МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВО «УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ НЕФТИ И ГАЗА ИМ М. С. ГУЦЕРИЕВА

Кафедра разработки и эксплуатации нефтяных и газовых месторождений

С. Ю. Борхович, И.В. Пчельников, С.Б. Колесова

ПОДЗЕМНАЯ ГИДРОМЕХАНИКА

УЧЕБНОЕ ПОСОБИЕ

Ижевск 2017

УДК 622. 276. 031: 53 (075) ББК 26.325.31 Б 838

Рекомендовано к изданию учебно-методическим советом УдГУ.

ПОДЗЕМНАЯ ГИДРОМЕХАНИКА: учебное пособие; сост. С.Ю. Борхович, И.В. Пчельников, С.Б. Колесова - Ижевск: изд-во «Удмуртский университет», 2017. - 124 с.

Учебное пособие содержит краткое изложение лекционного материала по

Б дисциплине, задание на выполнение курсовой работы для студентов очной и заочной

838 форм обучения, специальность 21.03.01 – «Эксплуатация и обслуживание объектов добычи нефти»,

УДК 622. 276. 031: 53 (075) ББК 26.325.31 Б 838

© Борхович С.Ю., 2017

СОДЕРЖАНИЕ

1.	КРАТКИЙ	КУРС	ОСНОВНЫХ	ВОПРОСОВ	ПОДЗЕМНОЙ		
ГИДРОМЕХАНИКИ							
BBED 1.1. C 1.2. I 1.3. C 1.4. F 1.5. 3 1.6. I 1.7. F 1.8. C 1.8.1. 1.8.2. 1.8.3. 1.9. C	ение Эсновные этапь Эорные породы Силы, действую Сежимы нефте-и аконы фильтра раницы примен Асновы теории Основы теории Основы теории Примеры прак Эсновные дифф	и развития как вмести ощие в плас азоводоно ции нимости за оны фильт вытеснени и поршнев и непоршн тического	подземной гидро илище жидкостей стовых системах. осных систем кона Дарси прации. ого вытеснения н евого вытеснения н применения реше	механики и газов ефти водой нефти водой ения Бакли-Левер одземной гидрога			
 1.10. жидк 1.10. несж 	Простейшие ости при линей 1. Общие св имаемой жидко	установин ном закон едения с ости.	зшиеся фильтраї е фильтрации об установивших	ционные потоки сся фильтрацио	несжимаемой 36 нных потоках 36		
1.10.2. Характеристики одномерных фильтрационных потоков жидкости40 1.11. Установившееся движение капельных сжимаемых жидкостей и газов в простейших фильтрационных потоках при линейном законе фильтрации47 1.12. Неустановившееся движение упругой жидкости в деформируемой пористой среде							
1.13. 1.14. неоді	Установившее Установившее Установивше нородных пори	ся движени еся движ стых среда	ие неоднородных хение однородно ах	жидкостей в пор й несжимаемой	истых средах 52 й жидкости в		
1.15. скваж 1.16. линей 1.17. 1.18. Дарс	Установивши кинам Установившее йном законе фи Интерференци: Приток жидко и 62	йся прито ся неради льтрации я скважин сти к несо	ок несжимаемой альное движение вершенным скваж	жидкости к н несжимаемой жи минам при выпол	несовершенным 55 идкости при 56 59 нении закона		
1.19. трещ 1.20. 1.20. режи 1.20.2	Установивша иноватом пласт <i>Гидродинамич</i> 1. Методика об мах 69 2. Методика об	яся филь те н <i>еские мен</i> Бработки р Бработки р	отрация жидкост поды исследовани результатов исслед езультатов исслед	и и газа в Д ий цований на устан ований на неуст	цеформируемом 66 67 овившихся ановившихся		
режи 1.20.3	мах 81 3. Понятие о ск	ин-фактор	e				

1.21. Оптимальный дебит скважины в условиях пескопроявления						
1.21.1. Энергосберегающий дебит скважины	.91					
1.21.2. Основные представления о механизме пескопроявления						
1.21.3. Прогнозирование выноса песка из пласта к скважине						
1.21.4. Защита скважины от песка						
1.22. Расчет дебитов горизонтальных скважин при двухфазной фильтрации . 101						
1.22.1. Стационарный дебит скважины в изотропном пласте при зональной						
неоднородности по насыщенности1	03					
1.22.2. Стационарный дебит скважины в анизотропном пласте с постоянной						
водонасыщенностью (s = const.)1	04					
2. ЗАДАНИЕ ДЛЯ КУРСОВЫХ ПРОЕКТОВ ПО ПОДЗЕМНО	ŊЙ					
ГИДРОМЕХАНИКЕ1	05					
Залание № 1	105					
Залание № 21	105					
Залание № 31	106					
Задание № 4 1	106					
Задание № 5 1	107					
Задание № 61	107					
Задание № 7 1	108					
Задание № 8 1	108					
Задание № 91	109					
Задание № 10 1	109					
Задание № 11 1	110					
Задание № 12 1	110					
Задание № 13 1	111					
Задание № 14 1	111					
Задание № 151	112					
Задание № 16 1	112					
Задание № 171	113					
Задание № 181	113					
Задание № 191	114					
Задание № 20 1	114					
Задание № 211	115					
Задание № 221	115					
Задание № 231	116					
Задание № 241	116					
Задание № 25	117					
Задание № 261	117					
Задание № 27	118					
Задание № 28	118					
3. ОФОРМЛЕНИЕ КУРСОВЫХ РАБОТ]	119					
4. ДАННЫЕ ДЛЯ РАСЧЕТА И СПРАВОЧНЫЕ ДАННЫЕ						
5. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ 1	122					

1. КРАТКИЙ КУРС ОСНОВНЫХ ВОПРОСОВ ПОДЗЕМНОЙ ГИДРОМЕХАНИКИ

Введение

Подземная гидрогазодинамика - наука о движении жидкостей, газов и их смесей в пористых и трещиноватых средах; по своей сути она является одним из специальных разделов общего курса механики жидкостей. С другой стороны, подземная гидрогазодинамика является теоретической базой для описания процессов фильтрации при разработке нефтяных и газовых месторождений и обеспечивает решение широкого круга прикладных задач в Подземная практической деятельности специалистов-нефтяников. гидрогазодинамика при решении стоящих перед ней теоретических и практических задач пользуется всеми известными в механике жидкостей приемами и методами: бесконечно малых величин, средних величин, анализа размерностей, аналогий и методами обработки результатов экспериментов. Объектом изучения подземной гидрогазодинамики является поток жидкости и газа в пористой среде, называемый фильтрационным потоком; движущиеся в пласте жидкости и газы рассматриваются как непрерывные сплошные среды, на которые распространяются все свойства, присущие сплошным средам, и все законы механики сплошных сред.

1.1. Основные этапы развития подземной гидромеханики

Основоположниками отечественной школы теории фильтрации являются профессор Н.Е. Жуковский, академики Н.Н. Павловский, Л.С. Лейбензон. Исследования этих выдающихся ученых, их многочисленных учеников и последователей стали фундаментальной основой развития теории фильтрации в нашей стране.

Н.Е. Жуковский (1847-1921 гг.) в 1889 г. опубликовал первую работу по теории фильтрации «Теоретическое исследование о движении подпочвенных вод». Им впервые выведены общие дифференциальные уравнения теории фильтрации, показано, что напор как функция координат удовлетворяет уравнению Лапласа, указано на математическую аналогию теплопроводности и фильтрации. Им исследованы также вопросы капиллярного поднятия воды в пористой среде, решен ряд задач о притоке воды к скважинам.

Н.Н. Павловскому (1884-1937 гг.) принадлежит определяющая роль в теории фильтрации гидротехническом В развитии В направлении. опубликованной монографии «Теория движения грунтовых вод под гидротехническими сооружениями и ее основные приложения» изложена разработанная им строгая математическая теория движения грунтовых вод под гидротехническими сооружениями. Им впервые многие задачи фильтрации воды были сформулированы как краевые задачи математической физики. Н.Н. Павловский впервые обосновал и предложил применение метода электрогидродинамической аналогии (ЭГДА) для решения фильтрационных задач, что в последующем нашло широкое применение для решения задач фильтрации воды, нефти И В неоднородных коллекторах. газа Н.Н. Павловский впервые предложил использовать параметр Рейнольдса в качестве критерия существования закона Дарси, что имеет важное значение для исследования законов сопротивления при фильтрации. Фундаментальные результаты в развитии теории движения грунтовых вод получены академиком П.Я. Полубариновой-Кочиной.

Л.С. Лейбензон (1879-1951 гг.) - основатель советской школы ученых и специалистов, занимающихся развитием теории фильтрации применительно к проблемам разработки нефтяных газовых месторождений. И Теоретические и экспериментальные исследования Л.С. Лейбензона начались в 1921 г. в Баку. Ему принадлежит приоритет в постановке и решении ряда задач нефтегазовой и подземной гидромеханики. Им проведены первые исследования по фильтрации газированных жидкостей, сформулированы задачи нестационарной фильтрации при расчетах стягивания контуров нефтеносности при вытеснении нефти водой, получены фундаментальные результаты В развитии теории фильтрации природного газа. Обобщение этих исследований приведено в обширной монографии «Нефтепромысловая механика», в которой,

по существу, впервые изложены основы нефтегазовой подземной гидромеханики.

Трудами учеников и последователей академика Л. С. Лейбензона сложилась школа, которая по праву называется школой Л .С. Лейбензона. Выдающийся вклад в развитие теории фильтрации в нефтегазоводоносных пластах внесли академик С. А. Христианович, профессоры Б. Б. Лапук, И. А. Чарный, В. Н. Щелкачев. Написанные ими монографии и учебники стали классическими, основополагающими. Они имеют большое научнометодическое значение, способствуя успешной подготовке в вузах инженерных и научных кадров.

В послевоенный период теория фильтрации нефти, газа и воды развивается трудами советских ученых, среди которых следует отметить работы М.Т. Абасова, М.Г. Алишаева, И. М. Аметова, Е.Ф. Афанасьева, Г.И. Баренблатта, Ю.П. Борисова, С.Н. Бузинова, В.Я. Булыгина, Г.Г. Вахитова, М.М.Глоговского, Г.Л.Говоровой. А.Т.Горбунова, М.А. Гусейн-Заде, В.Л. Данилова, Ю.В. Желтова, Ю.П. Желтова, С.Н. Закирова, Г.А. Зотова, В.М. Ентова, Р.Г. Исаева, Ю.П. Коротаева, А.К. Курбанова, Е.М. Минского, Ю.М. Молоковича, А.Х. Мирзаджанзаде, Н.Н. Непримерова, В.Н. Николаевского, А.М. Пирвердяна, Г.Б. Пыхачева, Г.В. Рассохина, М.Д. Розенберга, Е.С. Ромма. Э.В. Соколовского, М.Л. Сургучева, М.М. Саттарова, Ф.А. Требина, Э.Б. Чекалюка, М.В. Филинова, М.И. Швидлера, И.Д. Умрихина, А.Л. Хейна, Д.А. Эфроса и др. Работы этих учеников обеспечили успешное развитие ученых И ИХ подземной гидромеханики - теоретической основы теории и практики разработки нефтяных и газовых месторождений, что способствовало ускоренному развитию нефтегазодобывающей промышленности нашей страны.

В последние годы ведутся интенсивные исследования в области гидрогазодинамического обоснования повышения степени извлечения углеводородов из недр. Это обусловлено исчерпанием легкодоступных запасов нефти и газа, усложнением горно-геологических и термобарических условий разработки месторождений. Наступает новый этап развития нефтегазовой подземной гидромеханики, в течение которого главным направлением исследований будет достижение достаточно высоких коэффициентов нефтегазоотдачи пластов.

Следует отметить, что фундаментальные гидродинамические аспекты этой проблемы успешно развиваются работами исследователей, которые широко привлекают методы термодинамики, физики, химии, а также современный аппарат математического описания сложных фильтрационных процессов.

области нефтегазовой Широкие исследования В подземной гидромеханики проводятся за рубежом. Большое значение для развития технологии нефтеотдачи имеют работы по теории фильтрации крупнейшего специалиста M. Маскета. Основы теории американского двухфазной фильтрации, предложенные С. Бакли и М. Левереттом, получили широкое распространение И представляют собой основное содержание модели двухфазной фильтрации. Работа А. Ван Эвердингена и У. Херста о притоке упругой жидкости к скважине и полученные в ней решения позволили существенно усовершенствовать гидродинамические расчеты продвижения воды в пределы нефтяной или газовой залежи. Большое значение имеет работа Р. Коллинза, посвященная теории течения жидкостей через пористые материалы. Известный французский гидромеханик А. Упер выпустил несколько монографий, посвященных теории фильтрации жидкостей и газов при нелинейном законе, применению вероятностно-статистических методов для решения фильтрационных задач. Хорошо известны переведенные на русский язык книги А.Э. Шейдеггера (Канада), Х. Азиза и Э. Сеттари (США), Н. Кристеа (Румыния) и др.

Работы зарубежных авторов, так же как и советских специалистов, были посвящены гидродинамическому моделированию процессов разработки нефтяных и газовых месторождений применительно к все усложняющимся условиям их эксплуатации.

8

Необходимо отметить, что в последние годы для решения сложных фильтрационных задач создано несколько новых направлений, в частности, развитие исследований показало, что традиционные задачи гидродинамической теории фильтрации можно сформулировать как стохастические в средах со случайными неоднородностями. В связи с этим активно развивается специфическое направление в теории фильтрации, которое можно назвать стохастической теорией фильтрационных процессов.

Развиваются также и другие новые математические методы исследования характеристик природных систем протекающих процессов, И В них эффективныедля построения И обоснования моделей подземной гидромеханики. Речь идет о методах перколяции (протекания) и фракталов. Перколяционные модели позволяют достаточно полно описывать сложные Для построения

процессы капиллярного гистерезиса и неравновесности. Для построения фильтрационных моделей на макроуровне в хаотически неоднородных пластах, при неустойчивом продвижении границ фаз применяются теории фракталов.

В некоторых случаях традиционных методов подземной гидромеханики становится недостаточно для адекватного описания всего периода жизни месторождения, связанного с необходимостью непрерывного корректирования принимаемых решений по мере уточнения исходной информации. Тогда для принятия обоснованных решений необходимо применениевероятностностатистических и адаптационных методов. Под руководством академика АН республики Азербайджан А.Х. Мирзаджанзаде создано такое направление

оптимизации принимаемыхрешений вфильтрационных задачах применительно к широкому кругу вопросов разработки нефтяных и газовых месторождений.

Современное состояние и перспективы дальнейшего развития нефтяной и газовой промышленности характеризуются переходом на интенсивные методы разработки месторождений, существенным усложнением горно-геологических и термобарических условий их эксплуатации. В связи с этим применяются новые методы повышения нефтеотдачи пластов, основанные на дальнейшем

совершенствовании методов гидродинамического воздействия на пласты, более широким применением термических, физико-химических и газовых методов воздействия на природные резервуары И насыщающие флюиды. их Нефтегазовая подземная гидромеханика получает дальнейшее развитие под влиянием новых актуальных задач, выдвигаемых практикой разработки нефтяных, газовых и газоконденсатных месторождений. В связи с этим, наряду с изложением традиционных вопросов, гораздо большее внимание уделяется задачам взаимного вытеснения жидкостей и газов в пористых средах, задачам с подвижной границей и эффективным приближенным методам их решения. Эти последние разделы составляют теоретическую базу при моделировании многих технологических процессов, связанных с повышением нефте- и газоотдачи Рассмотрены основные типы моделей физических пластов. процессов, происходящих при фильтрации пластовых флюидов в процессе разработки и эксплуатации природных залежей; при этом основное внимание уделяется численному моделированию. Дается анализ численных схем и алгоритмов, апробированных зарекомендовавших себя подземной И хорошо В гидродинамике и ее приложениях.

При рассмотрении гидродинамических задач, связанных с разработкой газоконденсатных месторождений, авторы исходили из понимания того, что эти месторождения насыщены углеводородами парафинового ряда, в составе которых имеется достаточно большое количество углеводородов от пентана и тяжелее, конденсирующихся и испаряющихся при снижении пластового давления. Кроме газа, продукция газоконденсатного месторождения - сырой и стабильный углеводородный конденсат результат ретроградных явлений, происходящих при изменении давления И температуры. Стабильный конденсат при стандартных условиях (0,1 МПа и 20°С) состоит только из жидких углеводородов (С5 + высшие) и используется как сырье для переработки на топливо или получения химических продуктов. Отметим, что в учебнике не представляется возможным изложить достаточно полно теорию фильтрации газоконденсатных смесей В пористых средах С учетом

10

происходящих при этом фазовых превращений. Однако рассмотренные случаи многофазной многокомпонентной фильтрации в большинстве случаев описывают и этот процесс.

1.2. Горные породы как вместилище жидкостей и газов

С точки зрения основных задач подземной гидрогазодинамики, горные породы можно разделить на две категории: проницаемые горные породы (или коллекторы) и плотные (непроницаемые) горные породы. К проницаемым породам способные принято относить горные породы. вмещать (аккумулировать) в себе флюиды (жидкости и газы) и пропускать их через себя. Флюиды занимают в породе межзерновые пустоты (поры), образующиеся за счет неполного контакта твердых частиц, слагающих горную породу, а также каверны и трещины, образующиеся в горной породе за счет внешних воздействий или в результате постседиментационных процессов. По этим особенностям коллекторы можно разделить на два вида: поровые и трещинные. Важнейшими характеристиками порового коллектора являются: коэффициент пористости *m* и коэффициент просветности *n*:

$$m = \frac{W_n}{W}, \ n = \frac{F}{F},\tag{1}$$

где m – коэффициент пористости (в долях единицы); W - геометрический объём породы; W_n - объём порового пространства (суммарный объём пустот в породе); n - коэффициент просветности (в долях единицы); F - площадь сечения образца породы; F_n - суммарная площадь сечений просветов в сечении F образца породы.

Среди трещинных коллекторов различают чисто трещиноватые и трещиновато-пористые коллекторы. Если в первых движение жидкости и газа происходит только по трещинам, то во вторых — в трещинах и пористых блоках, расположенных между трещинами. Трещиновато-пористую среду рассматривают как совокупность двух разномасштабных пористых сред: первая среда, в которой поровыми каналами служат трещины, а пористые блоки между ними — зернами породы, характеризуется своей пористостью *m_m* и

проницаемостью k_m ; вторая среда — система пористых блоков, характеризуется своей пористостью m_n и проницаемостью k_n .

Пористость m_m и проницаемость k_m чисто трещиноватых пластов определяются густотой трещин Γ , геометрией систем трещин в породе и их средним раскрытием δ .

Густотой трещин *Г* называется число трещин, приходящееся на единицу длины секущей, нормальной к поверхностям, образующим трещины.

Пористость *m_m* связана с густотой трещин и средним их раскрытием соотношением

$$m_m = \Theta \Gamma \delta \tag{2}$$

где θ – коэффициент, учитывающий геометрию систем трещин и принимающий значения $1 \le \Theta \le 3$.

Коэффициент проницаемости изотропного трещиноватого пласта выражается через густоту трещин и их среднее раскрытие соотношением

$$k_m = \frac{\Theta\Gamma\delta^3}{12} = \frac{m}{12} \cdot$$
(3)

Если считать, что изменение раскрытия трещин при изменении пластового давления определяется упругими деформациями в трещиноватом пласте и описывается формулой

$$\delta = \delta_0 - \Delta \delta = \delta_0 \left[1 - \beta \left(p_0 - p \right) \right], \tag{4}$$

то коэффициент проницаемости k_m в таком пласте в соответствии с формулой (3)

$$k_m = k_{m0} \left[1 - \beta (p_0 - p) \right]^3, \tag{5}$$

где δ_0 – раскрытие трещины при давлении p_0 ; $\beta = \beta_m l / \delta_0$ - комплексный параметр трещиноватой среды; $\beta_m = (1 - 2\sigma)/E$ - упругая константа, σ – коэффициент Пуассона; E – модуль Юнга породы; l – среднее расстояние между трещинами.

При малых изменениях давления зависимость коэффициента проницаемости *k_m* от давления можно считать линейной

$$k_m = k_{m0} \left[1 - \alpha (p_0 - p) \right], \tag{6}$$

где $\alpha = 3\beta$.

Некоторые авторы представляют зависимость коэффициента проницаемости трещиноватого пласта от давления в виде экспоненциальной функции

$$k_m = k_{m0} e^{-\alpha(p_0 - p)}.$$
 (7)

При рассмотрении фильтрации в трещиновато-пористом пласте обычно считают, что коэффициент проницаемости трещин $k_{\rm T}$ существенно зависит от давления и определяется одной из указанных формул, а коэффициент проницаемости пористых блоков k_n практически не зависит от давления и принимается постоянным.

1.3. Силы, действующие в пластовых системах

Залежи нефти и газа пластового и сводового типов, как правило, являются частями обширных гидродинамических систем, простирающихся на сотни и тысячи километров; такие системы представляет собой природные сообщающиеся резервуары больших размеров.

Одной из основных сил, действующих в пластовой системе, является сила горного давления, представляющая вес горных пород, расположенных над пластом. Под действием этой силы породы пласта – коллектора нефти и газа деформируются и находятся в напряженном состоянии. Согласно молекулярнокинетической теории строения вещества напряженное состояние горной породы характеризует запас внутренней энергии твердого скелета породы. Показателями этой внутренней энергии могут служить коэффициент упругости (объемного сжатия) среды или модуль упругости:

$$\beta_{cp} = -\frac{1}{W_{cp}} \frac{dW_{cp}}{dp}, \quad K_{cp} = \frac{1}{\beta_{cp}}, \quad (8)$$

где β_{cp} - коэффициент объемного сжатия среды; W_{cp} - объем среды; p - величина давления.

Упругие силы, действующие в пласте (сила упругого сжатия жидкости), внутренняя энергия жидкости, находящейся в напряженном состоянии под действием пластового давления. Коэффициент упругости (объемного сжатия) жидкости:

$$\beta_{\mathcal{H}} = -\frac{1}{W_{\mathcal{H}}} \frac{dW_{\mathcal{H}}}{dp},\tag{9}$$

где $\beta_{\mathcal{H}}$ - коэффициент объемного сжатия жидкости; $W_{\mathcal{H}}$ - объем жидкости; p - величина давления.

1 /

Если из пласта жидкость не извлекается и не нагнетается в пласт, то баланс сил горного давления и упругих сил, действующих в жидкости, будет сохраняться.

1.4. Режимы нефте-газоводоносных систем

Особенности движения жидкостей и газов в природных пористых и трещиноватых средах определяются действующими на нефть и газ силами. По типу преобладающих действующих сил различают жесткий водонапорный, газонапорный, упругий, режим «газированной жидкости» и гравитационный. Режимы пластовых систем принято делить на режимы вытеснения и истощения. При режимах вытеснения фильтрация жидкостей осуществляется за счет внешней энергии (напора краевых вод или газов), при режимах истощения источником энергии для обеспечения фильтрации жидкости и газа являются упругие силы (внутренняя энергия жидкости, газа и твердой среды).

1.5. Законы фильтрации

Фильтрация - раздел гидромеханики, посвященный исследованию движения жидкостей через пористые среды, то есть тела, пронизанные системой сообщающихся между собой пустот (пор). Пористыми являются многие природные тела: грунты, горные породы и т.д. Характерной особенностью пористых тел - способность накапливать в себе жидкость и позволять ей двигаться под действием внешних сил.

Фильтрация жидкостей и газов по сравнению с движением в трубах и каналах обладает некоторыми специфическими особенностями.

Фильтрация происходит по чрезвычайно малым в поперечных размерах норовым каналам при очень малых скоростях движения жидкостей. Силы

трения при движении жидкости в пористой среде очень велики, так как площади соприкосновения жидкости с твердыми частицами огромны.

Движение реальной жидкости в потоке описывается, как известно, уравнением Бернулли

$$z_{1} + \frac{p}{\gamma} + \frac{\alpha v^{2}}{2g} = z_{2} + \frac{p}{\gamma} + \frac{\alpha v^{2}}{2g} + \sum h_{mp}.$$
 (10)

Однако фильтрационные потоки в пористой среде в значительной мере отличаются от потока в круглой цилиндрической трубе. Основное отличие таких потоков сводится, в основном, к двум особенностям:

- в фильтрационном потоке жидкость движется в капиллярных и субкапиллярных поровых каналах, имеющих очень сложную, не поддающуюся простому количественному описанию форму,

- в фильтрационном потоке жидкость движется с весьма малыми скоростями.

