

УДК: 539.2, 519.624 MSC 2010: 34C15, 70K75

Дискретные бризеры и мультибризеры в модели ДНК Пейрара-Бишопа

М.И. Фахретдинов, Ф.К. Закирьянов, Е.Г. Екомасов

Исследуются дискретные бризеры и мультибризеры в модели ДНК Пейрара–Бишопа. Определена область существования дискретных бризеров и мультибризеров. Получены решения в виде односайтовых, двухсайтовых и трехсайтовых дискретных бризеров. Исследованы их свойства и устойчивость по отношению к малым возмущениям.

Ключевые слова: дискретные бризеры, мультибризеры, модель ДНК Пейрара-Бишопа

В 1988 году Сиверс и Такено [1] рассматривали модели идеальных, но нелинейных решеток с ангармоническими потенциалами взаимодействия между частицами и обнаружили локализованные в пространстве периодические колебания большой амплитуды с частотой, выходящей за пределы фононного спектра. Такено назвал эти колебания «внутренними локализованными модами» (intrinsic localized modes), подчеркивая, что они зависят от свойств самой решетки осцилляторов и не зависят от примесей и дефектов решетки. Этот результат вызвал большой интерес научного сообщества к данным объектам, появилось множество публикаций, описывающих локализованные моды или, как их еще называют, дискретные бризеры (ДБ), приближенными аналитическими и численными методами в различных моделях нелинейных решеток. Пейджем были найдены внутренние локализованные моды в дискретной системе Ферми – Паста – Улама [2], Кэмпбелл и Пейрар, а также Флах и Уиллис рассматривали цепочку осцилляторов с потенциалом φ^4 и нашли решения типа ДБ с частотой, лежащей за пределами фононного спектра [3, 4]. Были найдены решения типа бризеров в разных моделях дискретных систем, в частности, в цепочках осцилляторов Клейна – Гордона с потенциалами φ^3 [5, 6] и системах, описываемых дискретным нелинейным уравнением Шрёдингера [7, 8]. Кроме решений в виде ДБ для нелинейных решеток известны также решения другого типа — в виде кинков, дискретных солитонов [9].

Получено 07 октября 2014 года После доработки 20 ноября 2014 года

Фахретдинов Марат Ирекович fmi106tf@gmail.com Закирьянов Фарит Кабирович farni@rambler.ru Екомасов Евгений Григорьевич ekomasoveg@gmail.com Башкирский государственный университет 450076, Уфа, ул. Заки Валиди, 32

НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77-87_

Для получения решений в виде ДБ существует множество методов: аналитические, позволяющие находить приближенные ДБ (такие, как дискретный вариационный метод), и численные, позволяющие получать «численно точные» (numerically exact) ДБ [10]. Молекулярная динамика также с успехом используется для определения условий существования и свойств дискретных бризеров в кристаллах, в углеродных нанотрубках [11], в графене [12–15] и в графане [16]. Существование ДБ в графане было подтверждено и с использованием первопринципных расчетов [17].

В 1994 году Маккеем и Обри [18] было дано строгое математическое доказательство существования ДБ в гамильтоновых решетках слабо связанных осцилляторов Клейна–Гордона с гамильтонианом

$$H = \sum_{n} \left[\frac{\dot{u}_{n}^{2}}{2} + V(u_{n}) + SW(u_{n} - u_{n-1}) \right],$$
(1)

где u_n — смещение *n*-го осциллятора от положения равновесия, V — слагаемое, характеризующее взаимодействие осцилляторов с внешним потенциалом подложки, SW — слагаемое, характеризующее взаимодействие соседних осцилляторов решетки, S — параметр связи осцилляторов. Уравнения движения, соответствующие гамильтониану (1), имеют вид

$$\ddot{u}_n = S\left[W'(u_{n+1} - u_n) - W'(u_n - u_{n-1})\right] - V'(u_n).$$
(2)

Предел S = 0 называется антиконтинуальным пределом, при этом система распадается на множество независимых осцилляторов u_n , движущихся в поле потенциала $V(u_n)$.

