. Определение релаксационных периодических движений

Релейные системы представляют собой обширный, хорошо изученный и практически важный класс динамических систем с разрывной правой частью. В фазовом пространстве периодическому движению релейной системы соответствует замкнутая фазовая траектория, составленная из решений различных линейных дифференциальных уравнений, сшивание которых по непрерывности происходит на плоскостях переключения реле [12].

Таким образом, периодические решения данных систем фактически сшиваются из собственных движений, определяемых линейными дифференциальными уравнениями звеньев релейной системы и движений, определяемых скользящими режимами.

В данном разделе мы по аналогии введем определение релаксационного периодического движения для динамических систем с разрывной правой частью вида (2.1).

Рассмотрим произвольную точку $(x_0, y_0) \notin S_{y^*}$. Тогда решение задачи Коши для системы (2.1) с начальным условием в данной точке при $t = t_0$ может быть записано в виде:

$$x(t) = \Phi(t - t_0, x_0, y_0), \quad y(t) = \Psi(t - t_0, x_0, y_0),$$

где $\Phi(t, x, y)$ и $\Psi(t, x, y)$ — некоторые достаточно гладкие функции [13].

Предположим, что

$$\exists T_1 > 0 \colon \exists \lim_{t \to -T_1 + 0} \Phi(t - t_0, x_0, y_0), \quad \exists \lim_{t \to -T_1 + 0} \Psi(t - t_0, x_0, y_0) = y^*.$$

Тогда пару функций (рис. 1)

$$x(t) = \Phi (t - t_0 - T_1, x_0, y_0), \quad y(t) = \Psi (t - t_0 - T_1, x_0, y_0)$$
(2.13)

Рис. 1. Построение фазовой траектории $x(t) = \Phi \left(t - t_0 - T_1, x_0, y_0\right), \ y(t) = \Psi \left(t - t_0 - T_1, x_0, y_0\right).$

Рис. 2. Построение фазовой траектории $x(t) = \Phi (t - t_0 + T_2, x_0, y_0), y(t) = \Psi (t - t_0 + T_2, x_0, y_0).$

будем называть решением задачи Коши для системы (2.1) с начальным условием:

$$x\big|_{t=0} = x^*, \quad y\big|_{t=0} = y^*,$$
 где положено $x^* = \lim_{t \to -T_1 + 0} \Phi(t - t_0, x_0, y_0).$

Аналогично, если

$$\exists T_2 > 0 \colon \exists \lim_{t \to T_2 = 0} \Phi(t - t_0, x_0, y_0), \quad \exists \lim_{t \to T_2 = 0} \Psi(t - t_0, x_0, y_0) = y^*,$$

H

_ НЕЛИНЕЙНАЯ ДИНАМИКА. 2014. Т. 10. № 2. С. 157–175 ____

Рис. 3. Построение фазовой траектории релаксационного периодического решения $x_R(t), y_R(t)$.

то пару функций (рис. 2)

$$x(t) = \Phi \left(t - t_0 + T_2, x_0, y_0 \right), \quad y(t) = \Psi \left(t - t_0 + T_2, x_0, y_0 \right)$$
(2.14)

будем называть решением задачи Коши для системы (2.1) с начальным условием

$$x|_{t=0} = x^*, \quad y|_{t=0} = y^*,$$
 где положено $x^* = \lim_{t \to +T_2 = 0} \Phi\left(t - t_0, x_0, y_0\right)$

Далее, из соотношения (2.11) следует, что уравнение скользящего режима (2.12) выполняется во всех точках прямой S_{y^*} , где справедливо неравенство $g(x, y^*) \neq 0$.

Разделив первое уравнение системы (2.1) на второе, получим уравнение интегральных кривых

$$\frac{dx}{dy} = f(x,y)\frac{\varphi(y)}{g(x,y)},\tag{2.15}$$

из которого следует, что $\lim_{y\to y^*} \frac{dx}{dy} = 0$, то есть фазовые траектории подходят к прямой S_{y^*} под прямым углом за исключением точек $(x^*, y^*) \in S_{y^*}$, где $g(x^*, y^*) = 0$. В этих точках векторное поле системы (2.1) имеет два возможных направления.