Упрощенной моделью пористой среды является модель фиктивного грунта. Фиктивный грунт состоит из шариков одного диаметра, уложенных определенным образом. Основным элементом (основной ячейкой) фиктивного грунта является ромбоэдр, который получится, если принять центры восьми соприкасающихся частиц за вершины углов (рис. 1). В зависимости от острого угла θ боковой грани ромбоэдра укладка шаров более или менее плотная.

Угол θ изменяется в пределах от 60° до 90°. Углу $\theta = 60^{\circ}$ соответствует наиболее плотная укладка шаров, углу $\theta = 90^{\circ}$ -наиболее свободная.

(11)

Пористость фиктивного грунта

m = 1 - 1 $6(1-\cos\theta)\sqrt{1+2\cos\theta}$ определяется по формуле Ч. Слихтера

Рис. 1.

из которой следует, что пористость зависит не от диаметра частиц, а лишь от их взаимного расположения, которое определяется углом θ. Чтобы формулы для фиктивного грунта можно было применять для естественного грунта, нужно заменить реальный грунт эквивалентным ему фиктивным, который должен иметь такое же гидравлическое сопротивление, как у естественного грунта.

Диаметр частиц такого фиктивного грунта называется эффективным диаметром (d_3) . Эффективный диаметр определяется в результате механического анализа грунта. Его просеивают через набор сит с различной площадью отверстий и, таким образом, разделяют на фракции. За средний диаметр каждой фракции принимают среднее арифметическое крайних диаметров, т.е.

Рис. 2

$$d_i = \frac{d'_{i-1} + d'_i}{2}$$

Затем строят кривую механического (фракционного) состава грунта, откладывая по оси абсцисс средние диаметры фракций d_i а но оси ординат — сумму масс фракций $\Delta g_1 + \Delta g_2 + + ... + \Delta g_i$ в % от общей массы.

Последняя точка кривой имеет абсциссу, равную d_n , и ординату $\Delta g_1 + \Delta g_2 + ... + \Delta g_n = 100\%$ (рис. 2).

По способу А. Газена d_3 определяется по кривой механического состава. За эффективный принимается такой диаметр шарообразной частицы, который соответствует сумме масс всех фракций, начиная от нуля и кончая этим диаметром, равной 10%. Надо найти, кроме того, диаметр d_0 , который соответствует сумме масс фракций, равной 60%. Коэффициент однородности d_0/d_3 должен быть не более 5 ($d_0/d_3 \le 5$) и d_3 должен лежать в пределах от 0,1 до 3 мм.

По способу Крюгера — Цункера используют данные механического анализа грунта и определяют *d*_э по формуле

$$\frac{100}{d_{g}} = \sum_{i=1}^{n} \frac{\Delta g}{d_{i}^{i}}.$$
 (12)

В теории фильтрации движение жидкости или газа через пористую среду рассматривается не с точки зрения движения потоков по отдельным

извилистым микроскопическим каналам, а распространяют расход жидкости или газа на всю поперечную площадь пористой среды. Эта фиктивная скорость называется скоростью фильтрации. Истинные скорости движения в отдельных каналах могут значительно превышать скорость фильтрации. В связи с этим все законы фильтрации, устанавливающие связь между скоростью фильтрации, градиентом давления и параметрами пористой среды и жидкости, носят статический характер.

При изучении фильтрационного потока удобно отойти от размеров пор и их формы, допустив, что жидкость движется сплошной массой, заполняя весь объем пористой среды, включая пространство, занятое скелетом породы.

Скоростью фильтрации *w* называется отношение объемного расхода жидкости к площади поперечного сечения пласта, нормального к направлению движения жидкости

$$w = Q/\omega. \tag{13}$$

Скорость фильтрации представляет собой фиктивную скорость, с которой двигалась бы жидкость, если бы пористая среда отсутствовала (m=1).

Средняя скорость движения жидкости *v* равна отношению объемного расхода к площади просветов ω_{просв} (живому сечению потока)

$$\upsilon = \frac{Q}{\omega_{npoce}} = \frac{Q}{m\omega} \tag{14}$$

Скорость фильтрации и средняя скорость движения связаны соотношением

$$\upsilon = w/m. \tag{15}$$

Если под величиной средней скорости жидкости в живом сечении потока в уравнении Бернулли понимать скорость фильтрации, то это уравнение будет справедливо и для фильтрационного потока. Поскольку скорости фильтрации весьма малы, то и величины скоростного напора являются бесконечно малыми по сравнению с пьезометрическими напорами и величиной потерь напора.

Закон фильтрации Дарси устанавливает линейную зависимость между объемным расходом несжимаемой жидкости и потерей напора, приходящейся на единицу длины, и имеет вид

$$Q = c \frac{H_1 - H_2}{l} \omega, \qquad (16)$$

18

где $H = z + \frac{p_1}{\rho g}$ и $H = z + \frac{p_2}{\rho g}$ полные напоры в начальном и конечном сечениях образца пористой среды (скоростные напоры

отброшены вследствие их малости); *l* — длина образца; ω — площадь поперечного сечения (рис. 3); *c* — коэффициент фильтрации, зависящий как от свойств

пористой среды, так и от свойств фильтрующейся жидкости.

Учитывая, что $(H_1-H_2)/l = i$ — гидравлический уклон, (16) можно записать так:

$$Q = ci\omega. \tag{17}$$

Деля обе части последнего равенства на ω , получим

$$w = ci. \tag{18}$$

Способность пористой среды пропускать сквозь себя жидкости и газы называется проницаемостью. Это свойство характеризуется коэффициентом проницаемости *k*. В отличие от коэффициента фильтрации *c* коэффициент проницаемости *k* зависит только от свойств пористой среды.

При решении задач нефтяной подземной гидравлики удобнее записывать закон Дарси, пользуясь коэффициентом проницаемости:

$$Q = \frac{k}{\mu} \frac{p_1 - p_2}{l} \omega = \frac{k\Delta p}{\mu l} \omega \quad (19)$$

или

$$w = \frac{k}{m} \frac{p_1 - p_2}{l} = \frac{k \Delta p}{m l}$$
(20)

где $p_1^* = \rho g z_1 + p_1 p_2^* = \rho g z_2 + p_2$ — давления, приведенные к плоскости отсчета геометрических высот.

Закон Дарси в дифференциальной форме имеет вид

$$-\frac{dP}{dx} = \frac{\mu}{k}W, \qquad (21)$$

 $\frac{ar}{dx}$ - градиент давления (сил трения), W – скорость фильтрации, μ - коэффициент динамической вязкости, k – коэффициент проницаемости. Знак (-) в левой части формулы (21) означает, что течение газа происходит в направлении, противоположном росту давления. Фундаментальный закон фильтрации (21) устанавливает связь между скоростью фильтрации и градиентом давления.

Коэффициенты проницаемости и фильтрации связаны соотношением

$$\frac{k}{\mu} = \frac{c}{\rho g}.$$
(22)

Коэффициент проницаемости имеет размерность площади, а коэффициент фильтрации - размерность скорости.

На практике проницаемость нефтяных и газовых пластов измеряется единицами, называемыми дарси (Д). За единицу проницаемости 1 Д принимают проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см², длиной 1 см при перепаде давления в 1 кгс/см² (98 000 Па) расход жидкости вязкостью 1 сП (1 мПа·с) составляет 1 см³/с. Величина, равная 0,001 Д, называется миллидарси (мД), 1 Д= $1,02 \cdot 10^{-8}$ см² = $1,02 \cdot 10^{-12}$ м².

Коэффициент фильтрации и проницаемости связаны между собой соотношением вида:

$$k = \frac{\rho g k}{\rho}, \tag{23}$$

где μ - коэффициент динамической вязкости; g - ускорение свободного падения; ρ - плотность жидкости.

1.6. Границы применимости закона Дарси

Подобно тому, как в трубной гидравлике критерием режима движения служит число Рейнольдса

$$Re = v d\rho/\mu, \tag{24}$$

в теории фильтрации вводится безразмерный параметр

$$Re = u\bar{a}\rho/\mu, \tag{25}$$

где u — некоторая характерная скорость; \bar{a} — линейный параметр, характеризующий среднее сечение поровых каналов; ρ — плотность жидкости; μ — динамический коэффициент вязкости.

Скорость фильтрации, при которой нарушается закон Дарси, называется критической скоростью фильтрации (*w*_{кр}).

Однако нарушение линейного закона фильтрации еще не означает перехода от ламинарного движения к турбулентному. Закон Дарси нарушается вследствие того, что силы инерции, возникающие в жидкости за счет извилистости каналов и изменения площади их поперечных сечений, становятся при $w > w_{\kappa p}$ соизмеримыми с силами трения.

В трубной гидравлике значение Re, при котором происходит смена режимов, равно $Re_{\kappa p}$ = 2320, в теории фильтрации закон Дарси имеет место при значении безразмерного параметра Re, меньшего критического ($Re_{\kappa p}$), которое устанавливается из опыта.

Впервые число Рейнольдса для фильтрации жидкости было введено Н. Н. Павловским в виде

$$Re = \frac{wd_{2}\rho}{(0,75m+0,23)\mu}$$
(26)

т. е. за характерную скорость была взята скорость фильтрации *w*, а линейный параметр представлен выражением

$$a = \frac{d_{3}}{0,75m + 0,23}$$
(27)

Критические значения Re по Павловскому заключены в интервале

$$Re_{\kappa p} = 7,5 \div 9$$

В. Н. Щелкачев предложил взять за линейный параметр выражение, пропорциональное корню квадратному из коэффициента проницаемости,

$$\overline{a} = 10\sqrt{k}m^{-2,3} \tag{28}$$

Число Рейнольдса по В. Н. Щелкачеву имеет вид:

$$\operatorname{Re} = \frac{10w\sqrt{k}\rho}{m^{2,3}\mu},$$
(29)

а критические значения лежат в интервале:

$$l \le \operatorname{Re}_{\kappa p} \le 12. \tag{30}$$

По М. Д. Миллионщикову за характерную скорость взята средняя скорость движения жидкости:

$$v = w/m, \tag{31}$$

а за линейный параметр — выражение $\sqrt{k/m}$ т. е.

$$\operatorname{Re} = \frac{\nu\sqrt{k/m\rho}}{\mu} = \frac{w\sqrt{k\rho}}{m^{1.5}\mu}$$
(32)

Если вычисленное по одной из формул (26), (29), (32) значение числа Re оказывается меньше нижнего критического значения $Re_{\kappa p}$, то закон Дарси справедлив, если Re больше верхнего значения $Re_{\kappa p}$, то закон Дарси заведомо нарушен.

Широкий диапазон изменения $Re_{\kappa p}$ объясняется тем, что в формулы для числа Re входят параметры k и m, которые не полностью характеризуют микроструктуру породы. Как следует из опытов, для каждой горной породы можно указать более узкий диапазон значений $Re_{\kappa p}$. Результаты исследований критических значений числа Рейнольдса представлены в табл. 1.

Таблица 1.

Критические значения числа Рейнольдса при фильтрации по определению верхней границы применимости закона Дарси

Автор	Критическое значение	По опытам
	числа Рейнольдса	А.И. Абдулвагабова
Фэнчер, Льюис, Бернс	1-4	-
Павловский Н.Н.	7,5-9	-
Щелкачев В.Н.	1-12	0,032-14
Миллионщиков Н.Д.	0,022-0,29	0,0015-0,60
Требин Г.Ф., Котяхов Ф.И.	0,3	0,0085-3,5
Шафернак Ф., Даклер Р.	3-6	-
Эренбергер П.	5	-
Абдулвагабов А.И.	-	0,032-14

Определение режима фильтрации жидкостей и газов имеет большое практическое значение, ибо без знания закона фильтрации в пласте нельзя правильно рассчитать оптимальные дебиты скважин, распределение давления в пласте, а также невозможно определение параметров пласта (*k*, *h*, *m* и др.) по данным исследования нефтяных и газовых скважин. В случае последних применение энергосберегающих режимов работы скважин обеспечивает благоприятные условия по предотвращению нарушений герметичности и целостности эксплуатационных колонн газовых скважин, вызванных интенсивными деформационными процессами, возникающими при высоких дебитах газа.

Для удобства обработки результатов многочисленных экспериментов различных авторов В.Н.Щелкачев предложил использовать безразмерный параметр, названный им параметром Дарси

$$Da = \frac{w\mu L}{K\Lambda P}.$$
(33)

Отсюда видно, что параметр Дарси представляет собой отношение силы вязкого трения к силе давления. Из выражения (33) следует, что если параметр Дарси равен единицы

$$Da = 1, (34)$$

то закон Дарси справедлив.

Таким образом, равенство (34) должно выполняться при Re < Re_{*KP*}, параметр Дарси упрощает исследование границы применимости линейного закона фильтрации.

Нижняя граница определяется проявлением неньютоновских реологических свойств жидкости, ее взаимодействия с твердым скелетом пористой среды при достаточно малых скоростях фильтрации.

Ограничимся формулировкой наиболее простого нелинейного закона фильтрации неньютоновских жидкостей, в основе которого лежит модель фильтрации с предельным градиентом. Для случая одномерного линейного потока его можно представить в виде

$$\begin{bmatrix} \frac{\Delta P}{L} = \frac{\mu w}{\kappa} + \gamma, (w > 0) \\ \frac{\Delta P}{L} \le \gamma, w = 0 \end{bmatrix}$$
(35)

1.7. Нелинейные законы фильтрации

При нарушении закона Дарси зависимость между скоростью фильтрации *w* и градиентом давления *dp/ds* лучше всего описывается двучленной формулой

$$-\frac{dp}{ds} = aw + bw^2,$$
(36)

которая выражает плавный переход от линейного закона фильтрации к нелинейному. При малых значениях скорости $aw >> bw^2$ пренебрегаем вторым членом и получаем закон Дарси; при значениях $w > w_{\kappa p}$ слагаемые aw и bw^2 имеют одни и тот же порядок; при больших скоростях фильтрации $aw << bw^2$ и можно принять

$$-\frac{dp}{ds} = bw^2, \tag{37}$$

что соответствует квадратичному закону сопротивления и имеет место при фильтрации в крупнозернистых и трещиноватых породах. Формула (37) называется формулой А. А. Краснопольского.

Коэффициенты a и b определяются либо экспериментально, либо a по формуле $a = \mu/k$, а b — приближенно по формуле, предложенной А. И. Ширковским

$$b = \rho \frac{63 \cdot 10^6}{\left(k/m\right)^{3/2}},$$
(38)

где ρ — плотность в кг/м³; k — коэффициент проницаемости в Д; m — коэффициент пористости в долях единицы.

Нелинейный закон фильтрации в дифференциальной форме можно записать в виде обобщенной двучленной формулы:

$$-\frac{dP}{dx} = \frac{\mu w}{k} + \frac{\beta \rho w^2}{\sqrt{k}},$$
(39)

где $\frac{dP}{dx}$ - градиент давления; x - координата; a и b - коэффициенты,

определяемые экспериментально; *w* - скорость фильтрации; *β* - константа пористой среды, определяемая экспериментально.

1.8. Основы теории вытеснения нефти водой.

1.8.1. Основы теории поршневого вытеснения нефти водой.

Поршневое вытеснение нефти — это идеальный случай вытеснения нефти, когда в пласте между нефтью и водой образуется четкая граница

раздела, впереди которой движется только нефть, а позади — только вода, т. е. текущий ВНК совпадает с фронтом вытеснения.

Рассмотрим процесс поршневого вытеснения нефти водой ИЗ прямолинейного однородного пласта проницаемостью k, пористостью m. толщиной *h*, шириной *B* и длиной *L_K*. Начальное положение ВНК определяется координатой L_0 , а текущее в момент времени t — координатой x(t), где соответствующие давления составляют p_o и p. На пласт создан постоянный перепад давления $\Delta p = p_K - p_2$, где p_K , $p_2 -$ постоянные давления соответственно на контуре пласта и на галерее (остальные поверхности непроницаемые). Жидкости считаем несжимаемыми, взаимно нерастворимыми и химически не реагирующими одна с другой и с пористой средой. Полагаем, что плоскость контакта нефти и воды вертикальная. Это справедливо для случая либо предельно анизотропного пласта (проницаемость в вертикальном направлении равна нулю), либо равной плотности нефти и воды. Различны только вязкости нефти μ_{μ} и воды μ_{θ} . В пласте выделяются водяная, заводненная и нефтяная зоны. В первых двух движется вода, а в третьей — нефть. До начала вытеснения насыщенность неподвижной связанной водой в нефтяной зоне составляла *s*_{св}. В заводненной зоне остаточная нефтенасыщенность остается постоянной и равной *s*_{он}, а связанная вода неподвижна и смешивается с закачиваемой водой. Тогда в силу несжимаемости и неразрывности потока скорости фильтрации во всех трех зонах будут одинаковыми, т. е.

$$v = \frac{k(p_{\kappa} - p_{0})}{\mu_{s}L_{0}} = \frac{kk_{s}(p_{0} - p)}{\mu_{s}(x - L_{0})} = \frac{kk_{\mu}(p - p_{z})}{\mu_{\mu}(L_{\kappa} - x)},$$
(40)

где *k*_{*B*}, *k*_{*H*} — относительные проницаемости для воды и нефти.

Применяя правило производных пропорций, исключаем неизвестные давления *p*₀, *p* и окончательно имеем выражение скорости фильтрации:

$$v = \frac{k(p_{\kappa} - p_{\epsilon})}{\mu_{e}L_{0} + \frac{\mu_{e}}{k_{e}}(x - L_{0}) + \frac{\mu_{\mu}}{k_{\mu}}(L_{\kappa} - x)},$$
(41)

а также расхода жидкости:

$$q = vBh = \frac{k(p_{\kappa} - p_{\epsilon})Bh}{(\mu_{\epsilon} - (\overset{\mu_{\mu}}{-} & - - - - - - \overset{\mu_{e}}{-})x}$$
(42)
$$\frac{\overline{k_{e}} \quad 0 \quad \overline{k_{\mu}} \quad \kappa \quad k_{\mu} \quad k_{e}}{\overline{k_{e}} \quad 0 \quad \overline{k_{\mu}} \quad \kappa \quad k_{\mu} \quad k_{e}}$$

Отсюда следует, что скорость фильтрации и расход изменяются с перемещением ВНК, т. е. во времени. Следовательно, несмотря на постоянство перепада давления Δp , движение жидкости неустановившееся. При $\mu_{H} > \mu_{e}$, точнее $\mu_{H}/k_{H} > \mu_{e}/k_{e}$, скорость v и расход q увеличиваются во времени. Это объясняется уменьшением знаменателя (в общем фильтрационного сопротивления).

Допустим, что положение ВНК не параллельно галерее (искривлено). Из формул (41) и (42) следует, что чем больше L₀, тем больше v и q. Значит, в тех сечениях, где L_0 больше или граница раздела ближе к галерее, будет происходить опережающее перемещение ВНК и дальнейшее искривление линии раздела. Отсюда приходим к выводу, что если на границе раздела образовался «язык обводнения», то в дальнейшем он не только не исчезает, но еще больше вытягивается, продвигаясь с большей скоростью. Искривленное, вернее горизонтальное положение ВНК по отношению к галерее, отмечается в наклонных пластах, что приводит к более быстрому обводнению галереи по подошве пласта. В реальных условиях неизбежны возмущения на границе раздела (например, изменение проницаемости) и образование «языков обводнения», т. е. проявляется вязкостная неустойчивость вытеснения. Если движение образовавшихся «языков обводнения» замедляется, то такое перемещение границы раздела называют устойчивым. Как известно из подземной гидрогазодинамики, оно возможно в первом приближении при условии, что скорость фильтрации нефти на границе раздела:

$$*_{H} \leq \frac{kk}{\mu_{H} - \mu_{\theta}} (\rho_{\theta} - \rho_{H}) g \sin \alpha_{\mu}$$
(43)

где ρ_{H} , ρ_{B} — плотность соответственно нефти и воды; g — ускорение свободного падения; α_{H} — угол наклона пласта к горизонту.

Закон движения границы раздела x=x(t) для поршневого режима вытеснения нефти водой выглядит следующим образом:

$$x = \frac{\mu_{\mu}L_{\kappa}}{(\mu - k_{e})} \begin{bmatrix} 1 - \sqrt{1 - akt} \end{bmatrix},$$
(44)
$$k^{\mu} \left(k_{\mu} - k_{e} \right)^{\mu} (\mu - \mu) \\ (\mu - \mu) \\ a = \frac{2k^{\mu} \sqrt{|k_{\mu} - k_{e} - k_{e} - p_{e}|}}{\mu^{2}L^{2}m(1 - s_{e} - s_{e})}.$$
(45)

где

Перед квадратным корнем принят знак минут из физических соображений, что легко установить при t = 0, когда x = 0. Из уравнения (44) при $x = L_K$ получаем формулу для определения времени полного обводнения пласта (мгновенного обводнения продукции пласта):

$$t_{_{o\bar{O}e}} = \frac{m(1 - s_{_{CB}} - s_{_{OH}})L_{_{\kappa}}^2}{2k(p_{_{\kappa}} - p_{_{\ell}})} \left(\frac{\mu_{_{H}}}{k_{_{H}}} + \frac{\mu_{_{\theta}}}{k_{_{\theta}}}\right),$$
(46)

1.8.2. Основы теории непоршневого вытеснения нефти водой.

Непоршневое вытеснение нефти — это вытеснение, при котором за его фронтом движутся вытесняющий и вытесняемый флюиды, т. е. за фронтом вытеснения происходит многофазная фильтрация.

Вопросы вытеснения нефти водой изучались многими исследователями. По М. Л. Сургучеву механизм вытеснения нефти водой из микронеоднородных гидрофильных пористых сред можно представить следующим образом. В чисто нефтяной зоне пористой среды перед фронтом внедрения воды движение нефти происходит непрерывной фазой под действием гидродинамических сил. По крупным поровым каналам нефть движется быстрее, чем по мелким. На фронте внедрения воды в нефтяную зону, в масштабе отдельных пор, движение воды и нефти полностью определяется капиллярными силами, так как они превосходят гидродинамические силы на малых отрезках пути. Вода под действием капиллярных сил устремляется с опережением преимущественно в мелкие поры, вытесняя из них нефть в смежные крупные поры до тех пор, пока разобщенные крупные поры не окажутся со всех сторон блокированными водой. Если крупные поры образуют непрерывные каналы, то вода по ним будет двигаться с опережением. Тем не менее отставшая нефть из мелких пор под действием капиллярных сил также переместится в уже обводненные крупные поры и останется в них в виде отдельных глобул.

Таким образом, мелкие поры оказываются заводненными, а крупные остаются в разной степени нефтенасыщенными. В масштабе большой зоны пористой среды, между передним фронтом внедряющейся воды и задним подвижной нефти, водонасыщенность фронтом пласта вдоль потока уменьшается от предельной водонасыщенности при неподвижной нефти до некоторой фронтальной водонасыщенности. В этой зоне идет совместная фильтрация воды и нефти. Вода движется по непрерывным заводненным каналам, обтекая уже блокированную нефть в крупных порах, а нефть перемещается в незаводненной части среды. Соотношение скоростей движения нефти определяется размерам, воды И распределением пор ПО водонасыщенностью и объемом нефти, блокированной в крупных порах заводненной части среды, а также распределением пор, объемом нефти и связанной воды в нефтенасыщенной части среды. В интегральном виде эти условия фильтрации воды и нефти выражаются кривыми фазовых (или относительных) проницаемостей.

За задним фронтом подвижной нефти нефтенасыщенность обусловлена наличием нефти в разрозненных, крупных, блокированных водой порах. Непрерывных, нефтенасыщенных каналов, вплоть до добывающих скважин, в этой зоне нет, нефть является остаточной, неподвижной. Но нефть в глобулах не теряет способности двигаться при устранении капиллярных сил.

Если пористая среда обладает частичной гидрофобностью, что характерно практически для всех нефтеносных пластов, то остаточная нефть может оставаться в порах также в виде пленки.

Многофазная фильтрация с учетом всех влияющих факторов представляет собой весьма сложную задачу. Согласно наиболее простой *модели Баклея — Леверетта*, непоршневое вытеснение описывается уравнением доли вытесняющей жидкости (воды) в потоке и уравнением скорости перемещения плоскости с постоянной насыщенностью. Рассмотрим процесс вытеснения,

происходящий в прямолинейном тонком горизонтальном образце (рис. 4), представленном однородной и изотропной пористой средой, т. е. его пористость m и проницаемость k постоянны. Координата x отсчитывается вдоль образца, направление течения - горизонтальное. Поперечное сечение образца (площадь сечения обозначим ω) предположим достаточно малым, так что давление и насыщенность можно считать постоянными по сечениям. Давление p в водяной и нефтяной фазах считаем одинаковым в силу пренебрежения капиллярным давлением, обе фазы несжимаемы, температура постоянна.