Если возбужден только один осциллятор (n = 0), а все остальные находятся в покое, мы получаем ангармонический осциллятор (3), колеблющийся с частотой ω_b , то есть простейший дискретный бризер — периодическое решение дискретной системы, локализованное только на одном узле решетки:

$$\ddot{u} + V'(u) = 0. \tag{3}$$

В работе [18] вводится понятие кодовой последовательности (coding sequence) σ_n . Координата каждого осциллятора $u_n(t)$ зависит от времени как $u_n(t) = g_{\omega_n}(\omega_n t + \alpha_n)$, где $g_{\omega_n} - 2\pi$ -периодическая функция, описывающая движение одиночного осциллятора с частотой ω_n и фазой α_n . В антиконтинуальном пределе движение системы полностью описывается набором частот ω_n и фаз осцилляторов α_n . В кодовой последовательности $\sigma_n = 0$, если осциллятор с индексом n находится в покое, $\sigma_n = +1$, если $\alpha_n = 0$, и $\sigma_n = -1$, если $\alpha_n = \pi$. Например, бризер, локализованный на одном сайте (one-site breather), описывается кодовой последовательностью { ..., 0, 0, +1, 0, 0, ...}. ДБ, описываемые другими последовательностями, называются мультибризерами.

Маккей и Обри показали [18], что методом продолжения по параметру данное решение можно продолжить в область значений параметра связи осцилляторов $S \neq 0$ при следующих условиях: а) ангармоничность потенциала V, то есть частота нелинейного осциллятора должна зависеть от его амплитуды, б) условие отсутствия резонанса колебаний — частота ангармонического осциллятора ω_b и все ее гармоники не должны входить в фононный спектр исследуемой дискретной системы (2).

На основе работы [18] Марином и Обри был разработан метод получения точных дискретных бризеров [19] в нелинейных решетках и показаны многочисленные примеры применения этого метода.

Рассмотрим этот метод получения ДБ с заданной частотой ω_b . Число частиц бризера возьмем равным N (так как ДБ сильно локализованы в пространстве, то для численного

_ НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77–87 _

расчета, как правило, используют $N < 10^2$; в нашей работе N = 65). Обозначим как $\mathbf{X}(t)$ вектор решений системы (2), такой, что $\mathbf{X} = \{u_n, \dot{u}_n\}$. Тогда уравнение (2) можно рассматривать как отображение $\mathbf{Y} = F(\mathbf{X})$, переводящее вектор начальных условий $\mathbf{X}(0)$ в вектор решений (2) в момент времени t, равный $\mathbf{X}(t)$. Если мы проинтегрируем уравнение (2) до времени $T_b = 2\pi/\omega_b$, то ДБ с частотой ω_b можно представить как неподвижную точку отображения F за один период ДБ, $\mathbf{X}(T_b) = F_{\omega_b}(\mathbf{X}(0)) = \mathbf{X}(0)$. Таким образом, ДБ можно рассматривать как решение уравнения $\mathbf{X} = F(\mathbf{X})$.

В качестве начального приближения к решению используется тривиальное бризерное решение (2) в антиконтинуальном пределе S = 0 — решение уравнения (3). Для решения уравнения $\mathbf{X} = F(\mathbf{X})$ применяется стандартный метод Ньютона. Пусть \mathbf{X} — начальное приближение к неподвижной точке отображения. Введем небольшую поправку к решению δ . Тогда можно записать $F(\mathbf{X} + \delta) \approx F(\mathbf{X}) + \partial F(\mathbf{X}) \delta$; с учетом того, что $\mathbf{X} + \delta$ близко к неподвижной точке отображения, получим $\mathbf{X} + \delta \approx F(\mathbf{X}) + \partial F(\mathbf{X}) \delta$. Отсюда, выражая δ , находим приближение к решению:

$$\mathbf{X}_{new} = \mathbf{X} + \delta \approx \mathbf{X} - (\partial F(\mathbf{X}) - \mathbf{I})^{-1} [F(\mathbf{X}) - \mathbf{X}].$$
(4)

Здесь I — единичная матрица порядка 2N, $\partial F(\mathbf{X})$ — матрица Якоби порядка 2N. Элементы матрицы $\partial F(\mathbf{X})$ находятся с помощью интегрирования линеаризованной системы (2) за один период ДБ T_b :

$$\ddot{\varepsilon}_n = S\left[\left(\varepsilon_{n+1} - \varepsilon_n\right)W''\left(u_{n+1} - u_n\right) - \left(\varepsilon_n - \varepsilon_{n-1}\right)W''\left(u_n - u_{n-1}\right)\right] - V''\left(u_n\right)\varepsilon_n.$$
(5)