Действительно, переходя в (2.15) к пределу при $y \to y^*$, рассматривая переменную x как функцию аргумента y и воспользовавшись далее правилом Лопиталя раскрытия неопределенности вида $\{0/0\}$, получим

$$\frac{dx}{dy}\Big|_{y=y^*} = \lim_{y \to y^*} \left[f\left(x(y), y\right) \frac{\varphi(y)}{g\left(x(y), y\right)} \right] = \lim_{y \to y^*} f\left(x(y), y\right) \lim_{y \to y^*} \left[\frac{\varphi(y)}{g\left(x(y), y\right)} \right] = \\ = f\left(x^*, y^*\right) \varphi'\left(y^*\right) \left(g_x\left(x^*, y^*\right) \frac{dx}{dy}\Big|_{y=y^*} + g_y\left(x^*, y^*\right) \right)^{-1},$$

откуда, полагая $z = \frac{dx}{dy}\Big|_{y=y^*}$, приходим к квадратному уравнению $z (C_0 z + C_1) = C_2,$ (2.16)

где положено

$$C_0 = g_x(x^*, y^*), \quad C_1 = g_y(x^*, y^*), \quad C_2 = \varphi'(y^*) f(x^*, y^*).$$
(2.17)

Таким образом, точка прямой S_{y^*} с координатами (x^*, y^*) (то есть $g(x^*, y^*) = 0$) является седловой особой точкой системы (2.1), направления сепаратрис в которой определяются выражениями

$$\left. \frac{dx}{dy} \right|_{y=y^*} = \frac{-C_1 \pm \sqrt{C_1^2 + 4C_0C_2}}{2C_0}.$$
(2.18)

Перейдем к построению релаксационного периодического решения динамической системы (2.1). Предположим, что для некоторого решения $x(t) = \mu(t, x^*, y^*), y(t) = \eta(t, x^*, y^*),$ определяющего сепаратрису седловой особой точки данной системы с начальным условием

 $x|_{t=0} = \mu(0, x^*, y^*) = x^*, \quad y|_{t=0} = \eta(0, x^*, y^*) = y^*, \text{ rge } (x^*, y^*) \in S_{y^*} \colon g(x^*, y^*) = 0,$

выполнено (рис. 3)

$$\exists T' > 0 \colon \eta \left(T', x^*, y^* \right) = y^*, \quad \mu \left(T', x^*, y^* \right) < x^*, \quad f^* = \min_{x^{**} \leqslant x \leqslant x^*} f \left(x, y^* \right) > 0,$$

где положено $x^{**} = \mu(T', x^*, y^*)$. Обозначим через $x(t) = \theta(t, x^{**})$ решение задачи Коши для первого уравнения системы (2.12) с начальным условием $x|_{t=0} = \theta(0, x^{**}) = x^{**}$. Отметим, что из условия $f^* > 0$ следует, что

$$\exists T'' > 0: \theta(T'', x^{**}) = x^*,$$
причем $T'' \leqslant \frac{x^* - x^{**}}{f^*}.$

Введем в рассмотрение периодические функции, которые на их периоде T = T' + T'' задаются следующими соотношениями (рис. 3):

$$x_R(t) = \begin{cases} \mu(t, x^*, y^*), & \text{при } 0 \leq t \leq T', \\ \theta(t - T', x^{**}), & \text{при } T' < t \leq T' + T'', \end{cases}$$
(2.19)

$$y_R(t) = \begin{cases} \eta(t, x^*, y^*), & \text{при } 0 \leq t \leq T', \\ y^*, & \text{при } T' < t \leq T' + T''. \end{cases}$$
(2.20)

H

Полученные функции (2.19)–(2.20) будем называть периодическими релаксационными движениями (решениями) динамической системы (2.1). В данном случае роль «медленных» движений сингулярно возмущенных динамических систем (1.1) выполняют движения в скользящем режиме, а аналогом «быстрых» движений являются фазовые траектории системы (2.1), расположенные вне прямой S_{u^*} .

Если внутри кривой $\Gamma = \{(x_R(t), y_R(t)) : 0 \le t \le T\}$ расположено неустойчивое положение равновесия или неустойчивый предельный цикл системы (2.1), то область отталкивания данных репеллеров является также и областью притяжения для Γ . В этом случае для замкнутой кривой Γ , как ниже будет показано, могут выполняться условия, определяющие устойчивый предельный цикл [1, 4, 12–14], а функции (2.19)–(2.20) ее параметрического представления естественно назвать релаксационными периодическими автоколебаниями системы (2.1).