В рассматриваемый образец, первоначально заполненный нефтью, через сечение x = 0 закачивается вода. В процессе вытеснения образуется зона совместного движения воды и нефти. При совместном течении двух фаз в пористой среде по крайней мере одна из них образует связную систему, граничащую со скелетом породы и частично с другой жидкостью.

Рис. 4. Схема прямолинейно-параллельного вытеснения нефти водой

Из-за избирательного смачивания твердой породы водой площадь контакта каждой из фаз со скелетом пористой среды значительно превышает площадь контакта фаз между собой. Это позволяет считать, что основной вклад в сопротивление движению дает взаимодействие каждого флюида с твердым скелетом пласта, и в первом приближении пренебречь эффектом увлечения одной жидкостью другой. При этом, естественно, сопротивление, испытываемое каждой фазой при совместной фильтрации, отлично от того, которое было бы при течении только одной из них. Опыты показывают, что расход каждой фазы растет с увеличением насыщенности и градиента давления.

Тогда закон фильтрации каждой фазы можно представить в виде обобщенного закона Дарси в дифференциальной форме:

$$v = \frac{Q}{\theta} = -k \frac{k_{\theta}(s)\partial p}{k_{\theta}\delta x}; v = \frac{Q}{H} = -k \frac{k_{H}(s)\partial p}{\mu_{H}\delta x}$$
(47)

Здесь v_{6} , Q_{6} , v_{H} , Q_{H} , - скорости фильтрации и объемные расходы соответственно воды и нефти; μ_{6} , μ_{H} - коэффициенты динамической вязкости фаз; $k_{6}(s)$, $k_{H}(s)$ относительные фазовые проницаемости; $s \equiv s_{6}$ - водонасыщенность.

Для рассматриваемого двухфазного течения водо- и нефтенасыщенность *s_н* связаны очевидным соотношением

$$s_{\theta} + s_{\mu} = 1. \tag{48}$$

Уравнения сохранения массы для водной и нефтяной фазы (уравнения неразрывности) можно представить в виде:

$$m\frac{\partial s}{\partial t} + \frac{\partial v_{\star}}{\partial x} = 0; \ m\frac{\partial s}{\partial t} - \frac{\partial v_{\mu}}{\partial x} = 0.$$
(49)

Сложив уравнения неразрывности обеих фаз и найдя первый интеграл от суммы, получим:

$$v_{g} + v_{\mu} = v(t) \quad \text{или} Q_{g} + Q_{\mu} = Q(t) .$$
(50)

Равенство (50) показывает, что суммарная скорость v двухфазного потока (а значит, и суммарный расход фаз Q) не зависит от координаты x, т.е. является либо постоянной величиной, либо известной функцией времени. Это - следствие предположения о несжимаемости фаз.

Исключив градиент давления $\frac{\partial p}{\partial x}$, перепишем (50) в следующем виде:

$$\frac{v_{e}}{v(t)} = \frac{Q_{e}}{Q(t)} = \frac{k_{e}(s)}{k_{e}(s) + \mu_{0}k_{\mu}(s)},$$
(51)

где $\mu_0 = \mu_{_{\scriptscriptstyle B}} / \mu_{_{\scriptscriptstyle H}}.$

Обозначив

$$f(s) = \frac{k_{e}(s)}{k_{e}(s) + \mu_{0}k_{\mu}(s)}$$
(52)

из предыдущего равенства найдем:

$$v_{s} = f(s)v(t) \quad \text{M} \ v_{\mu} = \left[1 - f(s)\right]v(t) \tag{53}$$

Введенная здесь функция насыщенности f(s), называемая функцией распределения потоков фаз или функцией Бакли - Леверетта, имеет простой физический смысл. Из (53) следует, что f(s), представляющая отношение скорости фильтрации (или расхода) вытесняющей фазы (воды) и суммарной скорости v (или расхода Q), равна объемной доле воды в суммарном потоке двух фаз. Функция f(s), как мы убедимся в дальнейшем, играет важную роль

при гидродинамических расчетах двухфазных потоков, определяет полноту вытеснения и характер распределения насыщенности по пласту. Задача повышения нефте- и газоконденсатоотдачи в значительной степени сводится к применению таких воздействий на пласт, которые в конечном счете изменяют вид f(s) в направлении увеличения полноты вытеснения.

Типичные графики f(s) и ее производной f'(s) приведены на рис. 5. С ростом водо- насыщенности f(s) монотонно возрастает от 0 до 1. Характерная особенность графика f(s) - наличие точки перегиба Π с насыщенностью s_{π} , участков вогнутости и выпуклости, где вторая производная f'(s) соответственно больше и меньше нуля.

Рис. 5. Зависимость объемной доли вытесняющей фазы (воды) в потоке (а) и е производной (б) от насыщенности воды.

Переписав уравнение неразрывности для водной фазы (49) с учетом равенства (53) и продифференцировав получившуюся сложную функцию двух переменных (s = s(x, t)), в итоге получим уравнение, известное в литературе как уравнение Бакли-Леверетта по имени авторов, впервые его получивших:

$$m\frac{\partial s}{\partial t} + v(t)f'(s)\frac{\partial s}{\partial x} = 0$$
(54)

Это уравнение является дифференциальным уравнением только относительно насыщенности, изменение насыщенности во времени по пласту можно получить в результате решения этого уравнения независимо от

распределения давления p(x,t). Характер распределения водонасыщенности изображен на рис. 6.

Рис. 6. Характер распределения водонасыщенности при непоршневом вытеснении нефти водой, подчиняющемуся уравнению Бакли-Леверетта

Изображенный на фронте вытеснения скачок водонасыщенности S_c обусловлен тем, что в процессе вывода математической зависимости насыщенности от координаты точки изначально предполагают, что функция s = f(x,t) гладкая и непрерывная, что в свою очередь приводит к математической неопределенности: получается, что одному значению x может соответствовать два значения s. Чтобы избежать этой неопределенности, принимают, что зависимость s = f(x) справедлива только до значения $x = x_c$, а на фронте вытеснения $x = x_c$ насыщенность скачком падает от S_c до S_{cs} . Заметим, что в действительности введенный математический скачок насыщенности не имеет места, а возникает вследствие пренебрежения капиллярными силами.

Значение фронтальной насыщенности можно получить из зависимости:

$$f'(s_c) = \frac{f(s_c) - f(s_0)}{s_c - s_c},$$
(55)

где s_0 – начальная водонасыщенность. Это уравнение имеет простую геометрическую интерпретацию (см. рис. 5, а): оно представляет собой уравнение касательной, проведенной из точки (s_0 , $f(s_0)$) к кривой f(s), где s_c - абсцисса точки касания. Это дает простой графический способ определения фронтальной насыщенности по известной функции Бакли – Леверетта f(s).

1.8.3. Примеры практического применения решения Бакли-Леверетта.

1) Определение фронтальной насыщенности:

$$s_{c} = \sqrt{\frac{\mu_{0}}{1+\mu_{0}}} = \sqrt{\frac{\mu_{e}}{\mu_{e}+\mu_{n}}}$$
 (56)

Формула (56) указывает на возрастание фронтальной насыщенности s_c с ростом отношения коэффициентов вязкости μ_0 . Таким образом, эффективность вытеснения возрастает с ростом вязкости μ_6 вытесняющей жидкости и уменьшением вязкости μ_{μ} вытесняемой нефти. Например, применение пен и загустителей, повышающих вязкость воды, нагнетаемой в нефтяной пласт, может значительно повысить полноту вытеснения и увеличить нефтеотдачу.

2) Определение средней насыщенности в безводный период добычи.

Важный показатель разработки месторождений - средняя водонасыщенность \overline{s} в зоне смеси, определяемая как отношение объема воды, содержащейся в пласте к моменту времени *t*, к объему порового пространства в зоне смеси. Еè значение можно определить по формуле:

$$\bar{s} = s_{0} - \frac{1}{f'(s_{0})}.$$
(57)

Равенство (57) имеет простой геометрический смысл: средняя насыщенность \bar{s} есть абсцисса точки пересечения C_1 касательной к кривой f(s), определяющей фронтальную насыщенность (рис. 7), с прямой f = 1.

Для известных экспериментальных кривых относительных фазовых проницаемостей средняя насыщенность *s*⁻ обычно значительно меньше единицы. Поэтому, например в процессах вытеснения нефти водой, для достаточно полного извлечения нефти из пласта на единицу объема добытой нефти нужно затратить в несколько раз больше объемов воды.

Рис. 7. Графическое определение средней насыщенности и коэффициента конечной нефтеотдачи.

3) Расчет средней насыщенности после прорыва воды

Формулы для расчета показателей вытеснения предопределяются особенностями распределения водонасыщенности по пласту и имеют различный вид для разных стадий вытеснения (до и после прорыва воды в добывающую галерею x = L). Выше была рассмотрена первая стадия вытеснения (до прорыва воды), когда в выходное сечение пласта поступает безводная нефть.

Объем добытой нефти за безводный период на момент прорыва воды t⁰, т.е. подхода фронта к добывающей галерее, можно найти по формуле:

$$V(t^{\circ}) = \frac{m\omega L}{f'(s_{\circ})},$$
(58)

где m – пористость, ω – площадь поперечного сечения пласта, L – длина пласта.

После прорыва воды (при $t > t^0$) вся область течения будет представлять собой зону смеси (0 < x < L), в которой водонасыщенность меняется от максимального значения s^* на входе до $s_L(s_L > s_c)$ на выходной границе пласта. Величина s_L меняется со временем и находится как решение уравнения:

$$f'(s_L) = \frac{m\omega L}{V(t)} , t > t^0$$
(59)

В свою очередь значение средней насыщенности после прорыва воды можно найти по формуле:

$$\bar{s}^{0} = s_{L} + \frac{1 - f(s_{L})}{f'(s_{L})}, t > t^{0}$$
(60)

Равенство (60) допускает простое графическое толкование на плоскости (*s*, *f*), если вспомнить уравнение касательной к кривой в точке с заданными координатами. Действительно, представив (8.41) в виде

34

$$1 - f(s_L) = f'(s_L)(s - s_L),$$
(61)

можно видеть (см. рис. 7), что последнее равенство представляет собой уравнение прямой, касательной к кривой Бакли - Леверетта в точке *L* с координатами (*s*_{*L*}, *f*_{*L*}) и имеющей известный угловой коэффициент tg $\alpha = f'(s_L)$. А средняя насыщенность \overline{s}^0 после прорыва воды есть абсцисса точки пересечения *L*₁ этой касательной с прямой *f* = 1 (см. рис. 7).

4) Расчет коэффициента нефтеотдачи.

Другая важная характеристика вытеснения - коэффициент газо- или нефтеотдачи, связанный со средней насыщенностью. На первой стадии вытеснения коэффициент безводной нефтеотдачи E_н определяется как отношение вытесненного водой объема нефти от нагнетательной галереи до фронта к общему объему пор, занятых нефтью до начала вытеснения. В силу предположения о несжимаемости фаз, объем закачанной воды равен объему вытесненной нефти.

$$E_{\mu} = \frac{1}{(1-s_0)f'(s_c)} U \Pi E_{\mu} = \frac{\bar{s}-s_0}{1-s_0}$$
(62)

В целом, коэффициент безводной нефтеотдачи увеличивается при увеличении вязкости вытесняющей фазы μ_{e} или при уменьшении вязкости вытесняемой фазы μ_{μ} .

После прорыва воды через добывающую галерею вводят понятие коэффициента конечной нефтеотдачи E_{κ}^{0} при заданной обводненности на выходе из пласта или после прокачки известного количества поровых объемов воды. Если процесс добычи прекращается, когда обводненность продукции на добывающей галерее равна f_L (например, $f_L = 0,95$), то соответствующая насыщенность s_L на выходе из пласта определится как абсцисса точки пересечения прямой $f = f_L c$ кривой f(s) (см. рис. 7). А сама величина находится по формуле:

$$E_{\kappa}^{0} = \frac{s_{L} - s_{0}}{1 - s_{0}} + \frac{1 - f(s_{L})}{(1 - s_{0})f'(s_{L})} \text{ ИЛИ } E_{\kappa}^{0} = \frac{\overline{s}^{0} - s_{0}}{1 - s_{0}}.$$
(63)

Графический способ определения коэффициента конечной нефтеотдачи понятен из рис. 7:

$$L_{1}L_{2} = \frac{LL_{2}}{tg\alpha} = \frac{1-f(s_{L})}{f'(s_{L})},$$
$$AL_{2} = s_{L} - s_{0}, AB = 1 - s_{0},$$
$$E_{\kappa}^{0} = \frac{AL_{4}}{AB}.$$

Если начальная водонасыщенность $s_0 = 0$, то AB = 1, и коэффициент конечной нефтеотдачи изображается отрезком AL_1 на рис. 7.

Полученные здесь простые формулы, вытекающие из точного решения задачи о вытеснении нефти (или газа) водой, применяются при оценочных инженерных расчетах основных технологических параметров разработки нефтегазовых месторождений с использованием процесса заводнения. Кроме того, они могут служить тестами при оценке точности численных методов решения более сложных задач двухфазной фильтрации с использованием ЭВМ.

1.9. Основные дифференциальные уравнения подземной гидрогазодинамики

ИЗ ОСНОВНЫХ Олним способов изучения движения жидкости В фильтрационном потоке является замена прямого описания движения частиц жидкости переменным фильтрационным полем (метод Эйлера). Исходя из таких соображений, можно вывести основное дифференциальное уравнение непрерывной состояния жидкости как сплошной среды (уравнение неразрывности):

$$\frac{\partial(\rho w_x)}{\partial x} + \frac{\partial(\rho w_u)}{\partial y} + \frac{\partial(\rho w_z)}{\partial z} = -m \frac{\partial \rho}{\partial t}, \tag{64}$$

и общее дифференциальное уравнение движения жидкости (при линейном законе фильтрации):

 $\frac{\partial}{\partial x^2}^2 + \frac{\partial}{\partial y^2}^2 + \frac{\partial}{\partial z^2}^2 = -\frac{1}{\kappa} \frac{\partial p}{\partial t},$ где $\chi = \frac{k}{\mu \,\mathrm{m}\beta_*}$ - коэффициент пьезопроводности.

Оба этих уравнения были выведены при допущении, что сам твердый скелет породы не подвергается деформации при изменении давления. Тем не менее, можно простым приемом учесть упругие свойства самой породы, введя понятие об упругой (деформируемой) пористой среде, насыщенной упругой жидкостью, т.е. заменить реальную жидкость на модель, учитывающую и упругие свойства твердой среды. Тогда коэффициент объемного сжатия (так называемый коэффициент упругоемкости) модельной жилкости определяется равенством

$$\beta^* = m\beta_{\mathcal{H}} + \beta_{cp}. \tag{66}$$

(65)

При этом сам скелет породы снова будет считаться несжимаемым.

В подземной гидрогазодинамике любые, даже весьма сложные фильтрационные потоки могут быть представлены комбинации как простейших потоков.

Классификация простейших фильтрационных потоков основана на зависимости вектора скорости фильтрации от координат пространства, что дает возможность все фильтрационные потоки разделить на одномерные, плоские и трѐхмерные фильтрационные потоки. Среди плоских и трѐхмерных потоков можно выделить так называемые радиальные потоки, когда между координатами точек потока существует определенная связь:

$$x^2 + y^2 + z^2 = r^2. (67)$$

1.10. Простейшие установившиеся фильтрационные потоки несжимаемой жидкости при линейном законе фильтрации

1.10.1. Общие сведения об установившихся фильтрационных потоках несжимаемой жидкости.

Одномерным называется фильтрационный поток жидкости или газа, в котором скорость фильтрации, давление и другие характеристики течения
являются функциями только одной координаты, отсчитываемой вдоль линии тока.

1. Прямолинейно-параллельный поток. Траектории всех частиц жидкости - параллельные прямые, а скорости фильтрации во всех точках любого поперечного (перпендикулярного к линиям тока) сечения потока равны между собой, поверхности равных потенциалов (эквипотенциальные поверхности) и поверхности равных скоростей (изотахи) являются плоскими поверхностями перпендикулярными траекториям. Законы движения вдоль всех траекторий такого фильтрационного потока идентичны, а потому достаточно изучить движение вдоль одной из траекторий, которую можно принять за ось координат - ось *х*.

Рис. 8. Схема прямолинейнопараллельного потока в пласте

Примеры:

а) Пласт (рис. 8) имеет в плане
 полосообразную форму шириной В и
 длиной L, толщина пласта h постоянна,
 граничный контур непроницаем и
 непроницаемы кровля и подошва пласта.
 Батарея эксплуатационных скважин

расположена параллельно начальному контуру нефтеносности. Приближение тем больше, чем меньше расстояние между скважинами, и если заменить батарею сплошной прямолинейной выработкой - галереей, то движение жидкости к галерее будет строго прямолинейно-параллельным.

б) Поток между круговыми батареями нагнетательных и эксплуатационных скважин в случае больших радиусов батарей (угол схождения векторов скорости бесконечно мал). При этом толщина пласта постоянна, а его кровля и подошва непроницаемы.

в) в лабораторных условиях при течении через цилиндрический керн или прямую трубу постоянного сечения, заполненную пористой средой.

2. Плоскорадиальный поток. Траектории всех частиц жидкости - прямолинейные горизонтальные прямые, радиально сходящиеся к центру

скважины, а скорости фильтрации во всех точках любого поперечного (перпендикулярного к линиям тока) сечения потока параллельны и равны между собой; изотахи и эквипотенциальные поверхности перпендикулярны траекториям и образуют цилиндрические окружности с осью, совпадающей с осью скважины. Схемы линий тока в любой горизонтальной плоскости потока будут идентичными и для характеристики потока достаточно рассмотреть движение жидкости в одной горизонтальной плоскости.

Рис. 9. Схема плоскорадиального потока в пласте: а) горизонтальное сечение; б) вертикальное сечение.

Примеры:

а) Горизонтальный пласт постоянной толщины (**h**) и неограниченной протяженности, подошва и кровля пласта непроницаемы. Пласт вскрыт единственной гидродинамически совершенной скважиной (рис. 9), т.е. вскрыт на всю толщину и забой полностью открыт. Для эксплуатационной скважины поток - радиально-сходящий, а для нагнетательной - радиально-расходящий. Плоско-радиальным потоком будет занята вся зона от стенки скважины до контура питания.

б) Гидродинамически несовершенная скважина: вблизи скважины линии тока искривляются и поток можно считать плоскорадиальным только при некотором удалении от скважины.

в) Круговая батарея эксплуатационных скважин - поток плоскорадиален на некотором удалении, т.к. жидкость движется как бы к укрупненной скважине радиуса, равного радиусу окружности батареи. **3.** Радиально-сферический поток. Траектории всех частиц жидкости - прямолинейные горизонтальные прямые, радиально сходящиеся к центру полусферического забоя; изотахи и эквипотенциальные поверхности перпендикулярны траекториям и образуют сферические поверхности. Скорость фильтрации в любой точке потока является функцией только расстояния этой точки от центра забоя. Следовательно, этот вид фильтрационного потока также является одномерным.

Рис. 10. Схема радиальносферического фильтрационного потока

Такой поток может реализовываться, когда скважина вскрывает только плоскую непроницаемую горизонтальную, кровлю пласта (рис. 10). Пласт при этом должен быть неограниченной толщины, забой a иметь полусферическую форму. Приближение К данному виду потока тем лучше, чем глубина вскрытия меньше толщины пласта.

Описанные три вида одномерного потока играют большую роль при решении многих задач нефтегазопромысловой практики. Они лежат в основе ряда исследований закономерностей течения жидкости в пласте в зависимости от принятой системы разработки или от конструктивных особенностей скважин. Естественно, моделируя каждый из трех видов одномерного потока, мы прибегаем к некоторой схематизации реальных пластов и течений жидкости. Тем не менее, рассмотренные схемы не только воспроизводят, хотя и приближенно, простейшие случаи течения жидкости в реальном пласте, но и помогают изучать более сложные виды потоков пластовой жидкости в тех случаях, в которых сложный фильтрационный поток удобно представить себе состоящим из простейших видов потока.

К числу сложных потоков можно отнести: плоский фильтрационный поток в случае, когда число скважин не менее двух; многофазные течения и т.д.

Задача исследования установившегося фильтрационного потока заключается в определении дебита (расхода), давления, градиента давления и

скорости фильтрации в любой точке потока, а также в установлении закона движения частиц жидкости (или газа) вдоль их траекторий и в определении средневзвешенного по объѐму порового пространства пластового давления.

При условии вытеснения флюида из пласта или его нагнетания в пласт через галерею или скважину условимся принимать за координату произвольной точки пласта расстояние *r* до этой точки от:

- галереи (для прямолинейно- параллельного потока);
- центра контура скважины в основной плоскости (плоскости подошвы пласта) фильтрации (для плоско-радиального потока);
- центра полусферического забоя скважины (для сферически-радиального потока).

1.10.2. Характеристики одномерных фильтрационных потоков жидкости.

Для расчета перечисленных характеристик одномерных фильтрационных потоков жидкости можно использовать два подхода. Первый из них – вывод дифференциальных уравнений и их решение отдельно для прямолинейнопараллельного, плоскорадиального И радиально-сферического потоков жидкости и газа. Второй – вывод обобщенного уравнения одномерного течения флюида недеформируемой трубке тока переменного сечения В С использованием функции Лейбензона и получение из него конкретных формул применительно к различным схемам фильтрационных потоков. Второй подход более эффективен, позволяет исходить из обобщенных характеристик течения, он был использован и при выводе следующих характеристик.

Прямолинейно-параллельный поток несжимаемой жидкости.

Таблица 2.

Формулы для расчета характеристик потока несжимаемой жидкости при
прямолинейно-параллельном притоке

Vanautanuatuuta		
Ларактеристика	песжимаемая жидкость	
Функция Лейбензона	$\mathbf{P} = \boldsymbol{\rho}_0 \boldsymbol{p} + \boldsymbol{C} \; , \qquad (68)$	
Распределение давления по	$p_{\kappa} - p_{\Gamma}$	
пласту,	$p(x) = p - \frac{x}{2} + \frac{x}{2}, (69)$	
$0 \le x \le L$	K L	
Массовый расход Q _m	$Q = \frac{k\rho_0(p_K - p_\Gamma)}{M}Bh = const$	
	m μL ,(70)	
Массовая скорость финьтрации	$\rho W = \frac{k \rho_0 (p_K - p_\Gamma)}{m} = const,$	
The second secon	0 μL (71)	
Объемный расход Q	$Q = \frac{k(p_{K} - p_{\Gamma})}{\mu L}Bh = const_{,(72)}$	
Скорость фильтрации (объемная)	$W = \frac{k(p_{K} - p_{\Gamma})}{\mu L} = const, (73)$	
Средневзвешенное давление	$\tilde{p} = \frac{(p_K - p_F)}{2}, (74)$	
Время движения отмеченных частиц <i>t</i>	$t = \frac{m\mu xL}{k(p_K - p_\Gamma)}, (75)$	
Время продвижения до галереи Т	$T = \frac{m\mu L^2}{k(p_K^2 - p_\Gamma^2)} = \frac{2m\mu L^2 \tilde{p}}{k(p_K^2 - p_\Gamma^2)},$ (76)	

Массовые расходы и массовые скорости фильтрации для обоих флюидов постоянны вдоль пласта; объемный расход и объемная скорость фильтрации жидкости вдоль пласта не меняются, однако для газа эти характеристики зависят от координаты, возрастая от входа к выходу, что является следствием расширения газа при снижении давления.

Плоскорадиальный фильтрационный поток.

Таблица 3.

Формулы для расчета характеристик потока несжимаемой жидкости при плоскорадиальном притоке

Характеристика	Несжимаемая жидкость
Распределение давления по пласту	$p(r) = p_{K} - \frac{(p_{K} - p_{C}) \ln \frac{R_{K}}{r}}{\ln \frac{R_{K}}{r_{C}}},(77)$ $p(r) = p_{C} + \frac{(p_{K} - p_{C}) \ln \frac{r}{r}}{\ln \frac{R_{K}}{r_{C}}},(78)$
Массовый расход <i>Q</i> m	$Q_{m} = \rho_{0} \frac{2\pi\kappa n(P_{K} - P_{C})}{\mu \ln \left(\frac{R_{K}}{r_{C}} \right)} = const, $ (79)
Массовая скорость фильтрации <i>р</i> W	$\rho_0 W = \rho_0 \frac{k \left(\mathbf{P}_K - \mathbf{P}_C\right)}{\mu \ln \left(\begin{vmatrix} \mathbf{R}_K \\ \mathbf{r}_C \end{vmatrix} \right)} \frac{1}{r}, (80)$
Объемный расход <i>Q</i>	$Q = 2\pi k h \frac{(\mathbf{P}_{K} - \mathbf{P}_{C})}{\mu \ln \left(\frac{R_{K}}{r_{C}}\right)} = const, $ (81) (формула Дюпюи)
Объемная скорость фильтрации	$W = \frac{k (\mathbf{P}_{K} - \mathbf{P}_{C})}{\mu \ln \left(\begin{vmatrix} R_{K} \\ r_{C} \end{vmatrix} \right)} \frac{1}{r}, (82)$
Средневзвешенное давление	$\tilde{p} = p_{K} - \frac{p_{K} - p_{C}}{2\ln\frac{R_{K}}{r_{C}}},(83)$
Время движения отмеченных частиц	$t = \frac{m\mu \ln \left(\frac{R}{r_{c}}\right) (r_{0}^{2} - r^{2})}{2k(p_{K} - p_{c})} = \frac{\pi mh(r^{2} - r^{2})}{Q} = \frac{0}{Q}$ (84)

Рис. 11. Кривая распределения давления в плоскорадиальном потоке.