Если $\{u_n(0), \dot{u}_n(0)\}$ является неподвижной точкой отображения F, то $\{u_n(\tau), \dot{u}_n(\tau)\}$ также является неподвижной точкой отображения F для любого τ , поэтому $\{\varepsilon_n(0), \dot{\varepsilon}_n(0)\} =$ $= \{u_n(0), \dot{u}_n(0)\}$ — собственный вектор матрицы $\partial F(\mathbf{X})$ с собственным значением, равным 1. Поэтому матрица $\partial F(\mathbf{X}) - \mathbf{I}$ становится необратимой и метод Ньютона перестает работать. Для преодоления этой трудности Марин и Обри предложили уменьшить размерность пространства, в котором ищется решение, для исключения собственного значения 1 матрицы $\partial F(\mathbf{X})$. Авторы ограничились поиском обратимых по времени решений, откуда автоматически вытекает условие $\dot{u}_n(0) = 0$ для любого n. В этом случае задача переходит в нахождение неподвижной точки отображения $R(\{u_n(0)\}) = F(\{u_n(0); 0\}) = \{u_n(T_b)\}$.

$$\mathbf{X}_{new} = \mathbf{X} - \left(\partial R\left(\mathbf{X}\right) - \mathbf{I}\right)^{-1} [R\left(\mathbf{X}\right) - \mathbf{X}],\tag{6}$$

где $\partial R(\mathbf{X})$ — матрица порядка N, являющаяся подматрицей матрицы $\partial F(\mathbf{X})$ порядка 2N. Если последовательные итерации, определяемые (6), сходятся к неподвижной точке, то обратимая по времени периодическая орбита динамической системы (2) найдена, то есть найдено решение в виде ДБ.

В качестве начального приближения для поиска ДБ по формуле (6) используется простейший ДБ в антиконтинуальном пределе S = 0, заданный кодовой последовательностью σ_n . В процессе нахождения решения методом Ньютона параметр S маленькими шагами dS увеличивается, при этом решение на текущем шаге S является приближением к решению на следующем шаге S + dS. Решение можно продолжить вплоть до некоторого S_{max} , при котором метод Ньютона перестает сходиться, при этом матрица $\partial R(\mathbf{X}) - \mathbf{I}$ становится необратимой.

НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77-87_

Для интегрирования уравнений движений в методе Ньютона и при исследовании устойчивости ДБ нами использовался высокоточный многошаговый метод Адамса с автоматическим выбором шага. Итерации метода Ньютона продолжались, пока разность между последовательными приближениями решения не становилась меньше 10^{-12} .

В данной работе мы используем эти методы для исследования бризеров и мультибризеров в модели молекулы ДНК Пейрара–Бишопа [20]. Эта модель была разработана для исследования процесса денатурации молекулы ДНК, хорошо себя зарекомендовала и имеет значительное количество модификаций [21].

Рассмотрим безразмерный гамильтониан, описывающий $y_n(t)$ — растяжение водородной связи в молекуле ДНК модели Пейрара – Бишопа [22]:

$$H = \frac{1}{2}\dot{y}_n^2 + \frac{1}{2}S(y_n - y_{n-1}) + \left[1 - \exp\left(-\sqrt{2}y_n\right)\right];\tag{7}$$

ему соответствуют уравнения движения, являющиеся системой автономных дифференциальных уравнений второго порядка:

$$\ddot{y}_n = S\left(y_{n-1} - 2y_n + y_{n+1}\right) - 2\sqrt{2}\exp\left(-\sqrt{2}y_n\right)\left(1 - \exp\left(-\sqrt{2}y_n\right)\right),\tag{8}$$

где $S = k/Da^2$ — безразмерный параметр связи осцилляторов, k — константа взаимодействия вдоль цепи, D и a — параметры потенциала Морзе, D — энергия диссоциации полинуклеотидных цепочек, а a — параметр, обратный длине (пространственный масштаб потенциала). Числовые параметры a, k, D в разных работах принимают разные значения: D = 0.33 эВ, a = 1.8/Å, k = 0.003 эВ/Å² [20], D = 0.1 эВ, a = 2/Å, k = 1.5 эВ/Å² [23], величина параметра стэкинг-взаимодействия k лежит в широком диапазоне значений k = 0.003..4.8 эВ/Å² [24]. При этом безразмерный параметр S может изменяться от 0.002 до 3.75.