3. Формулировка основного результата

Предположим, что для динамической системы (2.1) выполнены следующие условия. Функции f(x, y) и g(x, y) являются непрерывно дифференцируемыми в \mathbb{R}^2 . Также предполагается, что функция $\varphi(y)$ является непрерывно дифференцируемой в \mathbb{R} и имеет единственный простой нуль $y^* \in \mathbb{R}$, то есть $\varphi(y^*) = 0$, $\varphi'(y^*) \neq 0$. Обозначим через Γ_f и Γ_g кривые, определяемые, соответственно, уравнениями f(x, y) = 0 и g(x, y) = 0. Предполагается, что кривая Γ_g пересекает прямую $y = y^*$ под углом $\alpha \in (0; \pi/2)$ к оси y. Последнее условие равносильно выполнению неравенства $C_1 = \frac{\partial g(x_A, y^*)}{\partial y} > 0$, которое приводит к тому, что особая точка $A(y^*, x_A)$ (рис. 4) становится седловой с направлениями сепаратрис, определяемыми соотношениями (2.18).

Также полагаем, что вдоль кривой Γ_f выполняется неравенство $\partial f(x,y)/\partial y \neq 0$, а вдоль кривой Γ_g — неравенство $\partial g(x,y)/\partial x \neq 0$. Выполнение условия $\partial f(x,y)/\partial y \neq 0$ вдоль кривой Γ_f обеспечивает ее бесконтактное пересечение фазовыми траекториями системы (2.1). Действительно, если фазовая траектория $\mathbf{r}(t) = \{x(t), y(t)\}$ системы (2.1) имеет общую касательную с кривой Γ_f , то

$$\operatorname{grad} f(x,y) \cdot \frac{d\mathbf{r}}{dt} = 0 \Leftrightarrow \frac{\partial f(x,y)}{\partial x} f(x,y) + \frac{\partial f(x,y)}{\partial y} \frac{g(x,y)}{\varphi(y)} = 0 \Rightarrow$$
$$\Rightarrow \frac{\partial f(x,y)}{\partial y} = 0 \operatorname{при} g(x,y) \neq 0, \varphi(y) \neq 0.$$

Аналогично проверяется, что условие $\partial g(x, y)/\partial x \neq 0$ обеспечивает бесконтактное пересечение кривой Γ_g фазовыми траекториями системы (2.1).

Далее, предполагается, что область, определяемая неравенством f(x,y) < 0, лежит выше кривой Γ_f , и, следовательно, область, определяемая неравенством f(x,y) > 0, расположена ниже кривой Γ_f (рис. 4). Обозначим $a = \operatorname{sgn} \varphi(y)$ при $y < y^*$. Тогда предполагается, что область, определяемая неравенством $a \cdot g(x,y) < 0$, расположена выше кривой Γ_g , а область, определяемая неравенством $a \cdot g(x,y) > 0$, расположена ниже кривой Γ_g (рис. 4). Также дополнительно предполагается, что положение равновесия C (рис. 4) является неустойчивым фокусом или устойчивым фокусом, снаружи охваченным единственным неустойчивым предельным циклом Γ .

Теорема 1. При рассмотренных предположениях система (2.1) в полуплоскости $y \leq y^*$ имеет единственное орбитально асимптотически устойчивое релаксационное периодическое решение $\mathbf{r}_R(t) = \{x_R(t), y_R(t)\}$, которое состоит из сепаратрисы, выходящей из точки $A(y^*, x_A)$ в полуплоскость $y < y^*$, и отрезка прямой S_{y^*} , и которое удовлетворяет условиям:

$$x_R|_{t=0} = x_A, \quad y_R|_{t=0} = y^*, \quad dx_R = Jdy_R \quad npu \ t = 0,$$

где

$$J = \frac{-\frac{\partial g\left(x_A, y^*\right)}{\partial x} + \operatorname{sgn}(a) \left(\left(\frac{\partial g\left(x_A, y^*\right)}{\partial y}\right)^2 + 4\varphi'\left(y^*\right) f\left(x_A, y^*\right) \frac{\partial g\left(x_A, y^*\right)}{\partial x}\right)^{1/2}}{2\frac{\partial g\left(x_A, y^*\right)}{\partial x}}.$$

Рис. 4. Замкнутая фазовая траектория релаксационного периодического решения.

Доказательство. Полуплоскость в \mathbb{R}^2 , определяемая неравенством $y < y^*$, разбивается кривыми Γ_f и Γ_g на следующие области (рис. 4):

$$\begin{aligned} \Omega_1 &= \left\{ (y,x) \in \mathbb{R}^2 \colon f(x,y) > 0, a \cdot g(x,y) < 0, y < y^* \right\},\\ \Omega_2 &= \left\{ (y,x) \in \mathbb{R}^2 \colon f(x,y) < 0, a \cdot g(x,y) < 0, y < y^* \right\},\\ \Omega_3 &= \left\{ (y,x) \in \mathbb{R}^2 \colon f(x,y) < 0, a \cdot g(x,y) > 0, y < y^* \right\},\\ \Omega_4 &= \left\{ (y,x) \in \mathbb{R}^2 \colon f(x,y) > 0, a \cdot g(x,y) > 0, y < y^* \right\}.\end{aligned}$$