Для несжимаемой жидкости давление меняется вдоль координаты r по логарифмическому закону (рис. 11). Вращение кривой p(r) в пространстве вокруг оси скважины образует поверхность, называемую **воронкой депрессии**. В пределах воронки депрессии градиенты давления, а значит и расходы энергии на единицу длины пути резко возрастают по мере приближения к скважине. Значительная доля перепада давления в пласте расходуется в непосредственной близости от скважины. По мере удаления от скважины кривые градиентов давления значительно выравниваются, что указывает на резкое уменьшение скорости фильтрации с удалением от скважины.

При установившейся совместной работе всех скважин вокруг каждой скважины образуется воронка депрессии. Воронки имеют неправильные формы, пересекаются между собой и сообщают пьезометрической поверхности форму. Залежь бы разделяется такими сложную как воронками на самостоятельные области. Внутри каждой такой области располагается работающая скважина. Если бы пласт был идеально однородным и разбурен равномерной сеткой скважин и они работали бы с одинаковыми дебитами, то радиусы всех воронок были бы одинаковы и равнялись бы половине расстояния между скважинами. В действительности воронки в плане не имеют форму круга и радиус их неодинаковый. В практике принято считать радиус воронки

вокруг скважины равным половине среднего расстояния данной скважины от окружающих. Принято называть это расстояние *условным контуром влияния скважины* и обозначать его R_к (по аналогии с радиусом контура питания скважины).

Зависимость дебита от перепада давления $Q = f(\Delta p)$ называется индикаторной линией. В потоке жидкости по закону Дарси индикаторная линя – прямая (рис. 2, линия 1).

Вид индикаторной линии не зависит от геометрии потока и определяется только законом фильтрации. Наклон линии 1 на рис. Ошибка! Источник ссылки не найден.

продуктивностью

пределяется

Продуктивность скважины – характеристика добывающей скважины, определяющая отбор пластового флюида на единицу депрессии при эксплуатации этой скважины. Отношение массового дебита скважины Q_m к перепаду давления Δp называется коэффициентом продуктивности скважины K:

скважины.

$$K = \frac{Q_m}{\Delta p} = \frac{2\pi kh\rho_0}{\mu \ln \frac{R_K}{r_C}},$$
(86)

Понятия «продуктивность» и «коэффициент продуктивности» в большей мере относятся к продуктивному пласту (зависимость K от h, k, μ , $P_{пл}$) и характеризуют систему пласт – скважина в отношении ее добывных способностей. Два элемента (скважина и пласт) объединяются в систему посредством общего для каждого из них параметра – забойного давления.

В работах Лысенко В.Д. и Грайфера В.И. предлагается следующая классификация нефтяных пластов по продуктивности по нефти, представленная в табл. 4.

Класс	Характеристика пласта	Коэффициент продуктивности	
		т/(сут*атм)	т/(сут*МПа)
1	Гиперпродуктивность	> 100,0	>1000
2	Ультрапродуктивность	30,0 - 100,0	300 - 1000
3	Высокая продуктивность	10,0 - 30,0	100 - 300
4	Повышенная продуктивность	3,0 - 10,0	30 - 100
5	Средняя продуктивность	1,0-3,0	10 - 30
6	Пониженная продуктивность	0,3 – 1,0	3 – 10
7	Низкая продуктивность	0,1-0,3	1 – 3
8	Ультранизкая продуктивность	< 0,1	< 1

Классификация нефтяных пластов

Продуктивность коллектора в большей степени зависит от его проницаемости. В.Д. Викториным дана классификация карбонатных коллекторов порового и кавернозного типа по их поровой проницаемости, размерам каналов фильтрации, пористости и нефтенасыщенности с выделением четырех групп (табл. 5).

Таблица 5.

N⁰	Группа коллекторов	Проница-	Размер	Пористость	Нефте-	
п/п		емость,	(радиус)	общая, %	насыщен-	
		мкм2	каналов		ность, %	
			фильтра-			
			ции, мкм			
1	Непроницаемые	< 0,001	< 3	2 - 4	0	
2	Низкопроницаемые	зкопроницаемые 0,001 –	3 - 5	1 8	1 62	
2	(низкопродуктивные)	0,01	5 - 5	4 - 0	1 - 02	
3	Среднепроницаемые	0,01 - 0,1	5 14	8 10	62 - 82	
5	(среднепродуктивные)		5 - 14	8 - 10	02 - 82	
4	Высокопроницаемые	> 0,1	> 0.1	14 - 20	10 - 15	82 - 90
	(высокопродуктивные)		17 - 20	10 - 15	02 - 90	

Классификация карбонатных коллекторов

Приведенные данные, на основании которых дается классификация пластов (коллекторов), характеризуют начальные, т.е. естественные свойства и состояние нефтяных залежей. С изменением тех или иных показателей или параметров в результате отбора некоторого количества пластовых флюидов геолого-физическая характеристика пласта, особенно призабойных В (прискважинных) его зонах, может изменяться. В этом случае один и тот же пласт (или его часть) из группы одной продуктивности может перейти в группу, характеризующуюся другой продуктивностью, например, ИЗ среднепродуктивного в низкопродуктивный.

Коэффициент продуктивности определяется в результате исследования скважины при установившихся отборах. Если исследования скважины выполнены при $P_{3AE} > P_H$ (P_H - давление насыщения нефти газом), то по тангенсу угла наклона коэффициент продуктивности скважины

$$tg\alpha = \frac{Q}{\Delta P} = K , \qquad (87)$$

$$K = \frac{2\pi kh}{\mu \ln(\frac{R_{K}}{r_{CHH}})},$$
(88)

где *г*_{СПП} - приведенный радиус скважины.

Приведенный радиус скважины – это радиус гидродинамически совершенной скважины, которая обеспечивает при равных прочих условиях такой же дебит, как гидродинамически несовершенная скважина:

$$r_{CIIII} = r_C e^{-C} \,. \tag{89}$$

Радиально-сферический фильтрационный поток несжимаемой жидкости.

Формулы для расчета характеристик потока несжимаемой жидкости при радиально-сферическом притоке

риднильно ефери неском притоке			
Характеристика	Несжимаемая жидкость		
Распределение давления p(r)	$p(r) = p_{K} - (p_{K} - p_{C})r \left(\frac{1}{r} - \frac{1}{R_{K}}\right)_{,(90)}$		
Массовый расход Qm	$Q_{m} = \frac{2\pi kr \rho_{0} (P_{K} - P_{C})}{\mu} = const$, (91)		
Массовая скорость фильтрации	$\rho^{0}W = \frac{k\rho_{0}(\mathbf{P}_{K} - \mathbf{P}_{\Gamma})}{\mu} \frac{r_{c}}{r^{2}},$ (92)		
Объемный расход	$Q = 2\pi r_{c} \frac{k(\mathbf{P}_{K} - \mathbf{P}_{c})}{\mu} = const,$ (93)		
Объемная скорость фильтрации	$W = \frac{k (P_{K} - P_{C})}{\mu} \frac{r_{C}}{r^{2}},$ (94)		
Время движения частиц t	$t = \frac{m\mu (r^{3} - r^{3})}{3k (p_{K} - p_{C})r_{C}}, (95)$		
Время движения от контура до забоя	$T = \frac{m\mu R_{K}^{3}}{3k(p_{K} - p_{C})r_{C}}, (96)$		

1.11. Установившееся движение капельных сжимаемых жидкостей и газов в простейших фильтрационных потоках при линейном законе фильтрации

При изучении движения упругой (сжимаемой) жидкости в пористой среде необходимо учесть, что объѐмный расход жидкости изменяется в зависимости от величины пластового давления, т.е. объѐмный расход неодинаков в различных сечениях потока, поскольку масса жидкости в единице объѐме пласта увеличивается с увеличением давления за счѐт упругого сжатия жидкости. В самом общем случае эффект изменения объѐма при упругом сжатии будет испытывать и сама пористая среда. В общем случае необходимо учитывать и изменение вязкости жидкости при изменении давления. Таким образом, расход жидкости и скорость фильтрации должны зависеть от некоторого комплексного параметра, характеризующего зависимость свойств пористой среды и фильтрующейся жидкости от пластового давления:

$$\frac{k(p)\rho(p)}{\mu(p)}.$$
(97)

Метод решения дифференциального уравнения движения жидкости с переменными параметрами был предложен Лейбензоном; он состоит в том, что величина пластового давления в дифференциальных уравнениях заменяется некоторой функцией давления, величина которой адекватно изменяется вместе с изменением параметров жидкости и пористой среды. Эта функция, называемая функцией Лейбензона, *P* будет связана с пластовым давлением следующим образом:

$$\boldsymbol{P} = \int \frac{k(p)\rho(p)}{\mu(p)}dp + C.$$
(98)

В таком случае дифференциальное уравнение установившегося движения сжимаемой жидкости примет вид известного уравнения Лапласа:

$$\frac{\partial^2 \mathbf{P}}{\partial x^2} + \frac{\partial^2 \mathbf{P}}{\partial y^2} + \frac{\partial^2 \mathbf{P}}{\partial z^2} = 0.$$
(99)

Решением уравнения Лапласа для сжимаемой жидкости и газа в установившемся плоскорадиальном потоке будет формула Дюпюи:

$$Q = \frac{2\pi kh}{\mu} \frac{\mathbf{P}_{\kappa} - \mathbf{P}_{c}}{\ln \frac{\mathbf{r}_{\kappa}}{r_{c}}}.$$
(100)

Учитывая уравнения состояния для сжимаемой жидкости и идеального газа, величину функции Лейбензона и дебит скважины (для сжимаемой жидкости и газа) можно определить следующим образом:

- для сжимаемой жидкости:

$$\boldsymbol{P} = \frac{\rho_{\infty}}{\beta_{\infty}}, \ \boldsymbol{Q}_{M} = \frac{2\pi kh}{\mu} \frac{\rho_{\kappa}}{\beta^{*} \ln^{\kappa}}; \qquad (101)$$

- для идеального газа:

$$\boldsymbol{P} = \frac{\rho_{am}}{2p_{am}} p^{2}, \ Q_{M} = \frac{\frac{49}{\mu} p_{am}}{\frac{kh}{p_{am}} p_{\mathbf{K}}} \frac{2 - \frac{2}{p_{c}}}{\frac{p_{c}}{p_{c}}}.$$
 (102)

Индикаторные диаграммы газовых скважин отличаются от индикаторных диаграмм для нефтяных скважин, поскольку газ представляет собой хорошо сжимаемую среду. По этой причине построение индикаторных диаграмм для газовых скважин осуществляют в координатах: $Q, \Delta p^2$. По индикаторным диаграммам можно определить фильтрационные параметры пласта в газовой залежи В отличие ОТ нефтяных скважин существует предельный (максимальный) дебит газовой скважины, называемый абсолютно свободным дебитом газовой скважины (он соответствует дебиту газовой скважины при забойном давлении, равном атмосферному).

1.12. Неустановившееся движение упругой жидкости в деформируемой пористой среде

Фильтрация жидкости, обусловленная действием «упругих сил» жидкости и твердого скелета пласта, описывается известным уравнением Фурье:

$$\frac{\partial}{\partial x^2} \frac{p}{\partial y^2} + \frac{\partial}{\partial y^2} \frac{p}{\partial z^2} + \frac{\partial}{\partial z^2} \frac{p}{\partial z^2} = -\frac{1}{\chi} \frac{\partial p}{\partial t},$$
(103)

где χ - коэффициент пьезопроводности, M^2/c , $\chi = \frac{k}{\mu\beta^*}$ характеризующий скорость перераспределения давления в упругой среде; β^* - коэффициент упругоѐмкости.

Для плоскорадиального потока упругой жидкости в цилиндрических координатах уравнение движения жидкости имеет следующий вид:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} = \frac{1}{\chi} \frac{\partial p}{\partial t}.$$
(104)

Это уравнение имеет решение для мгновенного дебита точечного источника (или стока) в бесконечном изотропном пласте:

$$p(r,t) = p_{0} - \frac{q\mu}{4\pi kh} \begin{bmatrix} r^{2} \\ 4\chi t \end{bmatrix}, \qquad (105)$$

где p(r,t) - величина давления в точке пласта на расстоянии *r* от оси скважины, работающей с постоянным дебитом *q* в течение времени *t*; *p*₀ начальное пластовое давление; $-E_1 \left(-\frac{r}{4\chi t} \right) = \int_{-\frac{r^2}{4\kappa t}}^{\infty} \frac{e^{-u}}{u} du$ (интегральная

экспоненциальная функция).

Учитывая соотношение размеров пласта и скважины (еè радиус), можно считать скважину точечным источником (стоком).

Интегральная экспоненциальная функция табулирована, но может быть вычислена с достаточной точностью путем разложения в ряд:

$$-Ei(-x) = \ln \frac{1}{x} - C_{,} + x - \frac{x^{2}}{4} + \frac{x^{3}}{18} - \frac{x^{4}}{96} + \dots + (-1)^{(n-1)} \frac{x^{n}}{n!n},$$
(106)

где *C*₃ = 0,5772 (постоянная Эйлера), или (при достаточно малых значениях аргумента) интегральная экспоненциальная функция может быть заменена более часто употребляемой логарифмической функцией:

$$-Ei(-x) \cong \ln \frac{1}{r} - C_{y} = \ln \frac{2,246\chi t}{r^{2}} .$$
 (107)

Решение дифференциального уравнения, полученное для мгновенного дебита точечного источника (стока) в бесконечном пласте, можно легко общие распространить более случаи движения на жидкости: при одновременной работе группы взаимодействующих скважин и при работе скважины с переменным дебитом. В первом случае следует воспользоваться принципом суперпозиции (наложения течений), согласно которому изменение давления в любой точке пласта можно определить как алгебраическую сумму независимых влияний всех скважин рассматриваемой группы на данную точку пласта (т.е. каждая из скважин группы рассматривается независимо от работы окружающих еè скважин):

$$p(r,t) = p_0 - \sum_{i=1}^n \Delta p_i,$$
 (108)

где Δp_i - изменение давления в выбранной точке пласта в результате работы *i* – той скважины с постоянным дебитом q_i в течение времени t_i :

$$\Delta p_{i} = \frac{q_{i}\mu}{4\pi kh} \begin{bmatrix} -Ei \left(-\frac{r_{i}^{2}}{4\chi t_{i}}\right) \end{bmatrix} \end{bmatrix}.$$
(109)

Такой же приѐм можно использовать и в случае, когда скважина работает с переменным дебитом, заменив еѐ группой взаимодействующих фиктивных скважин, работающих с постоянными дебитами и расположенных в одной точке, совпадающей с местом положения действительной скважины. Дебиты фиктивных скважин определяются как разница между последующим и предыдущим дебитами реальной скважины, а продолжительность работы таких скважин определяется с момента изменения дебита реальной скважины до конца работы реальной скважины:

$$p(r,t) = p - \sum_{0}^{m} \Delta p^{(j)}, \qquad (110)$$

где $\Delta p^{(j)}$ – изменение давления в выбранной точке пласта, вызванное работой *j* – той фиктивной скважины, заменяющей работу реальной скважины при изменении еè дебита от $q^{(j-1)}$ до $q^{(j)}$,

$$\Delta p^{(j)} = \frac{\mu}{4\pi kh} \left\{ \begin{bmatrix} q^{(j)} - q^{(j-1)} \end{bmatrix} \cdot \begin{bmatrix} -Ei \begin{pmatrix} -r^2 \\ -\frac{1}{4\chi t} \end{bmatrix} \end{bmatrix} \right\},$$
(111)

$$t^{(j)} = T - \sum_{1}^{j-1} t^{(j)}, \qquad (112)$$

Т – полное время работы реальной скважины.

Количество жидкости, которое может выделиться из пласта при снижении в нем давления на некоторую величину за счет упругой деформации пласта и насыщающей его жидкости называется упругим запасом пласта. На базе основного уравнения упругого режима разработан метод определения фильтрационных параметров путѐм пласта исследования процесса восстановления забойного давления в остановленной скважине (метод КВД). Другим методом гидродинамических исследований пласта, базирующимся на упругом восстановлении давления В пласте, является метод гидропрослушивания пласта.

1.13. Установившееся движение неоднородных жидкостей в пористых

средах

Однородные жидкости в процессе совместного залегания в пласте и, особенно, в процессе совместного и одновременного движения по пласту образуют сложные жидкости, состоящие из простых однородных компонент (исходных жидкостей). В качестве таких компонент могут быть как природные жидкости (нефть, газ, вода), так и техногенные, появляющиеся в пласте в результате проведения различных технологических процессов, направленных коэффициента нефтеизвлечения. повышение Смеси природных на И техногенных компонентов в пластах могут образовывать однородные жидкости, называемые растворами (гомогенные смеси), а также неоднородные многофазные (гетерогенные смеси). Основной смеси отличительной особенностью между ними является то, что в гомогенных смесях компоненты перемешиваются на уровне молекул вещества, тогда как в гетерогенных смесях компоненты (по терминологии гидрогазодинамики – фазы, т.е. нерастворимые компоненты) образуют смеси на базе макрочастиц вещества (ассоциаций однородных молекул). В результате образования таких смесей в неоднородной жидкости образуются поверхности раздела между макрочастицами фаз, вдоль которых действуют силы поверхностного натяжения. В присутствии твердой среды возникают поверхностные эффекты, порождающие так называемые силы капиллярного давления. Появляющиеся в неоднородной многофазной жидкости силы поверхностного натяжения порождают дополнительные сопротивления движению неоднородной жидкости по пласту. Характер действия таких сил сложен, он связан и с процессами деформации макрочастиц при их совместном движении по пласту. По этим причинам пласт приобретает избирательную способность пропускать через себя фазы многофазной жидкости. Эту пропускать избирательную способность через себя отдельные фазы неоднородной жидкости называют фазовой проницаемостью. Величина фазовой проницаемости k_i, очевидно, будет зависеть от фазовой насыщенности σ_i (доли порового пространства, занимаемого данной фазой) $k_i = f(\sigma_i)$. Для

двухфазной жидкости эта зависимость однозначна. Для многофазной жидкости величина фазовой проницаемости *i*-той фазы будет зависеть от соотношения всех фазовых насыщенностей, образующих данную смесь: $k_i = f(\sigma_1, \sigma_2, ..., \sigma_i, ..., \sigma_n)$. Для характеристики таких зависимостей удобно абсолютной величиной фазовой пользоваться не проницаемости, а относительной фазовой проницаемостью, т.е. отношением величины фазовой проницаемости к абсолютной (к проницаемости пористой среды для однородной жидкости) $k = \frac{k_i}{k}$.

Зависимости относительных фазовых проницаемостей от фазовых насыщенностей определяются экспериментально для каждого типа смеси. На базе этих данных разработаны полуэмпирические методы расчета процесса фильтрации неоднородных жидкостей.

1.14. Установившееся движение однородной несжимаемой жидкости в неоднородных пористых средах

Получить простое аналитическое решение задачи фильтрации жидкости в неоднородном пласте (пласте, фильтрационные параметры которого каким-то образом зависят от координат) не представляется возможным. По этой причине, необходимо придать реальному неоднородному либо пласту какую относительно несложную модель, допускающую простое решение задачи. Наиболее приемлемы для этих целей модели слоистой И зональной неоднородности.

Модель слоистого пласта позволяет рассматривать фильтрационный поток в неоднородном пласте как совокупность плоских параллельных потоков при отсутствии перетока жидкости между слоями. Тогда расход жидкости в одномерном потоке и дебит скважины в плоскорадиальном потоке определятся путем обычного сложения расходов:

$$Q = \sum_{i=1}^{n} Q_{i} = \frac{a \sum_{i=1}^{n} k_{i} h_{i}}{\mu} \frac{p_{\kappa} - p_{\epsilon}}{L_{\kappa}}, \quad Q = \sum_{i=1}^{n} Q_{i} = \frac{2\pi \sum_{i=1}^{n} k_{i} h_{i}}{\mu} \frac{p_{\kappa} - p_{\epsilon}}{r_{\epsilon}}.$$
(113)

В зонально-неоднородном пласте, принимая во внимание постоянство расхода жидкости во всех живых сечениях потока, можно определить потери давления на всех элементах модели и затем определить расход жидкости:

$$Q = \frac{ah}{\mu} \frac{p_{\mathbf{\kappa}} - p_{\mathbf{c}}}{\sum_{i=1}^{n} \underline{l}_{i}},$$
(114)

$$Q = \frac{2\pi h}{\mu} \sum_{i=1}^{n} \frac{1}{k_i} \ln \frac{r_{i-1}}{r_i}.$$
 (115)

Особым видом модели неоднородного пласта является так называемый экранированный (ограниченный) пласт. В такой модели предполагается, что пласт ограничен с одной или нескольких сторон непроницаемой границей Наличие образом (экраном). экрана существенным сказывается на распределении давления вокруг работающей скважины (или группы скважин), т.к. упругая волна давления, дойдя до плоскости экрана, отражается от нее и распространяется в обратном направлении. По этой причине все точки реального пласта находятся под действием как прямой, так и отраженной волн. На основе таких рассуждений воздействие отраженной волны можно заменить другой прямой волной от действия некоторой фиктивной (отраженной) скважины, т.е. заменить экранированный пласт бесконечным. В этом случае для достижения принципа эквивалентности действия фиктивная скважина должна быть зеркальным отражением действительной скважины, т.е. иметь тот же дебит, те же размеры, находиться на одинаковом расстоянии от экрана (но с противоположной стороны от него) и работать синхронно с реальной скважиной. Тогда давление в некоторой точке А можно определить по принципу суперпозиции (наложения полей), используя основную формулу упругого режима для бесконечного изотропного пласта:

$$p_{A}(\mathbf{r},\mathbf{t}) = p \qquad q\mu \begin{bmatrix} & & & r^{2} \\ & --Ei \end{bmatrix} - & & \\ & 4\pi kh \begin{bmatrix} & & & & \\ & & & \\ & & & \end{bmatrix} - \frac{q\mu}{4\pi kh} \begin{bmatrix} & & r^{2} \\ -Ei \begin{bmatrix} & & & & \\ & & & \\ & & & & \end{bmatrix} , \qquad (116)$$

где r₁ и r₂ – расстояния от точки A до реальной и отраженной скважин.

Этот принцип можно распространить на любую группу взаимодействующих скважин. Если экран будет не прямолинейным, а иметь более сложную конфигурацию, то количество отраженных скважин будет больше и зависеть от угла, образованного экранами.

1.15. Установившийся приток несжимаемой жидкости к несовершенным

скважинам

Кроме так называемых гидродинамически совершенных скважин (вскрывших пласт на всю толщину и сообщающихся с пластом по всей площади живого сечения забоя скважины) в реальных ситуациях чаще приходится иметь дело с несовершенными скважинами. К категории несовершенных относятся скважинами, вскрывшие скважин пласт не (скважины, несовершенные по степени вскрытия), а полностью также сообщающимися с пластом через перфорационные скважины. каналы искусственного фильтра (скважины, несовершенные по характеру вскрытия). Приток жидкости к несовершенным скважинам можно представить как поток, в котором имеются дополнительные фильтрационные сопротивления ω' , обусловленные изменением структуры потока (уменьшением площади живого сечения и искривлениями линий тока).

$$Q = \frac{p_{\kappa} - p_c}{\omega + \omega'}.$$
(117)

Величину дополнительных фильтрационных сопротивлений несовершенной скважины можно выразить в форме, соответствующей фильтрационному сопротивлению совершенной скважины:

$$\omega' = \frac{\mu}{2\pi kh}C.$$
 (118)

Тогда дебит несовершенной скважины определится по формуле:

$$Q = \frac{p_{\mathbf{k}} - p_{\mathbf{c}}}{2\pi kh} \ln \frac{r_{\mathbf{k}}}{r_{\mathbf{c}}} + 2\frac{\mu}{\pi kh}C$$
(119)

где $C = C_1 + C_2$ — коэффициенты дополнительных фильтрационных сопротивлений несовершенной скважины (определяются по графикам Щурова),

$$C_{1} = f(\delta, a) ; C_{2} = f(nD, \alpha, l) ; \delta = \frac{b}{h}; a = \frac{h}{D_{c}}, nD_{c} = \frac{N}{h}D_{c} ; \alpha = \frac{d_{0}}{D_{c}} ; l = \frac{l'}{D_{c}}, \Gamma A = h - \frac{h}{D_{c}}$$

эффективная толщина пласта; *b* – вскрытая толщина пласта; *d*_C - диаметр скважины; *n* - число отверстий перфорации в колонне скважины; *d*_o - диаметр отверстий; *l* – абсолютная глубина проникновения пуль в породу.