Фононный спектр уравнения (8) имеет вид $\omega = \sqrt{4 + 4S \sin(q/2)^2}$. Он лежит в интервале от $\omega_{ph1} = 2$ до $\omega_{ph2} = \sqrt{4 + 4S}$. Известно, что для систем с потенциалом типа Морзе частота бризеров лежит ниже нижней границы фононного спектра, то есть $0 < \omega_b < 2$.

Условие отсутствия резонанса гармоник ДБ в рассматриваемой системе выражается соотношением $z \omega_b \in [\omega_{ph1}, \omega_{ph2}]$, где z — натуральное число. Это соотношение накладывает ограничения на максимальное значение параметра связи осцилляторов S_{max} и частоту ДБ:

$$\frac{2}{n} < \omega_b < \frac{2}{n-1}, \quad S_{\max} < \frac{1}{4} \left(n^2 \omega_b^2 - 4 \right), \quad n > 1.$$
 (9)

На рисунке 1 серым цветом показаны значения параметров, при которых в исследуемой системе могут существовать ДБ, а пунктирной линией — граница, определяющая максимальное значение параметра связи осцилляторов S_{max} при данной частоте. С увеличением частоты ДБ максимальное допустимое при расчете значение параметра связи осцилляторов S_{max} растет и достигает максимума $S_{\text{max}} = 3$ при частоте, равной нижней границе фононного спектра $\omega_{ph1} = 2$. Из рисунка 1 видно, что возможны два сценария продолжения решения по параметрам модели. Если совершается продолжение решения по параметрем у S при заданной частоте, то оно производится непрерывно от S = 0 до S_{max} . Если же проводится продолжение решения по частоте ДБ, то необходимо рассматривать отдельные интервалы частот, границы которых кратны нижней частоте фононного спектра системы.

Рис. 1. Область существования ДБ.

1. Односайтовые ДБ

Получим ДБ с кодовой последовательностью {...0, 0, +1, 0, 0...}, то есть бризер, локализованный на одном сайте, в антиконтинуальном приближении. Частоту ДБ возьмем равной $\omega_b = 1.8$, то есть чуть ниже нижней границы фононного спектра $\omega_{ph1} = 2$. Соответствующая этой частоте начальная амплитуда решения в антиконтинуальном пределе равна A = 0.404, а максимально возможное значение параметра связи осцилляторов, согласно (9), равно $S_{\text{max}} = \omega_b^2 - 1 = 2.24$. Используя указанные ранее численные значения параметров модели ДНК, с помощью описанного выше метода, получим бризер с частотами, лежащими в интервале 1.0...1.6 ТГц.

На рисунке 2а показано решение системы (8) в виде дискретного бризера для S = 1.7 за один период. Ширина бризера составляет примерно 14 узлов.

2. Мультибризеры

Рассмотрим симметричный мультибризер с кодовой последовательностью $\{\ldots 0, 0, +1, +1, 0, 0 \ldots\}$ — двухсайтовый ДБ. На рисунке 2а представлен профиль движения двухсайтового ДБ для параметров S = 1.7, $\omega_b = 1.8$ за один период.

Помимо двухсайтовых ДБ в исследуемой системе существуют устойчивые мультибризеры с более чем двумя частицами в антиконтинуальном приближении. На рисунке 3 показаны профили устойчивых трехсайтовых ДБ.

Устойчивыми являются симметричная последовательность $\{\ldots -1, +1, -1 \ldots\}$ и эквивалентная ей $\{\ldots +1, -1, +1 \ldots\}$, а также последовательность $\{\ldots -1, 0, +1, \ldots\}$ и эквивалентная ей $\{\ldots +1, 0, -1 \ldots\}$.

3. Исследование устойчивости ДБ

Для исследования корректности полученных решений система (8) численно интегрировалась на временах от 0 до $10\,000\,T_b$, в качестве начальных условий были использованы полученные ДБ. Решения оставались локализованными, и для них строго выполнялось

НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77-87 _

Рис. 2. Стробоскопическая картина движения бризеров.