Далее, из разложения Тейлора $\varphi(y) = \varphi'(y^*)(y-y^*) + O(y-y^*)^2$ при $y \to y$ следует, что $\operatorname{sgn} \varphi'(y^*) = -a$. Из равенства $\frac{\partial g(x_A, y^*)}{\partial x} = \lim_{h \to +0} \frac{g(x_A + h, y^*)}{h}$ следует, что $\operatorname{sgn} \frac{\partial g(x_A, y^*)}{\partial x} = -a$. По предположениям теоремы, $C_1 = \frac{\partial g(x_A, y^*)}{\partial y} > 0$. Теперь, учитывая, что $f(x_A, y^*) > 0$, получаем $\operatorname{sgn} (C_0 C_2) = a^2 > 0$, где $C_0 = \frac{\partial g(x_A, y^*)}{\partial x}$, $C_2 = \varphi'(y^*) f(x_A, y^*)$. Таким образом, соотношения (2.18) задают в седловой особой точке $A(y^*, x_A)$ два направления для сепаратрис системы (2.1). Положим

$$J = \begin{cases} \frac{-C_1 - \sqrt{C_1^2 + 4C_0C_2}}{2C_0}, & \text{если } a < 0, \\ \frac{-C_1 + \sqrt{C_1^2 + 4C_0C_2}}{2C_0}, & \text{если } a > 0. \end{cases}$$

Обозначим через $\tilde{x}(t), \tilde{y}(t)$ решение задачи Коши для системы (2.1), расположенное в полуплоскости $y \leq y^*$ и удовлетворяющее условиям

$$\widetilde{x}|_{t=0} = x_A, \quad \widetilde{y}|_{t=0} = y^*, \quad d\widetilde{x} = Jd\widetilde{y}$$
 при $t = 0.$

Ħ

_ НЕЛИНЕЙНАЯ ДИНАМИКА. 2014. Т. 10. № 2. С. 157–175 <u></u>

Для фазовых траекторий системы (2.1), расположенных в области Ω_1 , выполняются неравенства $\frac{dx}{dt} > 0$, $\frac{dy}{dt} < 0$. Аналогично, в области Ω_2 : $\frac{dx}{dt} < 0$, $\frac{dy}{dt} < 0$; в области Ω_3 : $\frac{dx}{dt} < 0$, $\frac{dy}{dt} > 0$; в области Ω_4 : $\frac{dx}{dt} > 0$, $\frac{dy}{dt} > 0$.

Поэтому фазовая траектория $\tilde{\mathbf{r}}(t) = \{\tilde{x}(t), \tilde{y}(t)\}$ системы (2.1), начинающаяся в области Ω_1 , пересекая кривую Γ_f , входит в область Ω_2 . Далее из области Ω_2 , пересекая кривую Γ_f , пересекая кривую Γ_f , переходит в область Ω_3 . Из области Ω_3 она, вновь пересекая кривую Γ_f , переходит в область Ω_4 . В области Ω_4 она под прямым углом пересекает прямую S_{y^*} в некоторой точке $D(y^*, x_D)$.

Отметим, что если бы особая точка C была устойчивым фокусом или ее охватывал устойчивый предельный цикл, то фазовая траектория в области Ω_4 в этом случае не подходила бы к прямой S_{y^*} . Действительно, в этом случае она, притягиваясь к аттрактору, являющемуся устойчивым фокусом или устойчивым предельным циклом, пересекала бы кривую Γ_g , переходя вновь в область Ω_1 , и далее, по уже описанному сценарию, спиралевидно приближалась бы к данному аттрактору.

Наконец, воспользовавшись описанной выше процедурой, приводящей к соотношениям (2.19)–(2.20), получаем требуемое релаксационное периодическое решение.

В окрестности прямой S_{y^*} , расположенной ниже точки A, выполняются условия (2.9) скользящего режима. Действительно, в данном случае:

$$G_{\varepsilon}^{+}(x,y^{*}) = \frac{g(x,y^{*}+\varepsilon)}{\varphi(y^{*}+\varepsilon)} \leq 0, \quad G_{\varepsilon}^{-}(x,y^{*}) = \frac{g(x,y^{*}-\varepsilon)}{\varphi(y^{*}-\varepsilon)} \geq 0 \text{ при } x < x_{A}, \quad \varepsilon \to +0$$

Поэтому фазовые траектории системы (2.1) в данной окрестности подходят к прямой S_{y^*} с обеих ее сторон, причем, как следует из (2.15), под прямым углом. При этом фазовые траектории, начинающиеся в данной окрестности, асимптотически стремятся к замкнутой фазовой траектории релаксационного периодического решения, обеспечивая ему орбитальную устойчивость.