Оценка несовершенства скважины через еѐ приведѐнный радиус

$$\frac{\mu}{2\pi kh} \left(\ln \frac{r_{\mathbf{K}}}{r_{\mathbf{c}}} + C \right) = \frac{\mu}{2\pi kh} \ln \frac{r_{\mathbf{K}}}{\bar{r}_{\mathbf{c}}}, \qquad (120)$$

откуда:

$$\bar{r}_{\rm c} = r_{\rm c} e^{-C} \tag{121}$$

По своей сути под приведенным радиусом несовершенной скважины следует понимать радиус такой гидродинамически совершенной скважины, дебит которой равен дебиту реальной несовершенной скважины. Таким образом, с помощью понятия о приведенном радиусе несовершенной скважины можно в процессе гидродинамических расчетов заменить несовершенную скважину эквивалентной гидродинамически совершенной, что бывает весьма удобно. Можно степень также оценить совершенства скважины ПО фильтрационных сопротивлений соотношению гидродинамически совершенной и несовершенной скважин:

$$\lambda = \frac{\frac{-\mu}{2\pi kh} r_{\mathbf{c}}}{\frac{\mu}{2\pi kh} \left| \ln r_{\mathbf{k}} + C \right|}$$
(122)

1.16. Установившееся нерадиальное движение несжимаемой жидкости при линейном законе фильтрации

В отличие от плоскорадиального движения жидкости, при котором линии тока прямолинейные и скорость фильтрации жидкости в потоке зависит лишь от расстояния живого сечения до центра потока, при нерадиальном движении жидкости линии тока всегда криволинейные (что не позволяет уподобить такое движение жидкости одномерному потоку). В нерадиальных потоках конфигурация линий тока и величины расходов жидкости в различных областях течения жидкости неодинаковы и зависят от формы контура питания, расположения источников и стоков и величин давления на забоях скважин. По этой причине (без особого труда) можно получить лишь частные решения дифференциального уравнения движения жидкости для ограниченного числа практических задач. Суть подхода к решению задач сводится к тому, что фильтрационное поле, соответствующее нерадиальному потоку жидкости, рассматривается как результат суммирования взаимодействующих полей. Если B бесконечном пласте имеется некоторое количество произвольно расположенных источников и стоков, то каждый такой источник (или сток) образует вокруг себя фильтрационное поле. В силу того, что сами источники и взаимодействуют (интерферируют) стоки друг с другом, все точки пространства, занятого движущейся жидкостью, одновременно находятся в фильтрационных полях, образуемых всеми скважинами, т.е. одновременно испытывают влияния всех скважин. Следовательно, потенциал в любой точке поля, образованного целой системой взаимодействующих скважин, равен алгебраической сумме потенциалов полей (в соответствующих точках), образованных каждой из скважин всей группы:

$$\Phi = \sum_{i=1}^{n} \Phi_{i}, \qquad (123)$$

Этот принцип получил название принципа суперпозиции и широко применяется для решения практических задач.

Классическим примером нерадиального движения жидкости является установившийся поток жидкости от нагнетательной скважины к добывающей. Разность забойных давлений между нагнетательной и добывающей скважинами в данном случае является единственным источником энергии, обуславливающим движение жидкости. По этой причине необходимым условием для существования установившегося движения жидкости в пласте является:

$$Q_{\mathfrak{I}} + Q_{\mathfrak{H}} = 0$$
 или $Q_{\mathfrak{I}} = -Q_{\mathfrak{I}}$ (124)

Здесь, как и ранее, знак «минус» приписывается приѐмистости нагнетательной скважины. Скважины, образующие своеобразный гидродинамический диполь, расположены друг от друга на расстоянии 2σ в бесконечном изотропном пласте. Тогда текущее пластовое давление в некоторой точке M, расположенной одновременно в поле нагнетательной и добывающей скважин:

$$p_{_{M}} = p'_{_{M}} + p'_{_{M}} = \frac{Q\mu}{2\pi \,\mathrm{kh}} \ln \frac{r_{_{2}}}{r_{_{1}}} + C, \qquad (125)$$

где p'_{M} и p''_{I} - величины пластового давления в точке M, находящейся соответственно в поле нагнетательной скважины (на расстоянии r_{I} от еè оси) и в поле добывающей скважины (на расстоянии r_{2} от еè оси).

Анализируя полученное уравнение, можно отметить, что во всех точках, в которых выполняется условие:

$$\frac{r_2}{r_1} = const, \qquad (126)$$

давления одинаковы. Эти линии, соединяющие точки пространства, в которых давления одинаковы, будут изобарами поля. Таким образом, карта изобар потока представляет собой семейство неконцентрических окружностей, центры которых смещаются во внешнюю сторону по отношению к паре работающих скважин. По мере смещения центров изобар они сгущаются внутрь диполя и имеют разрежение во внешней области диполя. Через середину отрезка, соединяющего скважины, в перпендикулярном направлении будет проходить центральная изобара, соответствующая начальному пластовому давлению.

Чтобы определить расход жидкости в потоке (в том числе дебит эксплуатационной и приемистость нагнетательной скважин), необходимо связать в единое уравнение забойные давления в скважинах с величиной расхода. Для точки на забое нагнетательной скважины: $r_1 = r_c$, а $r_2 \approx 2\sigma$; для

точки на забое добывающей скважины: $r_1 \approx 2\sigma$, а $r_2 = r_c$. Тогда забойное давление в нагнетательной скважине определяется как:

$$p_{\mu} = \frac{Q\mu}{2\pi \mathrm{kh}} \ln \frac{2\sigma}{r_c} + C, \qquad (127)$$

и, соответственно, в добывающей:

$$p_{\circ} = \frac{Q\mu}{2\pi \mathrm{kh}} \ln \frac{r_{\circ}}{2\sigma} + C.$$
(128)

Решая совместно два последних уравнения, определим расход жидкости в потоке:

$$Q = \frac{\pi kh}{\mu} \frac{p_n - p_s}{\ln \frac{2\sigma}{r}}$$
(129)

К этой задаче как типовой можно свести решения ряда других частных задач, таких как задача о притоке жидкости в скважину при прямолинейном контуре питания, о притоке жидкости к скважине, эксцентрично расположенной по отношению к круговому контуру питания т.д. По мере усложнения условий задачи о движении жидкости в нерадиальном потоке конечные зависимости, связывающие расход жидкости с перепадом давления, в значительной степени усложняются, поэтому прибегают к приближенным методам решения таких задач.

1.17. Интерференция скважин

Вопросы размещения скважин напрямую связаны с проблемами оценки оптимальной плотности сетки скважин. Теоретически в бесконечном пласте влияние работающей скважины распространяется на достаточно большое расстояние, но практически такое влияние ограничено. Немалую роль в этом ограничении играют соседние скважины. Взаимное влияние скважин друг на друга называется **интерференцией скважин**. Это влияние приводит к тому, что при вводе в эксплуатацию новых скважин суммарная добыча на месторождении растет медленнее, чем увеличивается число скважин (рис. 12).

Рис. 12. Зависимость суммарного дебита от числа скважин.

С помощью методов оценки интерференции можно получить полезные зависимости для решения практических задач. Известны меры для оценки взаимного влияния скважин (одиночная *j* и групповая *U*):

$$j = \frac{q_1}{q_1'} \rangle 1, \tag{130}$$

где q_1 - дебит скважины до ввода взаимодействующей скважины; q_1' - дебит скважины после ввода взаимодействующей скважины,

$$U = \frac{q'_1 + q'_2}{q_1} \langle 2,$$
 (131)

где q_1 - отбор из скважины до ввода взаимодействующей скважины; $q'_1 + q'_2$ - отбор из системы взаимодействующих скважин (после ввода взаимодействующей скважины).

Дебит каждой скважины бесконечной цепочки, расположенной на расстоянии *L* от прямолинейного контура питания (рис. 13), выражается формулой

Рис. 13.

Рис. 14.

$$Q = \frac{2\pi h(\Phi_{\kappa} - \Phi_{c})}{\ln 2sh\frac{\pi l}{\sigma} + \ln \frac{\sigma}{\pi r}} = \frac{2\pi kh(p_{\kappa} - p_{c})}{\mu \left(\ln 2sh\frac{\pi L}{\sigma} + \ln \frac{\sigma}{\pi r_{c}} \right)},$$
(132)

где σ - половина расстояния между скважинами. Если $L \ge \sigma$, то приближенно можно принять, что

$$\ln 2sh \frac{\pi L}{\sigma} = \ln \left(e^{\frac{\pi L}{\sigma}} - e^{-\frac{\pi L}{\sigma}} \right) \approx \frac{\pi L}{\sigma}$$
(133)

и тогда

$$Q = \frac{2\pi kh(p_{\kappa} - p_{c})}{\mu \left(\frac{\pi L}{\sigma} + \ln \frac{\sigma}{\pi r_{c}} \right)}$$
(134)

Дебит одной скважины кольцевой батареи, состоящей из n скважин, в круговом пласте радиуса R_{κ} (рис. 14) имеет вид

$$Q = \frac{2\pi h(\Phi_{\kappa} - \Phi_{c})}{\ln\left[\frac{R_{\kappa}^{n}}{nr_{c}R_{1}^{n-1}}\left(\left|1 - \frac{R_{1n}^{2n}}{R_{\kappa}^{2}}\right)\right]\right]} = \frac{2\pi kh(p_{\kappa} - p_{c})}{\mu \ln\left[\frac{R_{\kappa}^{n}}{nr_{c}R_{1}^{n-1}}\left(\left|1 - \frac{R_{1n}^{2n}}{R_{\kappa}^{2}}\right)\right]\right]},$$
(135)

где R_1 — радиус батареи; r_c — радиус скважин.

Если число скважин батареи велико (больше пяти или шести), то $(R_l/R_\kappa)^{2n} \leq l$ и этим выражением можно пренебречь по сравнению с единицей; если, кроме того, заменить $\frac{R_1}{nr_c} = \frac{\sigma}{\pi r_c}$, то получим приближенную формулу

$$Q = \frac{2\pi kh(p_{\kappa} - p_{c})}{\mu \left| n \ln \frac{R_{\kappa}}{R_{1}} + \ln \frac{\sigma}{\pi r_{c}} \right|}$$
(136)

Если в пласте эллиптической формы работает *n* равноотстоящих друг от друга скважин, то дебит одной скважины определяется по формуле, предложенной В. Т. Мироненко

$$Q = \frac{2\pi kh(p_{\kappa} - p_{c})sh\beta ch \frac{\beta x}{\sigma}}{\mu sh(n\beta) \left(\frac{Arsh}{n\sigma} + \frac{1}{n} \ln \frac{\sigma}{\pi r_{c}} \right)},$$
(137)

где β находится из уравнения

$$ch(2\beta) = 1 + \frac{\ln n}{(n-1)\ln^{\frac{\sigma}{r}}},$$
(138)

где *x* — координата центра скважины; *L* — малая полуось эллипса; *σ* — половина расстояния между скважинами.

1.18. Приток жидкости к несовершенным скважинам при выполнении закона Дарси

Скважина называется гидродинамически совершенной, если она вскрывает пласт на всю мощность и забои скважины открытый, т. е. вся вскрытая поверхность забоя является фильтрующей поверхностью. Поток жидкости к совершенной скважине — плоский фильтрационный поток.

Если скважина с открытым забоем вскрывает пласт не на всю мощность, а только на некоторую величину b, или если скважина сообщается с пластом через отдельные отверстия, то фильтрация жидкости или газа будет пространственной (трехмерной), а скважина — гидродинамически несовершенной.

Различают три вида несовершенства скважин:

 скважина гидродинамически несовершенная по степени вскрытия пласта — это скважина с открытым забоем, вскрывшая пласт не на всю мощность;

2) скважина гидродинамически несовершенная по характеру вскрытия пласта — скважина, вскрывающая пласт от кровли до подошвы, но сообщающаяся с пластом через отверстия в колонне труб, в цементном кольце или в специальном фильтре;

3) скважина гидродинамически несовершенная как по степени вскрытия пласта, так и по характеру вскрытия.

Дебит скважины, несовершенной по степени вскрытия, можно определить по формуле М. Маскета, если радиус пласта $R_k^{k} \ge \frac{1}{2}h$,

$$Q = \frac{2\pi kh p_k}{\mu} \frac{p_c}{\xi}, \qquad (139)$$

где

$$\xi = \frac{1}{2h} \begin{bmatrix} 2\ln\frac{4h}{r_c} - \varphi(h) \end{bmatrix} - \ln\frac{4h}{R_k}$$
(140)

и относительное вскрытие пласта h = b/h.

Функция $\varphi(\overline{h})$ имеет следующее аналитическое выражение:

$$\varphi(\overline{h}) = \ln \frac{\Gamma(0,875\underline{h}) \cdot \Gamma(0,125\overline{h})}{\Gamma(1-0,875h) \cdot \Gamma(1-0,125h)},$$
(141)

где Γ — интеграл Эйлера второго рода или иначе, гамма-функция, для которой имеются таблицы в математических справочниках; $\phi(\bar{h})$ представлена графически на рис. 15.

Рис. 15.

Рис. 16.

Для скважины в пласте бесконечной мощности (рис. 16) можно найти дебит при помощи формулы Н. К. Гиринского

$$Q = \frac{2\pi kb}{\mu} \frac{p_k - p_c}{\ln \frac{1.6b}{r_c}}.$$
(142)

Дебит скважины гидродинамически несовершенной как по степени, так и по характеру вскрытия пласта можно подсчитать по формуле

$$Q = \frac{2\pi kh(p_{k} - p_{c})}{\mu \left(\frac{R}{\ln \frac{k}{r_{c}}} + C_{1} + C_{2} \right)},$$
(143)

где *C*₁ - безразмерная величина, определяющая дополнительное фильтрационное сопротивление, обусловленное несовершенством скважины по

степени вскрытия пласта; C₂ - безразмерная величина, определяющая дополнительное фильтрационное сопротивление, вызванное несовершенством скважины по характеру вскрытия пласта.

*C*₁ и *C*₂ находятся из графиков В. И. Щурова, построенных по данным исследования притока жидкости к скважинам с двойным видом несовершенства на электролитических моделях,

Величина С₁ представлена на рис. 17 в зависимости от параметров

 $a = h/D_c$ и $\overline{h} = b/h$.

На рис.18, 19, 20 дана зависимость С₂ от трех параметров:

$$nD_c$$
, $l = l' / D_c$ $M \alpha = d_0 / D_c$

где n — число перфорационных отверстий на 1 м; D_c — диаметр скважины в м; Γ — глубина проникновения пуль в породу; d_0 — диаметр отверстий.

Соответствие между кривыми и значениями параметра $\alpha = d_0 / D_c$ видно из следующих данных:

Формулу (143) можно записать иначе, введя в нее приведенный радиус скважины, т. е. радиус такой совершенной скважины, дебит которой равен дебиту несовершенной скважины,

$$Q = \frac{2\pi kh(p - p)}{\mu \ln \frac{R_k}{r_c'}}$$
(144)

Иногда гидродинамическое несовершенство скважин учитывается при помощи коэффициента совершенства скважины:

$$\delta = \frac{Q}{Q_{cos}},\tag{145}$$

где *Q* — дебит несовершенной скважины; *Q*_{сов} — дебит совершенной скважины в тех же условиях.

Коэффициент совершенства скважины δ и величина $C = C_1 + C_2$ связаны между собой зависимостью

65

$$\delta = \frac{\ln \frac{R_k}{r_c}}{\ln \frac{R_k}{r_c} + C}$$
(146)
$$C = \left| \frac{1}{c} - 1 \right| \ln^{R_k} .$$
(147)

ИЛИ

В литературе приводятся графики δ, которые можно использовать для оценки С.

1.19. Установившаяся фильтрация жидкости и газа в деформируемом трещиноватом пласте

Принимая зависимость проницаемости трещин $k_{\rm T}$ от давления по формуле (6) и считая вязкость жидкости постоянной, получим выражения для дебита

$$Q = \frac{2\pi k_{m0} h(p_{\kappa} - p_{c}) \left[1 - \frac{\alpha}{2} (p_{\kappa} - p_{c}) \right]}{\mu \ln \frac{R_{\kappa}}{r_{c}}}$$
(148)

и распределения давления

$$p = p_{\kappa} - \frac{1}{\alpha} \left[1 - \sqrt{1 - \frac{2\alpha (p_{\kappa} - p_{c}) \left[1 - \frac{\alpha (p_{\kappa} - p_{c})}{2} \right] \left[1 - \frac{\alpha (p_{\kappa} - p_{c})}{2} \right] \ln \frac{R_{\kappa}}{r}} \right], \quad (149)$$

где Q – дебит скважины, h – толщина пласта, p_{κ} – давление на контуре питания скважины, p_c – давление на забое скважины, p – давление в данной точке, R_{κ} – радиус контура питания скважины, r_c – радиус скважины, r – расстояние от скважины до точки в зоне еѐ дренирования. Остальные обозначения указаны в п. 4.1.

Если зависимость коэффициента проницаемости *k_m* от давления брать в виде (5), то дебит

$$Q = \frac{\pi k_{m0} h \left\{ 1 - \left[1 - \beta (p_{\kappa} - p_{c}) \right]^{4} \right\}}{2 \mu \beta \ln \frac{R_{\kappa}}{r_{c}}},$$
(150)

давление

$$p = p_{\kappa} - \frac{1 - \sqrt[4]{1 - \left\{1 - \left[1 - \beta \left(p_{\kappa} - p_{c}\right)\right]^{4}\right\} \frac{\ln R_{\kappa}/r}{\ln R_{\kappa}/r_{c}}}{\beta}, \qquad (151)$$

а закон движения частицы жидкости вдоль траектории описывается формулой

$$t = \frac{2m_m \left(r_0^2 - r^2\right) \mu \beta \ln R_{\kappa/c}}{k_{m0} \left\{ 1 - \left[1 - \beta \left(p_\kappa - p_c\right)\right]^4 \right\}},$$
(152)

где r_0 – координата точки в начальный момент времени (t = 0).

Решение задачи об установившейся плоскорадиальной фильтрации идеального газа в деформируемом трещиноватом пласте при выполнении зависимости (5) приводит к формуле приведенного к атмосферному давлению объемного дебита газа

$$Q_{am} = \frac{\pi k_{m0} h}{2\mu\beta p_{am} \ln R_{\kappa}/r_c} \times \left\{ \left[p_{\kappa} - p_c \left(1 - \beta (p_{\kappa} - p_c) \right)^4 \right] - \frac{1}{5\beta} \left[1 - \left(1 - \beta (p_{\kappa} - p_c) \right)^5 \right] \right\}$$
(153)

Для того чтобы найти распределение давления в пласте при известном Q_{ат}, можно, записав (153) в виде

$$Q_{am} = \frac{\pi k_{m0} h}{2\mu \beta p_{am} \ln R_{\kappa} / r_c} \times \left\{ \left[p_{\kappa} - p_c \left(1 - \beta (p_{\kappa} - p) \right)^4 \right] - \frac{1}{5\beta} \left[1 - \left(1 - \beta (p_{\kappa} - p) \right)^5 \right] \right\},$$
(154)

задаваться рядом значений $p < p_{\kappa}$ и находить по (154) соответствующие значения *r*.

1.20. Гидродинамические методы исследований

В общем комплексе способов исследования скважин и пластов особое значение имеют гидродинамические методы – основа всей системы контроля за процессами разработки нефтяных и газовых месторождений.

Геолого-геофизическими и лабораторными методами в основном определяются горногеометрические характеристики пластов и залежей, а также физико-химические свойства насыщающих продуктивные пласты жидкостей и газов. Этими же методами можно определять некоторые параметры, характеризующие коллекторские свойства пластов, например, пористость, сжимаемость пласта, проницаемость.

Однако данные о коллекторских свойствах пластов, получаемые таким путем, имеют случайный характер, так как они определяются лишь по небольшим образцам отобранных пород или по зонам незначительных размеров, расположенных в непосредственной близости от ствола скважины. Поэтому в каждом отдельном случае полученные данные могут значительно отличаться от средних значений параметров в районе скважины или между ними. Вот почему с помощью только одних этих методов крайне затруднительно, а порой и невозможно построить достоверную картину распределения неоднородностей пласта, установить формы И размеры непроницаемых границ включений, определить коэффициенты И продуктивности, пьезопроводности и гидропроводности скважин, изучить профили распределения притоков и поглощений по разрезу и т.д.

Существующие геофизические методы (дебитометрия, шумометрия, термометрия и др.) неприемлемы в большинстве скважин из-за особенностей забойного оборудования.

В то же время применение гидродинамических методов в исследованиях позволяет с более высокой точностью определять не только ряд необходимых характеристик пласта и скважин, но и оценивать средние значения основных параметров пласта на сравнительно больших площадях.

В определенном смысле можно сказать, что в отличие от многих других методов, позволяющих получить статистические характеристики отдельных точек пласта, с помощью гидродинамических методов получают более достоверную статистическую и динамическую картины строения пласта и хода процесса его выработки. Особое значение приобретают эти методы на стадии промышленной эксплуатации залежи, так как на основании данных гидродинамических исследований можно оценить распределение текущей нефтенасыщенности, определить профили притоков, продвижение контуров

68

нефтеносности, распределение давлений и т.д. Гидродинамические методы исследования скважин позволяют также оценить эффективность мероприятий по интенсификации добычи нефти.

Таким образом, современные гидродинамические методы исследования дают возможность получить по промысловым данным важнейшие параметры пласта, на основании которых проектируются системы разработки месторождений, регулируется процесс добычи нефти и анализируется эффективность разработки объектов.

Непосредственно с помощью гидродинамических методов определяется следующий комплекс параметров: коэффициент продуктивности (для коэффициент эксплуатационных скважин) или поглощения (для нагнетательных скважин), гидропроводность пласта, пьезопроводность пласта, параметров $\frac{\chi}{r_{0}^{2}}$ (r_{0} - приведенный радиус скважины, комплекс χ пьезопроводность пласта).

При изменении режима работы скважины происходит процесс перераспределения давлений по пласту, продолжительность которого зависит от многих факторов: величины пластового давления, геометрических размеров продуктивного пласта, его проницаемости, вязкости пластовой жидкости и т.д.

Исследования скважин и пласта проводятся как в случае неустановившихся процессов фильтрации, так и при условно установившихся процессах. В зависимости от этого различают две группы гидродинамических методов исследования при установившихся и при неустановившихся режимах работы скважин.

1.20.1. Методика обработки результатов исследований на установившихся режимах

Сущность метода исследования скважин при установившихся процессах фильтрации состоит в нахождении зависимости дебита от величины депрессии на забое скважины, т.е. разности между пластовым и забойным давлениями, путем последовательного изменения режима работы скважины и измерения при этом установившихся значений забойных давлений и соответствующих им значений дебитов нефти, воды, газа. По построенному графику, называемому индикаторной линией расчетным путем определяют продуктивность скважины, параметры пласта и параметры, характеризующие состояние ПЗП.

Эффективность эксплуатации месторождения во многом определяется продуктивной характеристикой скважин. Поэтому особое внимание уделяется оценке состояния призабойной зоны пласта (ПЗП) и установлению оптимального технологического режима работы скважин.

Отклонение эксплуатационных режимов от оптимальных приводит к существенным осложнениям при эксплуатации скважин: ограничению отбора пластового флюида из скважины; образованию песчаных пробок; выносу песка и воды.

Исходной информацией для оценки состояния ПЗП и установления оптимальных режимов работы скважин являются данные геофизических и гидродинамических исследований.

Интерпретация этих данных представляет определенные трудности, особенно в условиях слабоустойчивых терригенных коллекторов, склонных к пескопроявлению, тем более что существующие конструкции забойного оборудования эксплуатационных скважин не позволяют оценить состояние фильтровой части геофизическими методами исследований скважин.

Разработанные за последние время методы исследований скважин и пластов при установившихся режимах эксплуатации имеют ограниченность применения в части: определения фильтрационных характеристик пласта; оценки состояния ПЗП; оценки состояния фильтровой части скважины; выявления динамики фильтрационных характеристик пласта и продуктивности скважин; количественной оценки критических дебитов скважин в условиях выноса песка и пластовой воды, а также режимов энергосбережения.