Рис. 3. Профили устойчивых конфигураций кодовой последовательности для трехсайтовых ДБ.

условие периодичности $y_n(t) = y_n(t + T_b)$ на всем промежутке времени интегрирования. В физических приложениях, однако, имеет смысл рассматривать только решения, обладающие устойчивостью по отношению к малым возмущениям.

Для исследования устойчивости ДБ добавим небольшое возмущение к найденному точному бризерному решению $\hat{u}_n(t) = u_n(t) + \varepsilon_n(t)$ и подставим его в (8). Разложим это выражение в ряд в окрестности бризерного решения $u_n(t)$. Предполагая, что возмущение мало, оставим только линейные по $\varepsilon_n(t)$ члены. Тогда мы получим следующую систему уравнений:

$$\ddot{\varepsilon}_n = S\left(\varepsilon_{n+1} - 2\varepsilon_n + \varepsilon_{n+1}\right) - 4\left[\exp\left(-\sqrt{2}y_n\right)\left(2\exp\left(-\sqrt{2}y_n\right) - 1\right)\right]\varepsilon_n.$$
(10)

Решая численно (8) совместно с (10) по времени за один период T_b и используя в качестве начальных условий для $y_n(0)$ исследуемое решение в виде ДБ, получим матрицу монодромии. Абсолютные значения мультипликаторов Флоке $|\lambda|$ матрицы монодромии определяют устойчивость ДБ по отношению к малым возмущениям. С помощью метода продолжения по параметру возможно исследовать зависимость стабильности ДБ от параметров модели.

На рисунке 4 представлены абсолютные значения мультипликаторов Флоке $|\lambda|$ в зависимости от параметра связи осцилляторов *S* для односайтового и двухсайтового бризеров (частота $\omega_b = 1.8$).

НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77-87.

83

Рис. 4. Диаграмма устойчивости для односайтового (а) и двухсайтового (b) ДБ.

Односайтовые ДБ при 0 < $S \leq 0.6519$ являются устойчивыми. При 0.652 < S < 1.21 нет устойчивых решений, а при S > 1.21 есть как устойчивые, так и неустойчивые бризерные решения.

Двухсайтовые ДБ являются неустойчивыми при 0 < $S \leqslant$ 0.6519. При $S \geqslant$ 0.652 есть как устойчивые, так и неустойчивые решения.

В точке $S_{\rm crit} = 0.6519$ происходит бифуркация решений и так называемое явление обмена стабильностью (stability exchange) между двухсайтовыми и односайтовыми ДБ. Впервые этот эффект был обнаружен Кэмпбеллом и Пейраром [3] для бризеров в цепочке осцилляторов с потенциалом φ^4 .

Для односайтового бризера вблизи $S_{\rm crit}$ две изолированные пары собственных значений матрицы монодромии приближаются к реальной оси и при достижении параметром S значения $S_{\rm crit}$ покидают единичную окружность (см. рис. 5): ДБ становится неустойчивым по отношению к малым возмущениям. При этом наблюдается исчезновение локализованных собственных векторов матрицы монодромии. Для двухсайтового ДБ, наоборот, действительные изолированные собственные значения, лежащие за пределами единичной окружности, при достижении параметром S значения $S_{\rm crit}$ возвращаются на единичную окружность, и ДБ становится устойчивым по отношению к малым возмущениям (см. рис. 6).

4. Исследование устойчивости трехсайтовых ДБ

Для трехсайтовых ДБ наблюдается несколько иной сценарий.

- ДБ с конфигурацией {...0,0,−1,+1,−1,0,0...}. Продолжение решения возможно до значения S_{max} = 0.333. С увеличением параметра S два изолированных мультипликатора Флоке перемещаются от действительной оси по окружности. Потеря устойчивости происходит при столкновении изолированных собственных значений с фононным спектром при S = 0.095 и S = 0.186 (см. рис. 7а) в результате бифуркаций Хопфа при столкновении мультипликаторов Флоке на единичной окружности в точках, отличных от 1 и −1 (см. рис. 8).
- ДБ с конфигурацией {...0,0,-1,0,+1,0,0...}. Продолжение решения возможно до значения $S_{\max} = 0.363$. Потеря устойчивости происходит при столкновении изолированного собственного значений с фононным спектром при S = 0.254 в результате бифуркации Хопфа (см. рис. 7b, 9a, 9b).