4. Примеры

В данном разделе приведены некоторые примеры, иллюстрирующие применение приведенной выше теоремы.

ПРИМЕР 1. Рассматривается динамическая система

$$\frac{dx}{dt} = \alpha \left(\psi(y) - kx^2 \right), \quad \psi'(y) \frac{dy}{dt} = \beta \left(y - x \right), \tag{4.1}$$

где $\alpha, \beta = \text{const} > 0, \ \psi(y) = R - r (y - y^*)^2, \ R, r, k > 0, \ \text{уравнение } \psi(y) - ky^2 = 0$ имеет два положительных корня $y_1 < y^* < y_2$, причем для меньшего корня выполняется неравенство $\frac{ky_1}{r(y^* - y_1)} < 1$. При данных предположениях система (4.1) имеет релаксационное автоколебательное решение.

Действительно, в данном случае $\varphi(y) = 2r(y - y^*) \Rightarrow a > 0$. Области, определяемые неравенствами f(x, y) < 0 и $a \cdot g(x, y) < 0$, соответственно, расположены выше кривых Γ_f

Рис. 5. Фазовый портрет системы (4.1) при $R = 20, r = 1, y^* = 6, \alpha = 2.7, \beta = 10, k = 0.15.$

и Γ_g , причем кривая Γ_g пересекает прямую $y = y^*$ под углом $\alpha = \pi/4$ к оси y. Рассматриваемая система имеет два положения равновесия $O_1(y_1, y_1)$ и $O_2(y_2, y_2)$. Запишем матрицу Якоби данной системы в точке O_1 :

$$\mathbf{J} = \begin{bmatrix} -2k\alpha y_1 & \alpha \psi'(y_1) \\ -\frac{\beta}{\psi'(y_1)} & \frac{\beta}{\psi'(y_1)} \end{bmatrix}.$$

Собственные значения данной матрицы определяются выражениями

$$\lambda_{1,2} = \frac{\operatorname{tr} (\mathbf{J}) \pm i\sqrt{4 \det (\mathbf{J}) - \operatorname{tr}^2 (\mathbf{J})}}{2}, \qquad (4.2)$$

где tr (**J**) = $\frac{\beta}{2r(y^* - y_1)} - 2k\alpha y_1$ — след матрицы **J** и det (**J**) = $\alpha\beta\left(1 - \frac{ky_1}{r(y^* - y_1)}\right)$ — определитель матрицы **J**.

Далее величину $Z = \sqrt{\frac{\beta}{\alpha}}$ будем рассматривать как бифуркационный параметр. В физических приложениях данный параметр называется волновым сопротивлением системы [7, 8]. Критическое значение $Z_{\rm kr}$ определяется из условия

$$\operatorname{tr}(\mathbf{J})|_{Z=Z_{\mathrm{kr}}} = 0 \iff Z_{\mathrm{kr}} = 2\sqrt{kry_1\left(y^* - y_1\right)}.$$

Также несложно проверяется, что

$$\operatorname{tr}\left(\mathbf{J}\right) = \pm \varepsilon \cdot \frac{\alpha}{2r\left(y^* - y_1\right)}, \quad 4\det\left(\mathbf{J}\right) - \operatorname{tr}^2\left(\mathbf{J}\right) > 0 \text{ при } Z = \sqrt{Z_{\mathrm{kr}} \pm \varepsilon}, \quad \varepsilon \to +0.$$

НЕЛИНЕЙНАЯ ДИНАМИКА. 2014. Т. 10. № 2. С. 157–175 __

Рис. 6. Фазовый портрет и предельный цикл релаксационных автоколебаний системы (4.1) при $R = 20, r = 1, y^* = 6, \alpha = 2, \beta = 10, k = 0.15.$

Поэтому из последних соотношений следует, что при $Z < Z_{\rm kr}$ положение равновесия O_1 является устойчивым фокусом, а при $Z > Z_{\rm kr}$ — неустойчивым фокусом. Структура фазового портрета системы (4.1) при $Z < Z_{\rm kr}$ приведена на рисунке 5.

Когда положение равновесия O_1 является неустойчивым, из полученной выше теоремы следует, что система (4.1) имеет релаксационное периодическое автоколебательное решение. Для этого случая ее фазовый портрет приведен на рисунке 6.