Обработка результатов исследований.

Уравнение притока к забою скважины при нелинейном законе фильтрации имеет вид:

70

- для жидкости

$$P_{\Pi\Pi} - P_{3AE} = AQ + BQ^2; (155)$$

- для газа

$$P_{\Pi\Pi}^2 - P_{3AE}^2 = AQ + BQ^2,$$
(156)

где *P*_{пл} - пластовое давление; *P*_{3AE} - давление на забое работающей скважины; *Q* - дебит жидкости (газа) при стандартных условиях; *A* , *B* -коэффициенты фильтрационного сопротивления.

Уравнения (155), (156) записывают также в виде:

- для жидкости

$$\Delta P_{\Pi\Pi} = AQ + BQ^2; \tag{157}$$

- для газа

$$\Delta P_{\Pi\Pi}^2 = AQ + BQ^2, \tag{158}$$

где для жидкости $\Delta P_{\Pi\Pi} = P_{\Pi\Pi} - P_{3AE}$ и соответственно для газа $\Delta P_{\Pi\Pi}^2 = P_{\Pi\Pi}^2 - P_{3AE}^2$.

Графическое изображение уравнений (157) и (158) в координатах $\Delta P_{\pi\pi\pi} - Q$, или, соответственно $\Delta P_{\pi\pi\pi}^2 - Q$ называют индикаторной линией. Стандартная индикаторная линия, например, для газа имеет вид квадратичной параболы, выходящей из начала координат с положительными значениями коэффициентов *A*, *B*.

В промысловой практике форма индикаторной линии может существенно отличаться от стандартной в силу ряда причин геологического, технологического и технического характера.

К геологическим факторам, искажающим форму индикаторной линии, следует отнести, в первую очередь, анизотропию пласта-коллектора, а также наличие низкопроницаемых сред и тектонических нарушений.

Перенос из пласта к скважине глинистых частиц и мелких фракций песка, а также поступление пластовой воды, накопление на забое скважины и вынос на поверхность песка и воды определяют технологические факторы.

Из технических факторов следует отметить конструкцию забоя скважины и забойного оборудования, а также технические средства для замера дебита скважины и давления. Типовые индикаторные линии (для газа), выявленные по данным исследований, приведены в таблице 7.

Поскольку исследования при стационарных режимах фильтрации дают информацию о состоянии призабойной зоны пласта, эти исследования необходимо проводить при умеренных дебитах скважины, по возможности, исключая проявление отрицательных факторов.

Определение пластового давления связано обычно с некоторыми трудностями. Согласно принятой физической модели стационарной фильтрации газа пластовое давление при всех режимах исследования принимается постоянным и равным давлению на границе области влияния исследуемой скважины. Фактически же при работе группы скважин пластовое давление зависит от степени их взаимодействия и изменяется в той или иной мере от режима к режиму. Поэтому по результатам исследований определяется некоторое условное значение пластового давления.

Из формулы (155) и (156) следует, что пластовое давление равно забойному давлению при дебите газа равном нулю, т.е. давлению на забое остановленной (закрытой) скважины. В пластах с высокой проницаемостью и малой степенью анизотропии это условие в большинстве случаев выполняется (схемы а, г, д). В условиях значительной анизотропии и низкопроницаемых сред пластовое давление, определенное по давлению на забое остановленной скважины, может быть либо заниженным (недовосстановление), либо завышенным (схемы а и б, соответственно). В этом случае определяется условное пластовое давление по одному из изложенных ниже способов.

1. Строится гидравлическая характеристика пласта в координатах

 $P_{3AE} - Q$ или $P_{3AE}^2 - Q$ и методом графической экстраполяции кривой до оси ординат определяется условное пластовое давление P_{yCA} или P_{yCA}^2 . Данные исследования обрабатываются по уравнению:

- для жидкости

$$P_{_{VCII}} - P_{_{3AF}} = AQ + BQ^2;$$
(159)

- для газа

$$P_{_{VC/I}}^2 - P_{_{3AB}}^2 = AQ + BQ^2;$$
(160)

2. Используя значение замеренного пластового давления, строят графическую зависимость для жидкости $\Delta P_{\Pi\Pi} = f(Q)$ или для газа $\Delta P_{\Pi\Pi}^2 = f(Q)$, и методом графической экстраполяции до оси ординат определяют отрезок *C*. В дальнейшем при обработке данных исследований используют уравнение:

- для жидкости

$$P_{\Pi\Pi} - P_{3AB} = AQ + BQ^2 + C; (161)$$

- для газа

$$P_{IUI}^{2} - P_{3AF}^{2} = AQ + BQ^{2} + C, \qquad (162)$$

при этом условное пластовое давление равно

$$P_{\mathcal{VC}\mathcal{I}} = P_{\mathcal{I}\mathcal{I}} - C, \qquad (163)$$

ИЛИ

$$P_{y_{C/I}} = \sqrt{P_{I/I}^2 - C}.$$
 (164)

Коэффициент *С* учитывает недостаточность стабилизации пластового и забойного давлений, а также наличие жидкости на забое скважины. Обычно коэффициент *С* определяется методом экстраполяции индикаторной линии до оси ординат. Возможны положительные и отрицательные значения этого коэффициента. Анализ обширного материала по исследованию газовых скважин позволяет выявить несколько причин появления коэффициента *С* : недостаточная степень стабилизации давления; использование данных по пластовому давлению, полученных при предыдущих исследованиях (нередко годичной давности); использование данных по пластовому давлению, определенных по кривой восстановления давления методам Хорнера (для пластов с низким коэффициентом пъезопроводности). 3. Условное пластовое давление рассчитывается с использованием метода наименьших квадратов.

Решается система линейных уравнений (на ЭВМ по стандартной программе):

- для жидкости

$$P_{_{3AF}} = P_{_{VCII_i}} - AQ_i - BQ_i^2, \tag{165}$$

или

- для газа

$$P_{3AF}^{2} = P_{yCTi}^{2} - AQ_{i} - BQ_{i}^{2}$$
(166)

где i = 1,2,3...n; n - число режимных точек, откуда определяются все искомые параметры $P_{yC/I}$, A и B.

Метод наименьших квадратов (формализованный по своей сути) сглаживает индикаторную линию, приводит ее к параболическому виду, исключая возможные отклонения за счет различного рода физических процессов (разрушение пласта, прорыв пластовой воды, подключение неработающих интервалов и др.). Поэтому, перед расчетом необходимо выявить аномалии и отбраковать режимы на конечных участках индикаторной линии (схемы г и д). Расчет по (165) или (166), с другой стороны, позволяет оценить степень стабилизации пластового давления при остановке скважины.

Коэффициенты фильтрационного сопротивления *A* и *B* могут быть определены также графоаналитическим методом обработки индикаторной линии. В этом случае при найденном значении условного пластового давления строится графическая зависимость для жидкости $\Delta P_{nn}/Q = f(Q)$ или для газа $\Delta P_{nn}^2/Q = f(Q)$. Отрезок, отсекаемый на оси ординат дает значение коэффициента A, а тангенс угла наклона прямой линии к оси абсцисс - значение коэффициента B.

Диагностика состояния призабойной зоны пласта

Качество диагностики скважин во многом определяется достоверностью используемых физических и математических моделей, процессов, протекающих в пласте при фильтрации нефти (газа), а также методологией

постановки гидрогазодинамических исследований и интерпретацией полученных результатов.

В основу разработки методики диагностики положены проведенные нами исследования по переоценке представлений об информативности коэффициентов фильтрационных сопротивлений, входящих в уравнение притока.

Диагностика выполняется на основе анализа коэффициентов фильтрационного сопротивления.

Теоретические значения коэффициентов А и В для случая плоскорадиальной фильтрации нефти (газа) с учетом гидродинамического несовершенства скважины по степени и по характеру вскрытия пласта рассчитываются по формулам:

- для жидкости

$$A - \frac{\mu \cdot 10^{-2}}{2\pi \cdot K \cdot h \cdot 86,4} \qquad R_{\kappa} \cdot (\ln_{+} + C); \qquad (167)$$

$$B = \frac{\beta \cdot \rho_{CT} \cdot 10^{-2}}{\sqrt{K} \cdot (2\pi \ h_{1})^{2} \cdot 86, 4^{2}} \cdot (\frac{1}{r_{c}} - \frac{1}{R_{K}} + C_{1}^{\prime} + C_{2}^{\prime}); \qquad (168)$$

- для газа

$$A = \frac{\mu \cdot Z \cdot T_{\Pi \Pi} \cdot P_{CT} \cdot 10^{-2} \bullet R_{K} (\ln + C)}{\pi \cdot K \cdot h \cdot T_{CT} \cdot 86,4} r_{C} (169)$$

$$B = \frac{\beta \cdot \rho_{CT} \cdot Z \cdot T_{\Pi \Pi} \bullet P_{CT}^{-2}}{\sqrt{K \cdot 2 \cdot \pi^2 \cdot h^2 \cdot T \cdot \frac{10}{CT} \cdot 86, 4^2}} \cdot \left(\frac{1}{r_c} - \frac{1}{R_\kappa} + C_1 + C_2^{\prime}\right),$$
(170)

где μ - коэффициент динамической вязкости газа, ΠaC ; ρ_{CT} - плотность газа при стандартных условиях, $\frac{K^2}{M^3}$; Z - коэффициент сверхсжимаемости газа; $T_{\Pi\Pi}$ - средняя температура в пласте; P_{CT} - стандартное давление, $P_{CT} = 0,1M\Pi a$; T_{CT} - стандартная температура, $T_{CT} = 293K$; K - коэффициент проницаемости, M^2 ; h - эффективная толщина пласта, M; R_K - радиус контура питания, M; r_C радиус скважины, M; C и C_1' - коэффициенты гидродинамического несовершенства скважины по степени вскрытия пласта; C_2 и C_2' коэффициенты гидродинамического несовершенства скважины по характеру вскрытия пласта; *β* - коэффициент, учитывающий извилистость поровых каналов.

Радиус контура питания *R_k* при работе группы скважин принимается равным половине расстояния между скважинами. Радиус скважины *r_c* принимается равным радиусу скважины по долоту, когда открытый забой или перекрыт перфорированной колонной, или радиусу фильтра (каркаса фильтра).

Коэффициенты C_1 и C'_1 рассчитываются по формулам:

$$C_{1} = \frac{1}{\delta} \ln \delta + \frac{1 - \delta}{\delta} \ln \left(\left| \frac{h}{R_{1}} \right| \right);$$
(171)

$$C_{1}^{\prime} = (\frac{1}{\delta^{2}} - 1) \cdot \frac{1}{R_{1}}, \qquad (172)$$

где δ - степень вскрытия пласта, $\delta = \frac{b}{h}$; b - глубина, на которую вскрыт пласт; R_1 - радиус зоны, в которой сказывается влияние отверстия перфорации

 $(R_1 = 3r_C)$; в открытом стволе или при наличии фильтра - $R_1 = r_C$.

Формулы (171) и (172) является приближенной, для уточнения этой формулы (при малых значениях δ) рассмотрим модель по определению коэффициентов несовершенства скважины.

Используем уравнение фильтрации Дарси:

$$\frac{d\mathbf{P}}{dr} = \frac{\mu V}{K}.$$
(173)

Скорость фильтрации выразим в виде:

$$V = \frac{Q_0 P_0 TZ}{2\pi h_r TP}.$$
 (174)

Тогда уравнение (173) примет вид:

$$\frac{d\mathbf{P}}{dr} = C^* \frac{1}{rh_r \mathbf{P}}$$
(175)

ИЛИ

$$PdP = C^* \frac{dr}{rh_*}, \qquad (176)$$

где *С*^{*} – параметр, не зависящий от координат линий тока,

$$C^* = \frac{\mu Q_0 P_0 TZ}{2\pi KT_0};$$
(177)

Проинтегрируем уравнение (176):

$$\int_{P_c}^{P_c} P dP = C \int_{r_c}^{R_c} \frac{dr}{rh_r}$$
(178)

или

$$\int_{\mathbf{P}_C}^{\mathbf{P}_K} P d\mathbf{P} = C^* I_1 \quad , \tag{179}$$

где

$$I_{1} = \int_{r_{c}}^{R_{k}} \frac{dr}{rh_{r}} = \int_{R_{2}}^{R_{k}} \frac{dr}{rh} + \int_{R_{1}}^{R_{2}} \frac{dr}{rh_{r}} + \int_{r_{c}}^{R_{1}} \frac{dr}{rb}.$$
 (180)

Здесь *h_r* - эффективная толщина пласта, зависящая от радиуса фильтрации,

$$h_r = C_1^* + C_2^* r, (181)$$

$$C_{1}^{*} = b - R_{1} \frac{h - b}{R_{2} - R_{1}},$$
(182)

$$C_{2}^{*} = \frac{h-b}{R_{2}-R_{1}},$$
(183)

$$R_1 = ar_c, R_2 = h.$$
 (184)

После интегрирования уравнений (178) получаем

$$I_{1} = \frac{1}{h} \left[n \quad \frac{R_{\kappa}}{r} + C_{1} \right], \qquad (185)$$

где

$$C_{1} = \frac{1}{\delta - \frac{R_{1}}{h}} \ln \frac{\delta \cdot h}{R_{1}} + \frac{1}{\delta} \cdot \ln \frac{R_{1}}{r} - \ln \frac{h}{r}.$$
(186)

Ниже показана зависимость коэффициента гидродинамического несовершенства скважины по степени вскрытия пласта C_1 от степени вскрытия δ , определенные по формулам (171) и (172), где наглядно видно преимущество формулы (186) для определения C_1 - при малых значения δ .

Таким образом, коэффициенты С₁ и С₁ рассчитываются по формулам:

$$C_{1} = \frac{1}{\delta - \frac{R_{1}}{h}} \cdot \ln \frac{\delta \cdot h}{R_{1}} + \frac{1}{\delta} \cdot \ln \frac{R_{+}}{r_{c}} - \ln \frac{h}{r_{c}}; \qquad (187)$$

$$C_{1}^{\prime} = (\frac{1}{\delta^{2}} - 1) \cdot \frac{1}{R_{1}}.$$
(188)

Коэффициенты C₂ и C₂' рассчитываются при перфорированной колонне по формулам:

Рис. 22. Зависимость коэффициента гидродинамического несовершенства скважины по степени вскрытия пласта от степени вскрытия: 1 – по формуле (61); 2 – по формуле (77)

$$C_{2} = \frac{1}{n \cdot R_{1}^{2}};$$
(189)

$$C_{2} = \frac{1}{3 \cdot n^{2} \cdot l^{3}},$$
(190)

где *n* - число перфорационных отверстий на 1 п.м. толщины пласта; *l* - длина перфорационного канала (при пулевой перфорации $l=0,1_M$, при кумулятивной перфорации l=0,2 м).

При открытом забое и при наличии фильтра $C_2 = 0$, $C'_2 = 0$. Предельным случаем фильтрации к гидродинамически несовершенной скважине по степени вскрытия пласта (полная кольматация фильтра, работает одно или несколько отверстий, промытых потоком газа) является радиально-сферическая фильтрация. При этом коэффициенты *A* и *B* равны:

$$A = \frac{m_{1} \cdot \mu \cdot Z \cdot T_{\Pi \Pi} \cdot P_{CT} \cdot 10^{-2}}{2 \cdot \pi \cdot K \cdot T_{CT} \cdot 86,4} \cdot (\frac{1}{r_{C}} - \frac{1}{R_{K}});$$
(191)

$$B = \frac{m_1^2 \cdot \beta \cdot \rho_{CT} \cdot \underline{Z} \cdot T_{TT} \cdot P_{CT} \cdot 10^{-2}}{24 \cdot \pi^2 \cdot \sqrt{K} \cdot T_{CT} \cdot 86, 4^2} \cdot (\frac{1}{r_c^3} - \frac{1}{R_K^3}),$$
(192)

где m_1 - коэффициент, учитывающий геометрию фильтрационного потока; $m_1 = 1$ - сферическая фильтрация; $m_1 = 2$ - полусферическая фильтрация.

Размерность коэффициентов фильтрационного сопротивления:

для жидкости для газа

$$A = M\Pi a / (m^3 / cym);$$
 $A = M\Pi a^2 / (m \omega c.cm.m^3 / cym);$
 $B = M\Pi a / (m^3 / cym)^2;$ $B = M\Pi a^2 / (m \omega c.cm.m^3 / cym)^2$

Совместный анализ двух коэффициентов (*A* и *B*) позволяет определить две неизвестные величины (*K* и *δ*).

Обозначим:

- для жидкости

$$\alpha - \frac{\mu \cdot 10}{2\pi \cdot \cdot 86.4} \cdot \ln \frac{R_{\kappa}}{r}, \qquad (193)$$

$$b = \frac{\beta \cdot \rho_{CT} \cdot 10^{-2}}{(2\pi)^2 \cdot 86, 4^2} \cdot (\frac{1}{r_c} - \frac{1}{R_K}), \qquad (194)$$

- для газа

$$a = \frac{\mu \cdot Z \cdot T_{\Pi \pi} \cdot P_{CT} \cdot 10^{-2}}{\pi \cdot T_{CT} \cdot 86,4} \bullet \frac{1}{n \frac{R_{K}}{M}},$$
(195)

$$b = \frac{\beta \cdot \rho_{CT} \cdot Z \cdot T_{RT} \cdot P_{CT} \cdot 10^{-2}}{2 \cdot \pi^2 \cdot T_{CT} \cdot 86, 4^2} \cdot (\frac{1}{r_c} - \frac{1}{R_\kappa}),$$
(196)

где *а* и *b* - коэффициенты, учитывающие физические свойства пластовой жидкости;

$$f_{1}(\delta) = 1 + \frac{C_{1} + C_{2}}{\ln \frac{R_{\kappa}}{2}},$$
(197)

$$f_{2}(\delta) = + \frac{C_{1}' + C_{2}'}{\frac{1}{r_{c}} - \frac{1}{R_{\kappa}}},$$
(198)

где δ - степень вскрытия пласта; $f_1(\delta)$ и $f_2(\delta)$ - функции гидродинамического несовершенства скважины.

Тогда формулы (167) и (168) или (169) и (170) принимают вид:

$$A = \frac{a}{\mathbf{K} \cdot \mathbf{h}} \cdot f_1(\delta), \qquad (199)$$

$$B = \frac{b}{\sqrt{\mathbf{K} \cdot h^2}} \cdot f_2(\delta).$$
(200)

Рассмотрим два предельных случая:

1) Пласт условно изотропный, скважина гидродинамически несовершенна по степени вскрытия пласта.

Из совместного решения (199) и (200) получаем:

$$f(\delta) = \frac{b^2}{a \cdot h^3} \frac{A_{\phi}}{B_{\phi}^2}, \qquad (201)$$

где $f(\delta) = f_1(\delta) / f_2^2(\delta)$. A_{ϕ} и B_{ϕ} - фактические значения коэффициентов фильтрационного сопротивления, полученные по результатам исследования.

Используя приближенные методы вычисления, определяем степень вскрытия пласта δ_{ϕ} . Тогда вскрытая толщина пласта, фактически участвующая в фильтрации, равна:

$$h_{\phi} = \delta_{\phi} \cdot h, \tag{202}$$

а фактический коэффициент проницаемости:

$$K_{\phi} = \frac{a}{A_{\phi} \cdot h} \cdot f_1(\delta_{\phi}).$$
(203)

2) Пласт вскрыт полностью, но имеет выраженную слоистость с высокой степенью анизотропии.

В этом случае $C_1 = 0$; $C_1^1 = 0$; $f(\delta) = const$. Тогда фактическая толщина пласта, участвующая в фильтрации, равна:

$$h_{\phi} = \sqrt[3]{\frac{b}{a} \cdot \frac{A_{\phi}}{B_{\phi}^2}}$$
(204)

а фактический коэффициент проницаемости:

$$K_{\phi} = \frac{a}{A_{\phi} \cdot h_{\phi}}.$$
(205)

1.20.2. Методика обработки результатов исследований на неустановившихся режимах

Определение параметров пласта и скважины при данном методе исследования скважин основано на использовании процессов перераспределения забойного давления после пуска или остановки скважины. Этим методом исследуют скважины при любом способе эксплуатации. После мгновенного изменения установившегося режима работы скважины (пуск или остановка скважины) замеряется скорость восстановления или падения забойного давления и строится график восстановления забойного давления во времени. По этому графику и величине установившегося дебита скважины до начала исследования рассчитывают основные параметры пласта, характеризующие его фильтрационную способность.

Восстановление давления на забое мгновенно остановленной скважины, эксплуатирующей однородный по проницаемости пласт постоянной толщины, насыщенный однородной по вязкости жидкостью при установившемся дебите, может быть выражено уравнением:

$$\Delta P(t) = \frac{Q\mu b}{4\pi kh} \ln \frac{2.25\chi}{r_{np}^2} + \frac{Q\mu b}{4\pi kh} \ln t, \qquad (206)$$

где $\Delta P(t)$ – повышение забойного давления по времени, МПа; Q – установившийся дебит скважины перед остановкой, м³/с; μ – динамическая вязкость пластовой жидкости, мПа·с; k – коэффициент проницаемости, мкм²; h – толщина пласта, м; χ – коэффициент пьезопроводности пласта, м²/с; r_{np} – приведенный радиус скважины, м; t – время с начала остановки скважины, сут; b – объемный коэффициент.

Обозначив

$$A = \frac{Q\mu b}{4\pi kh} \ln \frac{2.25\chi}{r_{\rm ex}^2},\tag{207}$$

$$i = \frac{Q\mu b}{4\pi kh},$$
(208)

уравнение (206) можно представить в виде

$$\Delta P(t) = A + i \ln t \,. \tag{209}$$

График этого уравнения будет иметь вид прямой линии с углом наклона *α* и отрезком *A*, отсекаемым от оси ординат (рис. 21).

Используя график восстановления давления, из уравнения (208) можно определить коэффициент проницаемости пласта

$$k = \frac{0.183Q\mu b}{ih}.$$
(210)

Для этого необходимо из графика определить значение углового коэффициента *i* как *tga*:

$$i = \frac{\Delta P_2 - \Delta P_1}{\ln t_2 - \ln t_1}.$$
(211)

После определения коэффициента проницаемости определяют коэффициент пьезопроводности:

$$\chi = \frac{k}{\mu (m\beta_{\mathcal{H}} + \beta_c)},\tag{212}$$

где μ – вязкость жидкости, β_ж и β_c – коэффициенты сжимаемости жидкости и среды соответственно; m – коэффициент пористости.

Рис. 21. Кривая восстановления забойного давления. Подставляя найденные значения *i* и χ в уравнение (207), определяют приведенный радиус скважины:

$$r_{np} = \sqrt{\frac{2.25\chi}{10^{A/i}}} \,. \tag{213}$$

Исследование на неустановившихся режимах дает возможность качественно оценить изменение проницаемости или наличие непроницаемых включений в удаленных зонах пласта.

Формы кривых восстановления давления и их интерпретация

В природных условиях сравнительно редко встречаются литологически однородные пласты по толщине и простиранию. В процессе работы скважины проницаемость призабойной зоны изменяется по разным причинам. Загрязнение призабойной зоны происходит механическими примесями, смолопарафиновыми отложениями, солями гипса, окислами железа и др. Изменяется и вязкость жидкости в результате закачки холодной воды или ее прекращения, замещения вязких нефтей пластовой или пресной водами и перемещения водонефтяного или газонефтяного контактов при заводнении пластов. На вид кривых восстановления забойного давления в значительной мере влияет то, что практически невозможно мгновенно прекратить приток или подачу жидкости в пласт, выделение газа в призабойной зоне и стволе скважины, изменение давления в них вследствие теплоотдачи и так далее.

Перечисленные факторы влияют на формы кривых восстановления забойного давления, и фактические графики ΔP и lnt отличаются от теоретических. Часто встречающаяся форма кривых восстановления забойного давления показана на рис. 22 *а*.

Если соблюдать все условия применимости метода исследования скважин по кривым восстановления давления, то график имел бы форму прямой линии с уклоном $i = tg\alpha$ и отрезком A на оси ординат (см. рис. 21). В промысловой практике нарушение прямолинейности наблюдается в начале графика, это объясняется продолжающимся притоком жидкости в скважину после ее остановки, так как практически невозможно достичь мгновенной остановки скважины (нужно время на закрытие задвижек); в насосных скважинах повышается уровень динамического до статического; сжимаемостью ОТ жидкости в стволе скважины при повышении давления; выделением свободного газа из нефти по стволу скважины при снижении давления.

Рис. 22. Кривые восстановления забойного давления с несколькими прямолинейными участками.