Рис. 5. Изменение устойчивости односайтового ДБ при переходе параметра S через S_{crit}.

Рис. 6. Изменение устойчивости двухсайтового ДБ при переходе параметра S через $S_{\rm crit}$.

Рис. 7. Диаграмма устойчивости для трехсайтовых ДБ.

_ НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77–87.

Ħ

85

Рис. 8. Изменение устойчивости трехсайтового ДБ с кодовой последовательностью {...0, 0, -1, +1, -1, 0, 0...}.

Рис. 9. Изменение устойчивости трехсайтового ДБ с кодовой последовательностью {...0, 0, -1, 0, +1, 0, 0...}.

5. Энергия и амплитуда ДБ

ДБ локализуют энергию молекулы ДНК в небольшой области пространства, что может быть ответственно, например, за образование открытого состояния в процессе функционирования ДНК. Энергию ДБ можно найти численно подстановкой решения уравнения (8) в гамильтониан (7).

На рисунке 10а показаны зависимости энергии односайтового E_1 и двухсайтового E_2 ДБ, а также их разности от параметра межчастичного взаимодействия S. Энергия двухсайтового ДБ больше энергии односайтового ДБ при S < 0.623. При $S \approx 0.623$ односайтовый и двухсайтовый ДБ имеют одинаковое значение энергии, и при S > 0.623 энергия односайтового ДБ больше энергии двухсайтового ДБ на незначительную величину, непрерывно уменьшающуюся с увеличением S. На рисунке 10b показана зависимость амплитуды односайтового и двухсайтового ДБ от параметра межчастичного взаимодействия S. Амплитуда A_2 двухсайтового ДБ монотонно возрастает от 0.404 до 0.60 с увеличением S, а амплиту-

НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77-87 _

Рис. 10. (а) Энергия односайтового (птрихованная линия) и двухсайтового (сплошная линия) ДБ и разность энергий двухсайтового и односайтового ДБ (на врезке); (b) амплитуда односайтового (штрихованная) и двухсайтового (сплошная линия) ДБ в зависимости от параметра S.

да односайтового ДБ увеличивается до максимального значения, равного $\max(A_2) = 0.672$ при S = 0.403, а затем монотонно убывает до величины 0.628.

Таким образом, в данной работе показана возможность существования устойчивых двух- и трехсайтовых мультибризеров в модели ДНК Пейрара – Бишопа. Исследована их устойчивость по отношению к малым внешним возмущениям. Получены зависимости амплитуды и энергии ДБ от параметра связи осцилляторов. Полученные решения представляют собой новый тип динамического поведения в известной модели ДНК Пейрара – Бишопа.

Список литературы

- Sievers A. J., Takeno S. Intrinsic localized modes in anharmonic crystals // Phys. Rev. Lett., 1988, vol. 61, no. 8, pp. 970–973.
- [2] Page J. B. Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems // Phys. Rev. B, 1990, vol. 41, no. 11, pp. 7835–7838.
- [3] Campbell D.K., Peyrard M. Chaos and order in non-intagrable model field theories // Chaos: Soviet-American perspectives on nonlinear science / D.K. Campbell (Ed.). New York: AIP, 1990. P. 305–334.
- [4] Flach S., Willis C. R. Localized excitations in a discrete Klein-Gordon system // Phys. Lett. A, 1993, vol. 181, no. 3, pp. 232–238.
- [5] Flach S., Willis C. R., Olbrich E. Integrability and localized excitations in nonlinear discrete systems // Phys. Rev. E, 1994, vol. 49, no. 1, pp. 836–850.
- [6] Flach S. Conditions on the existence of localized excitations in nonlinear discrete systems // Phys. Rev. E, 1994, vol. 50, no. 4, pp. 3134–3142.
- [7] Hennig D., Rasmussen K.Ø., Tsironis G.P., Gabriel H. Breatherlike impurity modes in discrete nonlinear lattices // Phys. Rev. E, 1995, vol. 52, no. 5, R4628–R4631.
- [8] Cai D., Bishop A.R., Grønbech-Jensen N. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations // Phys. Rev. E, 1995, vol. 52, no. 6, R5784–R5787.
- [9] Попов С. П. О формах двумерных солитонных возмущений в простейших решетках // Ж. вычисл. матем. и матем. физ., 2009, т. 49, № 2, с. 323–331.
- [10] Flach S., Gorbach A. Computational studies of discrete breathers from basics to competing length scales // Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2006, vol. 16, no. 6, pp. 1645–1669.