ПРИМЕР 2. Рассматривается динамическая система

$$\frac{dx}{dt} = \alpha \left(H(x) - \psi(y) \right), \quad \psi'(y) \frac{dy}{dt} = \beta \left(x - y \right), \tag{4.3}$$

где $\alpha, \beta = \text{const} > 0, \ \psi(y) = \frac{1 - a_1 y}{(y + a_2)(1 - y)}, \ H(x) = H_0 - kx^3, \ H_0 > 0, \ k > 0, \ a_1, a_2 > 0,$ $0 < a_1(1 + a_1a_2 - a_2) < 1$ и уравнение $\psi(y) - H(y) = 0$ имеет два положительных корня $y_1 < y^* < y_2$, где $y^* = a_1^{-1} \left(1 - \sqrt{1 + a_1(a_2 - a_1a_2 - 1)} \right)$. Также полагается, что $\beta/\alpha < (\psi'(y_1))^2$. Тогда при данных предположениях рассматриваемая система имеет релаксационное автоколебательное решение.

В данном примере:
$$\varphi(y) = \psi'(y) = \frac{(1+a_1a_2)(y-1) + (1-a_1y)(y+a_2)}{(y+a_2)^2(y-1)^2} \Rightarrow a < 0.$$
 Области,

определяемые неравенствами f(x, y) < 0 и $a \cdot g(x, y) < 0$, соответственно, расположены выше кривых Γ_f и Γ_g . Кривая Γ_g пересекает прямую $y = y^*$ под углом $\alpha = \pi/4$ к оси y. Рассматриваемая система имеет два положения равновесия $O_1(y_1, y_1)$ и $O_2(y_2, y_2)$. Матрица Якоби данной системы в точке O_1 имеет вид

$$\mathbf{J} = \begin{bmatrix} \alpha H'(y_1) & -\alpha \psi'(y_1) \\ \frac{\beta}{\psi'(y_1)} & -\frac{\beta}{\psi'(y_1)} \end{bmatrix}$$

Собственные значения данной матрицы определяются выражениями (4.2), где

$$\operatorname{tr}\left(\mathbf{J}\right) = -3\alpha k y_{1}^{2} - \frac{\beta}{\psi'\left(y_{1}\right)}, \quad \det\left(\mathbf{J}\right) = \alpha\beta\left(1 + \frac{3k y_{1}^{2}}{\psi'\left(y_{1}\right)}\right).$$

Далее рассмотрим бифуркации, происходящие в системе (4.3) при изменении параметра *k*. Критическое значение данного параметра определяем из условия

$$\operatorname{tr}\left(\mathbf{J}\right)|_{k=k_{\mathrm{kr}}} = 0 \Leftrightarrow k_{\mathrm{kr}} = -\frac{\beta}{3\alpha y_1^2 \psi'\left(y_1\right)}.$$
(4.4)

Отметим, что в (4.4) $y_1 = y_1 (k_{\rm kr})$, и поэтому данное соотношение представляет собой нелинейное алгебраическое уравнение относительно неизвестного $k_{\rm kr}$. Решение этого уравнения представляется возможным лишь численно при фиксированных остальных параметрах системы (4.3).

В точке бифуркации, то есть когда $k = k_{\rm kr}$, мы имеем критический случай. Хорошо известно, что в критическом случае устойчивость положения равновесия не определяется собственными значениями матрицы линеаризации. В нашем случае в точке бифуркации

$$\lambda_{1,2}|_{k=k_{\rm kr}} = \pm i \sqrt{\alpha \beta \left(1 - \frac{1}{\left(\psi'(y_1)\right)^2} \frac{\beta}{\alpha}\right)}, \text{ то есть положение равновесия } O_1 \text{ линеаризованной }$$

системы является центром. Мы далее покажем, что при этом исходная нелинейная система имеет в точке O_1 слабый устойчивый фокус. Для этого воспользуемся вычислением первой ляпуновской величины. В точке бифуркации система (4.3) имеет следующий вид:

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} A & B \\ A & -A \end{bmatrix} \begin{bmatrix} x - y_1 \\ y - y_1 \end{bmatrix} + \begin{bmatrix} F_1(x, y) \\ F_2(x, y) \end{bmatrix},$$
(4.5)

где

$$F_{1}(x,y) = \alpha \left[H(x) + 3k_{kr}y_{1}^{2}(x-y_{1}) - \psi(y) + \psi'(y_{1})(y-y_{1}) \right],$$

$$A = \frac{\beta}{\psi'(y_{1})}, \quad B = -\alpha\psi'(y_{1}), \quad F_{2}(x,y) = \beta (x-y) \left[\frac{1}{\psi'(y)} - \frac{1}{\psi'(y_{1})} \right]$$