В некоторых нефтяных скважинах с низкой проницаемостью пласта, с высоким давлением насыщения и значительным газовым фактором время начала выхода графика на прямолинейный участок длится 4 часа и более. Для нагнетательных скважин, в которые закачивается вода, или находящихся на самоизливе график восстановления давления почти сразу выходит на прямолинейный участок. Начальный участок графика восстановления забойного давления (до точки *m*) рассматривается с учетом притока жидкости в скважину после ее остановки. Второй участок графика от точки *m* до точки *m*₁ имеет крутой угол наклона и наибольшее значение углового коэффициента *i*₁. Подставляя его значение в формулу (210), получим наименьший вычисленный коэффициент проницаемости, что говорит о неудовлетворительном состоянии призабойной зоны пласта. По данному участку определяется степень несовершенства скважины, которая характеризуется приведенным радиусом скважины r_{пр}. Подставляя данный радиус в уравнение Дюпюи для радиального установившегося притока однородной жидкости в скважину

$$Q = \frac{2\pi kh \left(P_{nn} - P_{3ab}\right)}{\mu \ln \frac{R_{\kappa}}{r}},$$
(214)

уточняем параметры пласта. Участок графика от m_1 до m_2 с угловым коэффициентом i_2 оценивает фильтрационные свойства удаленной зоны пласта. Это сравнительно большой участок пласта вокруг скважины сложен породами однородной проницаемости, содержащими жидкость постоянной вязкости. Толщина пласта на этом участке на всем простирании одинакова. Коэффициент проницаемости на этом участке, рассчитанный по формуле (211), будет выше проницаемости призабойной зоны пласта. После точки m_2 направление графика снова меняется, и повышается угол наклона. Повышение угла наклона объясняется ухудшением литологической характеристики продуктивного пласта или значительным увеличением вязкости жидкости. Чтобы более точно определить факторы, влияющие на угол наклона графика, следует повторить исследование скважины через 3-4 месяца.

Когда на характеры кривых восстановления забойного давления на той же скважине повлияло наличие литологической ограниченности пласта, то точки пересечения прямолинейных участков m_1 , m_2 , m_3 , будут находиться на одном и том же расстоянии от оси ординат (см. рис. 22 б). В случае, когда искривление графика связано с разностью вязкостей, насыщающих данный пласт, точки пересечения m_1 , m_2 , m_3 при повторных исследованиях будут отклоняться вправо по горизонтальной оси графика (см. рис. 22 *в*).

Таким образом, исследование скважин по методу неустановившихся режимов позволяет получать данные по пласту и принимать необходимые решения для рациональной разработки залежи. По результатам исследований скважин до и после проведения того или иного геолого-технического мероприятия можно определить глубину обработанной зоны пласта (рис. 22 г). График 1, построенный до обработки скважины, вначале имеет крутой угол наклона, что указывает на низкую проницаемость призабойной зоны пласта. После проведения обработки призабойной зоны меняется характер начального участка графика 2, а участок подъема имеет почти тот же уклон. Из этого можно делать вывод, что в результате обработки скважины повысился коэффициент проницаемости призабойной зоны пласта, а глубину обработки можно рассчитать до точки *т*. Выполненные заключения по формам графиков восстановления забойного давления будут более достоверны, если такие исследования провести в соседних скважинах и их результаты сопоставить. Для определения расстояния от ствола скважины до места в пласте, где условия изменяются, можно фильтрации жидкости воспользоваться формулой распределения давления в бесконечном пласте после остановки одиночной скважины, предложенной профессором В. Н. Щелкачевым:

$$\Delta P(t) = \frac{Q\mu b}{4\pi kh} (0,8091 + \ln F_0), \qquad (215)$$

где *F*₀ – безразмерный параметр Фурье, характеризующий скорость распределения давления в пласте. Остальные параметры прежние:

$$F_{0} = \frac{\mathcal{U}t}{R^{2}}, \qquad (216)$$

где χ – коэффициент пьезопроводности, м/с; t – время с начала остановки скважины, с; R – текущий радиус, м.

Если $F_0 = 0,1$, давление на забое восстанавливается на 90%, а когда $F_0 = 0,5$, то давление практически восстановилось, и это давление можно принимать за пластовое. В этом случае $\Delta P(t) \rightarrow 0$, и уравнение (215) будет иметь вид:

$$0,8091 + \ln F_0 = 0 \tag{217}$$

Подставляя в формулу (217) значение безразмерного коэффициента из уравнения (216), получим

$$0,8091 + \ln \chi t - 2\ln R = 0 \tag{218}$$

Отсюда можно определить расстояние от ствола скважины до любой точки в пласте:

$$R = 1, 5\sqrt{\chi t} \tag{219}$$

Чтобы воспользоваться этой формулой, необходимо построить график восстановления забойного давления в координатах ΔP , lnt. По прямолинейному участку определяют коэффициент проницаемости k и подсчитывают коэффициент пьезопроводности χ по формуле (212), фиксируют на графике точку m, после которой изменяется угол наклона. Значение времени t в точке пересечения и значение χ подставляют в формулу (219). С применением метода восстановления забойного давления проводят также исследования на взаимодействие скважин. Для этого на одной скважине изменяют режим работы, а на других соседних скважинах наблюдают за изменением забойного давления. По скорости восстановления забойного давления рассчитывают параметры пласта в радиусе между возмущающей и наблюдательными скважинами.

1.20.3. Понятие о скин-факторе.

При рассмотрении радиального движения жидкости в пористой среде обычно предполагается, что проницаемость одинакова по всей зоне дренирования: от внешних границ до вскрытой поверхности забоя скважины. Также обычно подразумевается, что радиус скважины точно измерен и постоянен по всей эффективной толщине пласта. Фактически же проницаемость в зоне пласта, приближенной к скважине и называемой призабойной, отличается от пластовой (зачастую в меньшую сторону) ввиду следующих причин:

1) Добывающие скважины:

- проникновение бурового раствора и блокировка поровых каналов;

- набухание глин при контакте с фильтратом бурового раствора;

- химическое осаждение – например, выпадение CaCO₃ и BaSO₄;

- продвижение песчаных частиц к стволу скважины;

- сжатие породы;

- повреждение породы при перфорации;

- отклонение от ламинарного течения (в основном в газовых скважинах).

2) Нагнетательные скважины:

- закупорка пласта из-за наличия твердых частиц в закачиваемой жидкости;

- изменение глин при контакте с закачиваемой жидкостью;

- несовместимость закачиваемой жидкости с пластовым флюидом.

Конечно, существует ряд методов интенсификации притока, увеличивающих проницаемость ПЗП, например:

- соляно-кислотная обработка;

- гидравлический разрыв пласта и др.

В 1953 году Хèрст и Ван Эвердинген впервые описали явление изменения проницаемости призабойной зоны, обусловленное вскрытием пласта в процессе бурения и освоения скважины, которое ими было названо как скин-эффект. Количественное его выражение, которое используется при определении депрессии, затрачиваемой на преодоление скин-эффекта, было названо Ван Эвердингеном скин-фактором.

Скин-фактор S - гидродинамический параметр, характеризующий дополнительное фильтрационное сопротивление течению флюидов в околоскважинной зоне пласта, приводящее к изменению добычи (дебита) по

сравнению с совершенной (идеальной) скважиной. Говоря другими словами, скин-фактор – это наличие или отсутствие дополнительных фильтрационных сопротивлений в призабойной зоне.

Скин-эффект, по существу являющийся дополнительной депрессией на пласт, можно выразить формулой:

$$\Delta P_{cKUH} = P'_{3a\delta} - P_{3a\delta} \tag{220}$$

Тогда скин-фактор можно представить как:

$$S = \frac{2\pi kh}{q\mu B} \Delta P_{ckuh} \tag{221}$$

где *k* – проницаемость, *h* – толщина пласта, *q* – дебит скважины, *µ* - динамическая вязкость жидкости, *B* – объемный коэффициент.

Используя концепцию скина как кольцеобразной зоны вокруг скважины с измененной проницаемостью, Хокинс вывел аналитическую формулу скинфактора. Рассмотрим пласт мощностью h и проницаемостью k (рис. 23). Допустим, что в процессе технологической деятельности человека изменилась проницаемость в призабойной зоне ($k_{\Pi 3\Pi}$). Будем считать, что поврежденная зона радиусом $r_{\Pi 3\Pi}$ имеет одинаковую проницаемость $k_{\Pi 3\Pi}$ и что остальная часть пласта остается неповрежденной. Для обобщения допустим, что проницаемость в призабойной зоне ($k_{\Pi 3\Pi}$) меньше или больше, чем проницаемость в незагрязненной зоне (k). Тогда скин-фактор будет равен:

$$S = \left(\frac{k}{k_{\Pi 3 \Pi}} - 1 \right) \ln \left(\frac{r_{\Pi 3 \Pi}}{r_{cxs}} \right)$$
(222)

где k – проницаемость коллектора, $k_{\Pi 3\Pi}$ – проницаемость измененной зоны, $r_{\Pi 3\Pi}$ – радиус измененной зоны, r_{CKB} – радиус скважины.

Формула (222) в литературе носит название формулы Хокинса.

Рис. 23. К понятию скин-фактора.

С учетом скин-эффекта закон Дарси для радиальной фильтрации (формула Дюпюи) принимает следующий вид:

$$q = \frac{2\pi kh}{\mu B \left[\ln \left(\frac{r_{\kappa onm}}{r_{cx6}} \right) + S \right]} \left(P_{n\pi} - P_{3a\delta} \right)$$
(223)

где *г_{конт}* – радиус контура питания скважины.

Для скин-фактора справедливы следующие утверждения:

1) Скин-фактор положителен (S > 0), если проницаемость ПЗП меньше проницаемости удаленной зоны пласта (имеет место повреждение ПЗП: $k_{\Pi 3\Pi} < k$);

2) Скин-фактор отрицателен (S < 0), если проницаемость ПЗП больше проницаемости удаленной зоны пласта (имеет место интенсификация добычи: $k_{\Pi 3\Pi} > k$);

3) Скин-фактор равен нулю (S = 0), если проницаемость ПЗП равна проницаемости удаленной зоны пласта ($k_{\Pi 3\Pi} = k$).

Для скин-фактора характерны следующие значения:

1) S > 0 – загрязнение ПЗС:

- $S \approx 1-2$ умеренное загрязнение ПЗС
- $S \approx 5$ серьезное загрязнение ПЗС
- S > 10 механические проблемы
- 2) S < 0 интенсификация притока:
- S \approx -3 предел для кислотной обработки
- S \approx -4 хороший ГРП
- $S \approx -5 \phi$ актический нижний предел

Определение величины скин-фактора *S* (его знака и численного значения) позволяет решать важные практические задачи:

- оценивать состояние призабойной зоны скважины в любой момент ее жизни;
- ранжировать фонд скважин и выделять из них те, которые имеют ухудшенное состояние ПЗП;
- служить основой для планирования геолого-технических мероприятий (ГТМ),
 направленных на улучшение состояния ПЗП, увеличение дебитов скважин

(установление очередности проведения ГТМ, выбор скважины и технологии проведения ГТМ);

 скин-фактор, определенный до и после проведения ГТМ, позволяет судить об эффективности ГТМ.

На практике скин-фактор определяется в ходе гидродинамических исследований на скважине.

Следует отметить, что в отечественной и зарубежной литературе понятие скин-фактора немного отличаются. В отличие от отечественной литературы, понятие скин-фактора за рубежом включает в себя не только изменение проницаемости в призабойной зоне пласта, но также факторы, обусловленые неполнотой вскрытия пласта перфорацией («несовершенство вскрытия пласта» в отечественной литературе), пространственной геометрией скважины, неньютоновскими (структурно-вязкостными) свойствами жидкости и сложным геологическим строением залежи (в частности, наличием многопластовости и отдельных линз).

1.21. Оптимальный дебит скважины в условиях пескопроявления 1.21.1. Энергосберегающий дебит скважины.

Эффективность эксплуатации подземных хранилищ газа определяется, в первую очередь, продуктивностью (приемистостью) скважин в цикле –отборзакачка газа. Поэтому особое внимание уделяется установлению оптимального дебита скважины, как на стадии проектирования, так и в процессе эксплуатации ПХГ.

Оптимальным считается режим, при котором факторы, ограничивающие отбор газа из скважины (вынос песка и воды, конденсация тяжелых углеводородов и др.) находятся на определенном уровне, обеспечивающим эксплуатацию скважины без осложнений.

Применение энергосберегающих режимов работы скважин обеспечивает благоприятные условия по предотвращению нарушений герметичности и целостности эксплуатационных колонн газовых скважин, вызванных интенсивными деформационными процессами, возникающими при высоких дебитах газа.

Существующий подход к решению этой проблемы сводится к определению дебита скважины на границе нарушения линейного закона фильтрации, ибо появление квадратичного члена в уравнении притока вызывает существенные дополнительные сопротивления.

В работах Коротаева Ю.П. за критерий оптимальности приняты затраты пластовой энергии. Экспериментальным путем, с использованием акустикогидродинамического метода (АГДМ), было установлено, что при определенной скорости фильтрации, названной –критической возникает аэродинамический шум, соответствующий, по мнению автора, нарушению линейного закона Дарси.

Вводится понятие энергосберегающего дебита, рассчитываемого по «критической» скорости на стенке скважины.

Однако предлагаемую методику, во многих случаях, трудно реализовать на практике из-за невозможности спуска приборов на забой скважины, а количественная оценка критической скорости автором не дается.

Установлением границы применимости закона Дарси занимались многие исследователи. Получены (см. таблица 10) значения критического числа Рейнольдса, рассчитанного по эквивалентному диаметру зерен породы:

$$\operatorname{Re}_{d} = \frac{d_{\mathcal{P}} \rho V}{\mu}$$
 (224)

Закон фильтрации (36) отражает плавный переход от линейного закона Дарси к квадратичному закону А. А. Краснопольского. Неопределенность границы применимости закона Дарси может быть исключена учетом погрешности эксперимента. Будем считать, что коэффициент вихревых сопротивлений составляет некоторую долю от коэффициента общих сопротивлений, равную принятой погрешности ^Δ.

Критические значения числа Рейнольдса при фильтрации

по определению верхней границы применимости закона Дарси.

Автор	Критическое значение	По опытам	
	числа Рейнольдса	А.И. Абдулвагабова	
Фэнчер, Льюис, Бернс	1-4	-	
Павловский Н.Н.	7,5-9	-	
Щелкачев В.Н.	1-12	0,032-14	
Миллионщиков Н.Д.	0,022-0,29	0,0015-0,60	
Требин Г.Ф., Котяхов Ф.И.	0,3	0,0085-3,5	
Шафернак Ф., Даклер Р.	3-6	-	
Эренбергер П.	5	-	
Абдулвагабов А.И.	-	0,032-14	

В этом случае верхняя граница применимости закона Дарси определяется из соотношения:

$$\operatorname{Re}_{KP}^{\prime} = \frac{\Delta}{1 - \Delta} \frac{1}{\beta}, \qquad (225)$$

а нижняя граница применимости закона Краснопольского - из соотношения

$$\operatorname{Re}_{KP}^{\prime\prime} = \frac{1 - \Delta}{2} \cdot \frac{1}{2}, \qquad (226)$$

где Re_{KP} - рассчитаны по коэффициенту проницаемости:

$$\operatorname{Re}_{K} = \frac{\sqrt{K}\rho V}{\mu}, \qquad (227)$$

В таблице 11 даны результаты расчета при значении $\Delta = 0,1$. Данные таблицы хорошо сопоставляются с градацией В.Н.Щелкачева для грунтов различного состава. В таблице приведены также значения $\text{Re}_{KP}^{\prime\prime}$.

Таблица 11

1	1	1	1 1		
Фильтрационная	Коэфф	Число	Критическое		Критическо
среда	ициент	Рейнольдса	число		е число
	порист	Re_d по	Рейнольдса		Рейнольдса
	ости т	Щелкачеву	$\mathbf{Re}'_{_{KP}}$		$\mathbf{Re}_{KP}^{\prime\prime}$
			Re _K	Re_d	\mathbf{Re}_d
Однородная дробь	0,4	13 - 14	0,156	7,03	12,67
Песок однородный крупнозернистый	0,4	3 - 10	0,156	7,03	12,67
Песчаник несцементированный	0,3	0,24 - 0,34	0,057	4,26	4,61
Песчаник сцементированный	0,2 - 0,135	0,05 - 14	0,01 - 0,00073	1,78 - 0,484	0,81 - 0,059

Критические параметры линейной фильтрации

По критическому числу Рейнольдса можно рассчитать критическую скорость, энергосберегающий дебит для любой площади фильтрации, в том числе и на стенке скважины. При этом необходимо иметь информацию о работающей толщине пласта. В гидродинамически несовершенных скважинах по степени вскрытия пласта, особенно в условиях пескопроявления И кольматации забойных фильтров, работающая толщина пласта может меняться в весьма широких пределах. Причем, в большинстве случаев, эта толщина изложенный неизвестна. Поэтому, выше подход определению К энергосберегающего дебита нельзя признать результативным. По критическому числу Рейнольдса можно оценить потенциальные возможности скважины при забоя. проектных характеристиках И Возможно, необходимо пласта рассматривать работу пласта в целом.

Будем считать, что энергосберегающий дебит скважины соответствует условию, когда квадратичный член в уравнении притока составляет некоторою долю от общих сопротивлений, соответствующую принятой погрешности определения режимных точек на индикаторной линии и коэффициентов фильтрационного сопротивления A и B. Тогда получаем формулу для расчета оптимального энергосберегающего дебита:

$$Q_{O\Pi T} = \frac{\Delta A}{1 - \Delta B},$$
(228)

где Δ - доля квадратичного члена в уравнении притока.

Значение Δ в уравнении (228) можно принять равным коэффициенту вариации при обработке индикаторной линии методом наименьших квадратов в координатах $\Delta P^2 = f(Q)$.

Расчеты по Касимовскому и Елшано-Курдюмскому ПХГ дают значение Δ в пределах 0,045-0,12.

Коэффициенты фильтрационного сопротивления рассчитываются по формулам, представленным в виде:

$$A = a \cdot f_1(\delta), \tag{229}$$

$$B = b \cdot f_2(\delta), \tag{230}$$

где $f_1(\delta)$ и $f_2(\delta)$ - функции степени вскрытия пласта,.

Тогда формула (228) приводится к виду:

$$Q_{O\Pi T} = \frac{\Delta \quad a}{1 - \Delta \quad e} \cdot f(\delta). \tag{231}$$

1.21.2. Основные представления о механизме пескопроявления

Существующие представления о характере разрушения пластаколлектора позволяют выделить несколько процессов:

 Вынос мелких фракций (алевролитовых, пелитовых, глинистых) в песках и слабосцементированных песчаниках, без разрушения скелета породы. Механизм выноса таких фракций описывается на основе физической модели псевдоожижения. Условие выноса мелких фракций - равенство градиента сил трения градиенту силы тяжести.

При радиальной фильтрации это условие имеет вид:

$$\frac{d\mathbf{P}}{dr} = g(\rho_{\Pi} - \rho_{\mathcal{K}}); \qquad (232)$$

где $\frac{dP}{dr}$ - градиент сил трения; $\rho_{\Pi}, \rho_{\mathcal{K}}$ - плотность породы и

фильтрующейся жидкости; g – ускорения земного притяжения.

Размер выносимых фракций соизмерим с размером пор и трещин и на порядок меньше размера зерен породы. Прорыв воды к нефтяной или газовой скважине существенно интенсифицирует вынос мелких фракций, как за счет значительного снижения адгезионных сил сцепления, так и за счет более высокой вязкости воды по сравнению с вязкостью газа.

Перенос мелких фракций может отмечаться и в самом пласте, например, на фронте вытеснения газа водой.

2) Размыв скелета породы (несцементированных песков). В гидрогеологии этот процесс называют суффозией. При критических градиентах давления, согласно уравнению (232), происходит разжижение песка и вынос его из пласта в скважину. Гранулометрический состав выносимого песка соответствует составу самой породы.

Разрушение скелета породы (слабосцементированные песчаники).
 Условие разрушения можно записать в виде:

$$\frac{d\mathbf{P}}{dr} = \frac{\sigma_{II}}{l_{II}},\tag{233}$$

где σ_{μ} - прочность цемента на разрыв; l_{μ} - линейный размер зерен породы.

4) Разрушение рыхлых пород (песчаники глинистые). Отмечается вынос конгломератов, условие разрушения:

$$\frac{d\mathbf{P}}{dr} = \frac{\sigma_{\kappa}}{l_{\kappa}},\tag{234}$$

где o_{k} - прочность на разрыв глинистой связки, l_{k} - линейный размер конгломератов.

Разрушение скелета породы по п.п 3 и 4 отмечается при значительных градиентах давления, особенно в условиях форсированного отбора пластовой жидкости (газа) и при освоении скважины компрессорным способом после прорыва газа (воздуха) из затрубья в колонну НКТ, а также при наличии локальных каналов фильтрации. Общепринято считать, что в карбонатных коллекторах (известняки, доломиты и др.) выноса мелких фракций и разрушение скелета породы не происходит.

Однако следует отметить еще один источник выноса механических примесей. Это, в первую очередь, внесенные в пласт, в процессе его вскрытия бурением, продукты разрушения самого пласта, твердая фаза промывочной жидкости, продукты коррозии и абразивного износа наземного и подземного оборудования и инструмента. Эти привнесенные со стороны механические фильтрационным вглубь примеси проникают по каналам пласта на значительное расстояние и в большом количестве, пропорционально размерам фильтрационных каналов. Объем этих механических примесей периодически восполняется при капитальном ремонте скважины, в том числе при проведении ГТМ. Основная масса этих механических примесей может быть удалена из пласта в первые месяцы работы скважины, но их вынос отмечается на протяжении нескольких лет.

1.21.3. Прогнозирование выноса песка из пласта к скважине

Ранее было установлено, что перенос песка начинается при определенном градиенте давления, равном градиенту силы тяжести. При этом в переносе участвуют фракции, по размеру менее половины размера частиц песка, слагающих скелет породы-коллектора.

Критический градиент давления равен:

- при переносе песка водой

$$gradP = g(\rho_{e} - \rho_{R}), \qquad (235)$$

- при переносе песка газом

$$gradP = g(\rho_e - \rho_r) \tag{236}$$

Фактические градиенты давления меняются во времени и в пространстве. Однако особый интерес представляют максимальные значения градиентов давления, а именно, на стенке скважине - для фильтрации газа и на фронте вытеснения - для фильтрации воды.

Рассмотрим модель плоскорадиального фильтрационного потока несжимаемой жидкости по закону Дарси при «поршневом» вытеснения газа пластовой водой.

Расчетные формулы:

97

- депрессия на пласт

$$\Delta \mathbf{P}_{\Pi\Pi} = \frac{Q}{2\pi K h} \begin{pmatrix} \mu_{\Gamma} \ln \frac{r_{f}}{r_{C}} + \mu_{B} \ln \frac{R_{K}}{r_{f}} \\ r_{C} & r_{f} \end{pmatrix}$$
(237)

- градиент давления на стенке скважины:

$$\frac{d\mathbf{P}}{dr}\Big|_{r=r_c} = \frac{\mu_{\Gamma}Q}{2\pi Khr_c};$$
(238)

- градиент давления на фронте вытеснения газа, водой;

$$\frac{d\mathbf{P}}{dr}\Big|_{r=r_f} = \frac{\mu_B Q}{2\pi K h r_f},\tag{239}$$

где $\Delta P_{II,T}$ - депрессия на пласт; Q - дебит газа при пластовых условиях; K - коэффициент проницаемости; h - толщина пласта; μ_{Γ} , μ_{B} - коэффициент динамический вязкости газа и воды; r_{c} , R_{κ} , r_{f} - радиус скважины, контура питания, фронта вытеснения.

Рассмотрим два основных технологических режима эксплуатации скважин.

1. Режим постоянной депрессии на пласт.

По мере стягивания контура газоносности дебит скважины и, соответственно, градиент давления на стенке скважины уменьшаются, в то время как градиент давления на фронте вытеснения сначала уменьшается до минимального значения, а затем увеличивается.

Градиент давления на фронте вытеснения можно выразить в виде

$$\frac{dP}{dr}\Big|_{r=r_f} = \frac{\Delta P}{r_f (\ln \frac{R_K}{r_f} + \overline{\mu} \ln \frac{r_f}{r_c})},$$
(240)

где $\overline{\mu} = \mu_{\Gamma} / \mu_{B}$.