- [11] Shimada T., Shirasaki D., Kitamura T. Stone Wales transformations triggered by intrinsic localized modes in carbon nanotubes // Phys. Rev. B, 2010, vol. 81, no. 3, 035401, 4 pp.
- [12] Baimova J. A., Dmitriev S. V., Zhou K. Discrete breather clusters in strained graphene // Europhys. Lett., 2012, vol. 100, no. 3, 36005, 6 pp.
- [13] Хадеева Л. З., Дмитриев С. В., Кившарь Ю. С. Дискретные бризеры в деформированном графене // Письма в ЖЭТФ, 2011, т. 94, № 7, с. 580–584.
- [14] Korznikova E. A., Baimova J. A., Dmitriev S. V. Effect of strain on gap discrete breathers at the edge of armchair graphene nanoribbons // Europhys. Lett., 2013, vol. 102, no. 6, 60004, 5 pp.
- [15] Корзникова Е. А., Савин А. В., Баимова Ю. А., Дмитриев С. В., Мулюков Р. Р. Дискретный бризер на краю листа графена ориентации «кресло» // Письма в ЖЭТФ, 2012, т. 96, № 4, с. 238–242.
- [16] Liu B., Baimova Ju. A., Dmitriev S. V., Wang X., Zhu H., Zhou K. Discrete breathers in hydrogenated graphene // J. Phys. D, 2013, vol. 46, no. 30, 305302, 9 pp.
- [17] Chechin G. M., Dmitriev S. V., Lobzenko I. P., Ryabov D. S. Properties of discrete breathers in graphane from ab initio simulations // Phys. Rev. B, 2014, vol. 90, no. 4, 045432, 6 pp.
- [18] MacKay R. S., Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators // Nonlinearity, 1994, vol. 7, no. 6, pp. 1623–1643.
- [19] Aubry S. Breathers in nonlinear lattices: Existence, linear stability and quantization // Phys. D, 1997, vol. 103, nos. 1–4, pp. 201–250.
- [20] Peyrard M., Bishop A. R. Statistical mechanics of a nonlinear model for DNA denaturation // Phys. Rev. Lett., 1989, vol. 62, no. 23, pp. 2755–2758.
- [21] Шигаев А. С., Пономарёв О. А., Лахно В. Д. Теоретические и экспериментальные исследования открытых состояний ДНК // Матем. биология и биоинформ., 2013, т. 8, № 2, с. 553–664.
- [22] Фахретдинов М. И., Закирьянов Ф. К. Дискретные бризеры в модели ДНК Пейрара-Бишопа // ЖТФ, 2013, т. 83, № 7, с. 1–5.
- [23] Dauxois T. Dynamics of breather modes in a nonlinear «helicoidal» model of DNA // Phys. Lett. A, 1991, vol. 159, nos. 8–9, pp. 390–395.
- [24] Zdravković S., Satarić M. V. Stacking interaction in DNA molecule // J. Comput. Theor. Nanosci., 2010, vol. 7, no. 10, pp. 2031–2035.

Discrete breathers and multibreathers in the Peyrard–Bishop DNA model

Marat I. Fakhretdinov¹, Farit K. Zakirianov², Evgenii G. Ekomasov³

^{1,2,3}Bashkir State University

450076, Ufa, Zaki Validi Street, 32

¹fmi106tf@gmail.com, ²farni@rambler.ru, ³ekomasoveg@gmail.com

Discrete breathers and multibreathers are investigated within the Peyrard – Bishop model. Region of existence of discrete breathers and multibreathers is defined. One, two and three site discrete breathers solutions are obtained. Their properties and stability are investigated.

MSC 2010: 34C15, 70K75 Keywords: discrete breathers, multibreathers, Peyrard–Bishop DNA model

Received October 07, 2014, accepted November 20, 2014 Citation: *Rus. J. Nonlin. Dyn.*, 2015, vol. 11, no. 1, pp. 77–87 (Russian)

НЕЛИНЕЙНАЯ ДИНАМИКА. 2015. Т. 11. № 1. С. 77-87_