Для вычисления первой ляпуновской величины приведем систему (4.5) к нормальной форме. Прежде всего, отметим, что матрица

$$\mathbf{D} = \begin{bmatrix} A & B \\ A & -A \end{bmatrix}$$

с помощью преобразования подобия, определяемого матрицей

$$\mathbf{M} = \begin{bmatrix} 0 & \omega \\ a & 0 \end{bmatrix},$$

где $\omega = -\sqrt{-A(A+B)} < 0$, приводится к жордановой нормальной форме

$$\mathbf{G} = \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix}.$$

Действительно, это следует из равенства

$$\mathbf{M}^{-1}\mathbf{D}\mathbf{M} = \mathbf{G},$$
 где $\mathbf{M}^{-1} = \omega^{-1} \begin{bmatrix} 0 & \omega \\ -A & A \end{bmatrix}$

Далее, с помощью замены переменных

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} x - y_1 \\ y - y_1 \end{bmatrix},$$

система (4.5) приводится к нормальной форме

$$\frac{dX}{dt} = -\omega Y + K_1(X,Y), \quad \frac{dY}{dt} = \omega X + K_2(X,Y), \quad (4.6)$$

где

$$K_1(X,Y) = \omega^{-1}F_2(y_1 + \omega Y, y_1 + AX),$$

$$K_2(X,Y) = \omega^{-1}A(F_2(y_1 + \omega Y, y_1 + AX) - F_1(y_1 + \omega Y, y_1 + AX)).$$

Известно [14], что для системы (4.6), представленной в нормальной форме, первая ляпуновская величина вычисляется с помощью следующей формулы:

$$\Lambda_{1} = \frac{1}{16} \left(\frac{\partial^{3} K_{1}}{\partial X^{3}} + \frac{\partial^{3} K_{1}}{\partial X \partial Y^{2}} + \frac{\partial^{3} K_{2}}{\partial X^{2} \partial Y} \frac{\partial^{3} K_{2}}{\partial Y^{3}} \right) + \frac{1}{16\omega} \left[\frac{\partial^{2} K_{1}}{\partial X \partial Y} \left(\frac{\partial^{2} K_{1}}{\partial X^{2}} + \frac{\partial^{2} K_{1}}{\partial Y^{2}} \right) - \frac{\partial^{2} K_{2}}{\partial X \partial Y} \left(\frac{\partial^{2} K_{2}}{\partial X^{2}} + \frac{\partial^{2} K_{2}}{\partial Y^{2}} \right) - \frac{\partial^{2} K_{1}}{\partial X^{2}} \frac{\partial^{2} K_{2}}{\partial X^{2}} + \frac{\partial^{2} K_{1}}{\partial X^{2}} \frac{\partial^{2} K_{2}}{\partial X^{2}} + \frac{\partial^{2} K_{1}}{\partial Y^{2}} \frac{\partial^{2} K_{2}}{\partial Y^{2}} \right]$$

Проведенные (достаточно громоздкие) расчеты показывают, что в рассматриваемой задаче $\Lambda_1 < 0$, то есть первая ляпуновская величина отрицательная. Это, как известно [15], отвечает случаю суперкритической бифуркации Андронова–Хопфа. Состояние равновесия O_1 при $k > k_{\rm kr}$ является устойчивым фокусом (рис. 7).

С уменьшением k, при прохождении им критического значения $k_{\rm kr}$, положение равновесия O_1 теряет устойчивость, и из него «мягко» рождается устойчивый предельный цикл Γ_1 (рис. 8), диаметр которого пропорционален величине надкритичности $|k - k_{\rm kr}|^{1/2}$. С дальнейшим снижением k предельный цикл Γ_1 увеличивается. Далее при некотором значении $k = k_{\rm kr}^*$ возникает вторая «жесткая» бифуркация, в результате которой цикл Γ_1 разрывается, касаясь прямой $y = y^*$ в точке ее пересечения с кривой Γ_g (рис. 9). При $k < k_{\rm kr}^*$ данный аттрактор исчезает и положение равновесия O_1 становится неустойчивым. Именно в этом случае система (4.3) имеет релаксационное периодическое автоколебательное решение (рис. 10).

Рис. 7. Фазовый портрет системы (4.3) при $\alpha = 1$, $\beta = 2$, $H_0 = 2.5$, $a_1 = 0.909$, $a_2 = 0.1$, $k = 2 > k_{\rm kr} \approx 1.8$.

Рис. 8. Фазовый портрет системы (4.3) при $\alpha = 1, \beta = 2, H_0 = 2.5, a_1 = 0.909, a_2 = 0.1, k = 0.9 < k_{\rm kr}.$

_ НЕЛИНЕЙНАЯ ДИНАМИКА. 2014. Т. 10. № 2. С. 157–175 ___

Ħ

Рис. 9. Фазовый портрет системы (4.3) при $\alpha=1,\ \beta=2,\ H_0=2.5,\ a_1=0.909,\ a_2=0.1,\ k=k_{\rm kr}^*\approx 0.8524.$

Рис. 10. Фазовый портрет системы (4.3) при $\alpha=1,\,\beta=2,\,H_0=2.5,\,a_1=0.909,\,a_2=0.1,\,k==0.5< k_{\rm kr}^*.$

H

Список литературы

- [1] Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. Москва: Наука, 1981. 918 с.
- [2] Чезари Л. Л. Асимптотическое поведение и устойчивость решений обыкновенных дифференциальных уравнений. Москва: Мир, 1964. 477 с.
- [3] Мищенко Е. Ф., Розов Н. Х. Дифференциальные уравнения с малым параметром и релаксационные колебания. Москва: Наука, 1966. 248 с.
- [4] Ланда П.С. Нелинейные колебания и волны. Москва: Либроком, 2010. 552 с.
- [5] Дородницын А. А. Асимптотическое решение уравнения Ван-дер-Поля // ПММ, 1947, т. 11, № 3, с. 313–328.
- [6] Гоцуленко В. В. Релаксационные периодические автоколебания, определяемые неявно сингулярно возмущенными системами обыкновенных дифференциальных уравнений // Тр. 4-ой Междунар. науч. конф. молодых ученых по дифференциальным уравнениям и их приложениям, посвященная Я. Б. Лопатинскому (15–17 ноября 2012 года, Донецкий национальный университет). С. 36–37.
- [7] Гоцуленко В.В., Гоцуленко В.Н. Анализ динамических режимов в замкнутой гидросистеме с воздушной подушкой на входе в лопастной насос // Матем. моделирование, 2012, № 2(27), с. 65–70.
- [8] Gotsulenko V. V., Gotsulenko V. N. Self-oscillations (surging) of a single-stage centrifugal pump in the cavitation regime and their damping // J. Eng. Phys. Thermophys., 2013, vol. 86, no. 4, pp. 913– 920.
- [9] Филиппов А. Ф. Дифференциальные уравнения с разрывной правой частью. Москва: Наука, 1985. 224 с.
- [10] Уткин В.И. Скользящие режимы и их применение в системах с переменной структурой. Москва: Наука, 1974. 272 с.
- [11] Барбашин Е.А. Введение в теорию устойчивости. Москва: Наука, 1967. 224 с.
- [12] Неймарк Ю.И. Метод точечных отображений в теории нелинейных колебаний. Москва: Наука, 1972. 472 с.
- [13] Андронов А. А., Леонтович Е. А., Гордон И. И., Майер А. Г. Качественная теория динамических систем второго порядка. Москва: Наука, 1966. 568 с.
- [14] Гукенхеймер Дж., Холмс Ф. Нелинейные колебания, динамические системы и бифуркации векторных полей. Москва–Ижевск: Институт компьютерных исследований, 2002. 560 с.
- [15] Анищенко В. С. Сложные колебания в простых системах: Механизмы возникновения, структура и свойства динамического хаоса в радиофизических системах. Москва: Наука, 1990. 312 с.

Self-oscillations in implicit singularly perturbed dynamical systems on the plane

Vladimir V. Gotsulenko

National Academy of Sciences of Ukraine Institute of Engineering Thermophysics 2a Zhelyabov, Kiev, 03680, Ukraine osul@ukr.net

To implicitly singularly perturbed autonomous systems of ordinary differential equations of second order found some sufficient conditions for the existence of periodic solutions of relaxation (self-oscillation), determined by means of an auxiliary dynamical system that implements a sliding mode. It is shown that so defined periodic motions have typical properties of self-oscillations of relaxation defined autonomous systems of ordinary differential equations with a small parameter at the highest derivative.

MSC 2010: 39A23, 39A33

Keywords: implicitly singularly perturbed system, sliding mode, the relaxation periodic solution, self-oscillations

Received January 29, 2014, accepted March 4, 2014 Citation: *Rus. J. Nonlin. Dyn.*, 2014, vol. 10, no. 2, pp. 157–175 (Russian)

_ НЕЛИНЕЙНАЯ ДИНАМИКА. 2014. Т. 10. № 2. С. 157–175 _

H