Вынос песка газом будет иметь место при перемещении фронта вытеснения от контура питания до порядка 30 *м* от скважины. Затем вынос песка прекратится. Перенос песка в пласте жидкостью начнется только при подходе фронта вытеснения к скважине на расстояние около 2 *м* и менее. Следовательно, в этом случае пескопроявление будет отмечаться в начальный период отбора газа и в конце отбора при обводнении скважины. Таким образом, скважины при режиме постоянной депрессии на пласт должны эксплуатироваться до момента обводнения скважин. Вынос песка в начальный период отбора газа не должен служить причиной остановки скважины, если нет признаков разрушения ПЗП. Необходимо лишь обеспечить вынос песка из скважины на поверхность.

Депрессия на пласт, при которой будет отмечаться вынос песка газом на протяжении всего периода откачки равна

$$\Delta \mathbf{P}'_{\kappa \rho} = (grad\mathbf{P}_{\rho}) \frac{r_{c}}{m} \ln \frac{R_{\kappa}}{m}.$$
 (241)

Депрессия на пласт, при которой будет отмечаться перенос песка жидкостью на протяжении всего периода откачки, равна

$$\Delta \mathbf{P}''_{_{KP}} = (grad\mathbf{P}_{_{g}})r_{_{\min}}(\ln\frac{R_{_{K}}}{r_{_{\min}}} + \overline{\mu}\ln\frac{r_{_{\min}}}{r_{_{C}}}). \tag{242}$$

Полученные значения критических депрессий на пласт необходимо проверить на условия разрушения пласта.

2. Режим постоянного дебита газа.

При режиме постоянного дебита градиент давления на стенке скважины остается постоянным во времени в то время, как градиент давления на фронте вытеснения и депрессия на пласт увеличивается по мере стягивания контура газоносности.

Анализ показывает, что вынос песка газом будет отмечаться на протяжении всего цикла отбора газа. Если нет признаков разрушения ПЗП, скважина может эксплуатироваться до момента обводнения.

Чтобы исключить пескопроявление в течение всего цикла отбора газа, необходимо уменьшить дебит скважины до величины

$$Q_{_{KP}} = \frac{2\pi K h r_{_{C}}}{\mu_{_{\Gamma}}} (grad \mathbf{P}_{_{\Gamma}}), \qquad (243)$$

Из выполненного анализа следует, что в условиях пескопроявления более предпочтительным является режим постоянного дебита скважины, не превышающий критический.

Подобные прогнозные расчета могут быть выполнены по каждой скважине, если имеются данные гидродинамических исследований.

1.21.4. Защита скважины от песка

Наиболее благоприятные условия отбора пластовой жидкости обеспечиваются технологическим методом путем ограничения дебита скважины. Перенос мелких фракций песка определяется условием:

$$(gradP) = g(\rho_{\pi} - \rho_{\pi}). \tag{244}$$

При радиальной фильтрации по линейному закону:

$$(gradP) = \frac{\mu V}{K}.$$
 (245)

Выражая скорость через дебит скважины, получим критический дебит, обеспечивающий режим отбора газа без песка на любом расстоянии от скважины:

$$Q_{KP} = \frac{2\pi Khg(\rho - \rho)r PT \cdot 86,4}{\mu P_0 T_r Z}, \qquad (246)$$

где Q_{KP} - дебит газа, *тыс. н м /сут*; *r* - радиус дренирования; P_r,T_r - давление и температура на линии дренирования; P_0,T_0 – давление и температура при нормальных условиях; *Z* – коэффициент сжимаемости газа. Все физические величины в формуле (246), кроме дебита газа, даны по международной системе единиц.

Расчеты показывают, что этот критический дебит скважины сравнительно мал, и не обеспечивает требуемых темпов отбора газа. Однако, учитывая некоторую очистку призабойной зоны пласта в процессе освоения скважины, критический дебит газа может быть увеличен в 2-3 раза.

При прорыве воды вынос песка резко увеличивается. Критический дебит воды определяется:

$$Q_{KP}^{B} = \frac{2\pi \kappa h_{B} r_{C} g(\rho_{\Pi} - \rho_{B}) 86400}{\mu_{\mathcal{K}}}, \text{ m}^{3}/\text{cyr}$$
(247)

где *h*_{*B*} – толщина пласта, по которой идет фильтрация воды.

Малейшее поступление в скважину воды будет интенсифицировать вынос песка из пласта, как малых фракций, так и самого скелета породы (слабосцементированных песчаников).

Технологический метод ограничения пескопроявления может быть использован в слабосцементированных песках и песчаниках за счет создания

искусственной призабойной зоны пласта из прочных высокопроницаемых материалов. Создание такой зоны радиусом 1 *м* позволит увеличить критический дебит газа на порядок. Однако и в этом случае следует предусмотреть безводную эксплуатацию скважин.

В условиях малейшего поступления пластовой воды необходимо проводить изоляцию водопритоков, крепления ПЗП цементом, цементнопесчаными смесями, смолами, полимерами, клеящими составами. Для обеспечения требуемых отборов пластовой жидкости (газа) необходимо увеличивать депрессию на пласт, что приводит к разрушению закрепленной зоны, образованию локальных каналов фильтрации и интенсификации выноса песка. При повышенных депрессиях также увеличивается вероятность прорыва к скважине пластовой воды.

В последние годы для борьбы с песком начали широко применять забойные фильтры (гравийные, проволочные, порошковые, лавсановые и др.). Основной недостаток фильтров - их склонность к кольматации мелкими фракциями песка, глинистыми частицами. Проницаемость фильтра со временем уменьшается. Увеличение рабочей депрессии на пласт для обеспечения требуемого дебита газа приводит к разрушению фильтра.

Из выше изложенного следует, что ни крепление ПЗП, ни установка фильтров не защищают скважину от песка. Технологические методы требуют индивидуального подхода к каждой скважине после пуска ее в эксплуатацию.

1.22. Расчет дебитов горизонтальных скважин при двухфазной фильтрации

Для расчетов дебита используется аналог формулы Renard, Dupuy

$$q_{\Gamma}^{*} = 2 \cdot \pi \cdot K \cdot h \left[\frac{f_{B}(s)}{\mu_{B}} + \frac{f_{H}(s)}{\mu_{H}} \right] \cdot A ; \qquad (248)$$

$$q^{\mu} = 2 \cdot \pi \cdot K \cdot h \cdot \frac{f_{\mu}(s)}{\mu_{\mu}} \cdot A$$
(249)

где

$$A = \frac{(p_k - p_c) \cdot 86,4}{\ln \frac{a + \sqrt{a^2 - \left(\frac{L}{2}\right)^2}}{\frac{L}{2}} + \frac{h}{L} \cdot \ln \frac{h}{2 \cdot \pi \cdot r_c}},$$

q^{*} - дебит скважины по жидкости, м³/сут, q^{*} - дебит скважины по нефти, м³/сут,

Для сравнения дебит вертикальной скважины вычисляется по формулам

$$q_{B}^{*} = 2 \cdot \pi \cdot K \cdot h \left| \left| \frac{f_{B}}{\mu_{B}} + \frac{f_{H}}{\mu_{H}} \right| \cdot B;$$
(250)

$${}^{_{H}}_{g_{B}} = 2 \cdot \pi \cdot K \cdot h \cdot \frac{f_{_{H}}}{\mu_{_{H}}} \cdot B, \qquad (251)$$
$$B = \frac{p_{_{k}} - p_{_{c}}}{\ln \frac{R_{_{k}}}{1}} \cdot 86,4,$$

где

 $f_{_B}(s)$ и $f_{_H}(s)$ - относительные фазовые проницаемости для воды и нефти.

Обычно используются зависимости вида

$$\begin{split} f_{_{B}}(s) = & \left(\frac{s - \xi_{_{B}}}{1 - \xi_{_{B}}}\right)^{a} \ \text{для } s_{_{CB}} \leq s \leq 1, \\ f_{_{B}}(s) = 0 \ \text{для } s \leq s_{_{CB}}, \\ f_{_{H}}(s) = & \left(\frac{1 - s_{_{H,0}} - s}{1 - s_{_{H,0}}}\right)^{b} \cdot (1 + c \cdot s), \ 0 \leq s \leq 1 - s_{_{H,0}}, \end{split}$$
(252)

 $f_{_{\rm H}}(s) = 0 \ {\rm для} \ s \geq 1 {\rm -s}_{_{\rm H.o}}.$ В формулах (103) $s_{_{\rm CB}}$ - насыщенность пористой среды связанной водой, s_{н.о} - остаточная нефтенасыщенность, s - текущее значение водонасыщенности. Чарным И.А. по результатам анализа многих лабораторных экспериментов приняты значения

Дебит скважины по воде обычно определяют по формуле

$$\mathbf{q}_{\mathrm{B}} = \mathbf{F}(\mathbf{s}) \cdot \mathbf{q}_{\mathrm{w}} \,, \tag{253}$$

где F(s) - функция Леверетта, представляющая из себя долю воды в потоке жидкости

$$F(s) = \frac{f_{\scriptscriptstyle B}(s)}{f_{\scriptscriptstyle B}(s) + \frac{\mu_{\scriptscriptstyle B}}{\mu_{\scriptscriptstyle H}} \bullet f_{\scriptscriptstyle H}(s)}.$$
 (254)

Для правильной оценки ожидаемых дебитов горизонтальной скважины необходимо знать состояние насыщения пласта флюидами.

1.22.1. Стационарный дебит скважины в изотропном пласте при зональной неоднородности по насыщенности

Пусть для вертикальной скважины в пределах контура питания радиуса R_k насыщенность меняется скачком и имеет два значения

$$s = s_{\phi}$$
 при $r_c \le r \le R_{\phi}$,
 $s = s_{\kappa}$ при $R_{\phi} \le r \le R_{\kappa}$,

Радиус R_{φ} составляет часть от $R_{\kappa},\,R_{\varphi}$ = $\alpha\cdot R_{\kappa}$ ($\alpha{<}1).$

Дебит вертикальной скважины будет выражаться формулами

$$q_{B}^{*} = \frac{2 \cdot \pi \cdot K \cdot h \cdot (p_{k} - p_{c}) \cdot 86,4}{a \cdot \ln \frac{R_{*}}{R_{\phi}} + a_{2} \cdot \ln \frac{R_{\phi}}{r_{c}}};$$
(255)

$$q_{B}^{*} = \frac{2 \cdot \pi \cdot K \cdot h \cdot (p_{k} - p_{c}) \cdot 86,4}{b \cdot \ln \frac{R_{*}}{R_{\phi}} + b_{2} \cdot \ln \frac{R_{\phi}}{r_{c}}};$$
(256)

$$a^{1} = \left[\frac{f_{B}(s_{\kappa})}{\mu_{B}} + \frac{f_{H}(s_{\kappa})}{\mu_{H}}\right]^{-1}; a_{2} = \left[\frac{f_{B}(s_{\phi})}{\mu_{B}} + \frac{f_{H}(s_{\phi})}{\mu_{H}}\right]^{-1};$$
$$b_{1} = \left[\frac{f_{H}(s_{\kappa})}{\mu_{H}}\right]^{-1}; b_{2} = \left[\frac{f_{H}(s_{\phi})}{\mu_{H}}\right]^{-1}.$$

Дебиты горизонтальной скважины по жидкости и по нефти.

$$\overline{s_{\phi}} = s_{\kappa} + \left[s_{\phi} - s_{\kappa}\right] \cdot \frac{4 \cdot R_{\phi}^{2}}{L \cdot h} \ \Pi p \mu \ R_{\phi} < \frac{\sqrt{L \cdot h}}{2} \ .$$

В зависимости от характера насыщения пласта флюидами соотношение между дебитами вертикальной и горизонтальной скважин может быть самым разнообразным.

Расчетные формулы могут быть легко обобщены для случая, когда в пласте выделяется произвольное количество зон с различным насыщением флюидами.

1.22.2. Стационарный дебит скважины в анизотропном пласте с постоянной водонасыщенностью (s = const.)

Дебит вертикальной скважины в анизотропном пласте с учетом двухфазности потока

$$q_{B}^{\kappa} = 2 \cdot \pi \cdot h \cdot \sqrt{K_{\Gamma} \cdot K_{B}} \cdot \left[\frac{f(s)}{\mu_{B}} + \frac{f(s)}{\mu_{H}} \right] \cdot \frac{\left(p_{\kappa} - p_{c}\right) \cdot 86,4}{\ln \frac{R}{r_{c.5KB.}}};$$
(259)

$$\mathbf{q}_{\mathrm{B}}^{\mathrm{H}} = 2 \cdot \pi \cdot \mathbf{h} \cdot \sqrt{\mathbf{K}_{\mathrm{r}} \cdot \mathbf{K}_{\mathrm{B}}} \cdot \frac{\mathbf{f}_{\mathrm{H}}(\mathbf{s})}{\mu_{\mathrm{H}}} \cdot \frac{\left(\mathbf{p}_{\mathrm{K}} - \mathbf{p}_{\mathrm{c}}\right) \cdot 86, 4}{\ln \frac{\mathbf{R}}{\mathbf{r}_{\mathrm{c}, 2\mathrm{KB}}}};$$
(260)

$$\mathbf{r}_{c,\text{JKB}} = \frac{\beta+1}{2 \cdot \sqrt{\beta}} \cdot \mathbf{r}; \ \beta = \sqrt{\frac{K_{r}}{K_{B}}} .$$
(261)

Дебиты горизонтальной скважины

$$\check{\mathbf{q}}_{r} = 2 \cdot \pi \cdot \mathbf{K}_{r} \cdot \mathbf{h} \cdot \begin{bmatrix} \mathbf{f}(\mathbf{s}) & \mathbf{f}(\mathbf{s}) \\ -\mathbf{\mu}_{H} & + \mathbf{\mu}_{H} \end{bmatrix} \cdot \mathbf{Z};$$
(262)

$$q_{r}^{H} = 2 \cdot \pi \cdot K_{r} \cdot h \cdot \frac{\Gamma(s)}{\mu_{H}} \cdot Z; \qquad (263)$$

$$Z = \frac{(p_{k} - p_{c}) \cdot 86,4}{\left[2^{2} - \left(\frac{L}{2}\right)^{2}\right]}$$
(264)

где

$$q_{r} = 2 \cdot \pi \cdot K_{r} \cdot \mathbf{n} \cdot \frac{\mu_{r}}{\mu_{r}} \cdot \mathbf{L},$$

$$= \frac{(p_{k} - p_{c}) \cdot 86,4}{\ln \frac{a + \sqrt{a^{2} - \left(\frac{L}{2}\right)^{2}}}{\frac{L}{2}} + \frac{\beta h}{L} \cdot \ln \frac{\beta h}{(\beta + 1) \cdot \pi \cdot r_{c}}$$

2. ЗАДАНИЕ ДЛЯ КУРСОВЫХ ПРОЕКТОВ ПО ПОДЗЕМНОЙ ГИДРОМЕХАНИКЕ

Задание № 1.

Определить условия переноса песка в пласте при плоскорадиальной фильтрации нефти и воды.

1. Теоретическая часть.

1.1. Методика расчета параметров фильтрации при поршневом вытеснении нефти водой.

2. Расчетная часть.

2.1. Рассчитать градиенты давления на линии вытеснения и на стенке скважины при перемещении ВНК для режима постоянной депрессии на пласт и постоянного дебита скважины при линейном и нелинейном законе фильтрации.

2.2. Рассчитать критический градиент давления переноса песка водой и нефтью.

2.3. Определить условия переноса песка при каждом режиме фильтрации.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 209-213 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 2.

Определить условия переноса песка в пласте при плоскорадиальной фильтрации газа и воды.

1. Теоретическая часть.

1.1. Методика расчета параметров фильтрации при поршневом вытеснении газа водой.

2. Расчетная часть.

2.1. Рассчитать градиенты давления на линии вытеснения и на стенке скважины при перемещении ГВК для режима постоянной депрессии на пласт и постоянного дебита скважины при линейном и нелинейном законе фильтрации.

2.2. Рассчитать критический градиент давления переноса песка водой и газом.

2.3. Определить условия переноса песка при каждом режиме фильтрации.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев и др. Подземная гидромеханика. М.: Недра, 1993 г., 203- 209 с., 85-88 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

<u>Задание № 3.</u>

Определить коэффициенты водонасыщенности и нефтеотдачи и их динамику с использованием функции Бакли-Леверетта.

1. Теоретическая часть.

1.1. Методика определения коэффициентов водонасыщенности и нефтеотдачи с использованием функции Бакли- Леверетта.

2. Расчетная часть.

2.1. Задаться функциями для фазовой проницаемости в системе –нефтьвода.

2.2. Построить функцию Бакли- Леверетта, ее первую производную.

2.3. Определить искомые коэффициенты на конец безводной эксплуатации и на конец разработки залежи.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 26-29 с., 228-233 с., 241-246 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

<u>Задание № 4.</u>

Определить коэффициенты водонасыщенности и газоотдачи и их динамику с использованием функции Бакли-Леверетта.

1. Теоретическая часть.

1.1. Методика определения коэффициентов водонасыщенности и газоотдачи с использованием функции Бакли-Леверетта.

2. Расчетная часть.

2.1. Задаться функциями для фазовой проницаемости в системе -газвода.

2.2. Построить функцию Бакли-Леверетта, ее первую производную.

2.3. Определить искомые коэффициенты на конец безводной эксплуатации и на конец разработки залежи.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. К.С. Басниев и др. Подземная гидромеханика.: Недра, 1993 г., 26-29 с, 228-233 с., 241-246 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 5.

Рассчитать показатели разработки нефтяной залежи как укрупненной скважины.

1. Теоретическая часть

Методика расчета показателей разработки залежи как укрупненной скважины.

2. Расчетная часть.

2.1. Рассчитать изменение во времени объема внедрившейся воды и требуемого количества скважин при принятом законе изменения депрессии на пласт.

2.2. Рассчитать изменение во времени забойного давления и депрессии на пласт, а также требуемого числа скважин при принятом законе изменения объема внедрившийся воды.

Выводы

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 172-179 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

<u>Задание № 6.</u>

Рассчитать показатели разработки газовой залежи как укрупненной скважины.

1. Теоретическая часть

1.1. Методика расчета показателей разработки залежи как укрупненной скважины.

2. Расчетная часть.

2.1. Рассчитать изменение во времени объема внедрившейся воды и требуемого количества скважин при принятом законе изменения депрессии на пласт.

2.2. Рассчитать изменение во времени забойного давления и депрессии на пласт, а также требуемого числа скважин при принятом законе изменения объема внедрившийся воды.

Выводы

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 172-179 с. 2. Басниев К. С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 172-179 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

<u>Задание № 7.</u>

Рассчитать показатели разработки нефтяной залежи при упругом режиме разработки.

1. Теоретическая часть.

1.1. Теория упругого режима.

2. Расчетная часть.

2.1. Подсчитать упругий запас нефти в пласте.

2.2. Рассчитать падение пластового давления во времени при режиме постоянного отбора жидкости.

2.3. Рассчитать динамику отбора жидкости и пластового давления при режиме постоянной депрессии на пласт.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 172-179 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 131-151 с., 159-171 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

<u>Задание № 8.</u>

Рассчитать показатели разработки газовой залежи при упругом режиме разработки.

1. Теоретическая часть.

1.1. Теория упругого режима.

2. Расчетная часть.

2.1. Подсчитать упругий запас газа в пласте.

2.2. Рассчитать падение пластового давления во времени при режиме постоянного отбора газа.

2.3. Рассчитать динамику отбора газа и пластового давления при режиме постоянной депрессии на пласт.

Выводы. Литература:
1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. Басниев К.С. и др. Подземная гидромеханика. М.: Недра,1993 г., 172-179 с. 2. К.С. Басниев и др. Подземная гидромеханика. М.: Недра,1993 г., 181-188 с., 199-201 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 9.

Оценить влияние частоты пульсации забойного давления на коэффициент продуктивности нефтяной скважины.

1. Теоретическая часть.

1.1. Основная формула теории упругого режима (уравнение Лейбензона).

1.2. Интерференция скважин в условиях упругого режима.

2. Расчетная часть.

2.1. Рассчитать забойное давление при пуске и остановке скважины с

интервалом времени $t = T_{MAX} / n$, где n =1, 2, 3, 70, 100; $T_{MAX} = \frac{R_{\kappa}^2}{v}$.

2.2. Определить среднее значение забойного давления.

2.3. Рассчитать коэффициенты продуктивности.

2.4. Оценить зависимость коэффициента продуктивности от частоты пульсации забойного давления.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 172-179 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 10.

Оценить влияние частоты пульсации забойного давления на коэффициент продуктивности газовой скважины.

1. Теоретическая часть.

1.1. Основная формула теории упругого режима (уравнение Л.С. Лейбензона)

1.2. Интерференция скважин в условиях упругого режима.

2. Расчетная часть.

2.1. Рассчитать забойное давление при пуске и остановке скважины с

интервалом времени $t = T_{MAX} / n$, где n =1, 2, 3, 50, 70, 100; $T_{MAX} = \frac{R_K^2}{\gamma}$.

2.2. Определить среднее значение забойного давления.

2.3. Рассчитать коэффициенты продуктивности.

2.4. Оценить зависимость коэффициента продуктивности от частоты пульсации забойного давления.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 181-199 с.

Задание № 11.

Оценить влияние совместной работы куста скважин на индикаторную линию центральной скважины в нефтяном пласте с удаленным контуром питания при плоскорадиальной фильтрации нефти.

Теоретическая часть.

1.1. Методика расчета депрессии на пласт при работе группы нефтяных скважин.

2. Расчетная часть.

2.1. Рассчитать депрессию на пласт при исследовании центральной скважины при работе скважин в кусте (для n = 3,7,21).

2.2. Построить индикаторные линии.

2.3. Рассчитать коэффициенты продуктивности для центральной скважины.

2.4. Оценить зависимость коэффициента продуктивности от числа скважин в кусте.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 103-109 с., 58-80 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 12.

Оценить влияние совместной работы куста скважин на индикаторную линию центральной скважины в газовом пласте с удаленным контуром питания при плоскорадиальной фильтрации газа.

1. Теоретическая часть.

1.1. Методика расчета депрессии на пласт при работе группы газовых скважин.

2. Расчетная часть.

2.1. Рассчитать депрессию на пласт при исследовании центральной скважины при работе скважин в кусте (для n= 3,7,21).

2.2. Построить индикаторные линии.

2.3. Рассчитать коэффициенты продуктивности для центральной скважины.

2.4. Оценить зависимость коэффициента продуктивности от числа скважин в кусте.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 103-109 с., 58-90 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 13.

Выполнить диагностику нефтяной скважины по результатам гидродинамических исследований при установившейся фильтрации.

1. Теоретическая часть.

1.1. Методика обработки данных гидродинамических исследований при плоскорадиальной фильтрации.

1.2. Приток жидкости к несовершенным скважинам.

2. Расчетная часть.

2.1. По данным исследования определить коэффициенты фильтрационного сопротивления.

2.2. Рассчитать теоретические значения коэффициентов фильтрационного сопротивления для гидродинамически совершенной скважины.

2.3. Оценить гидродинамическое несовершенство скважины.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 58-88 с., 117-126 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 14.

Выполнить диагностику газовой скважины по результатам гидродинамических исследований при установившейся фильтрации.

1. Теоретическая часть.

1.1. Методика обработки данных гидродинамических исследований при плоскорадиальной фильтрации.

1.2. Приток газа к несовершенным скважинам.

2. Расчетная часть.

2.1. По данным исследования определить коэффициенты фильтрационного сопротивления.

2.2. Рассчитать теоретические значения коэффициентов фильтрационного сопротивления для гидродинамически совершенной скважины.

2.3. Оценить гидродинамическое несовершенство скважины.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 58-88 с., 117-126 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 15.

Оценить влияние давления на индикаторную линию при плоскорадиальной фильтрации нефти в пористой среде.

1. Теоретическая часть.

1.1. Зависимость параметров флюидов и пористой среды от давления.

1.2. Плоскорадиальный фильтрационный поток сжимаемой жидкости и породы.

2. Расчетная часть.

1.1. Рассчитать депрессию на пласт при установившейся фильтрации нефти для различных пластовых давлений.

1.2. Определить коэффициенты продуктивности, построить индикаторные линии

1.3. Оценить влияние давления на форму индикаторной линии.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 48-54 с., 72-78 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 16.

Оценить влияние давления на индикаторную линию при плоскорадиальной фильтрации газа в пористой среде.

1. Теоретическая часть.

1.1. Зависимость параметров флюидов и пористой среды от давления.

1.2. Плоскорадиальный фильтрационный поток идеального и реального

газа.

2. Расчетная часть.

2.1. Рассчитать депрессию на пласт при установившейся фильтрации газа для различных пластовых давлений.

2.2. Определить коэффициенты продуктивности, построить индикаторные линии.

2.3. Оценить влияние давления на форму индикаторной линии.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г.,

48-54 с., 72-81 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 17.

Выполнить анализ расчетных формул для определения коэффициента продуктивности горизонтальных скважин для нефтяной залежи.

1. Теоретическая часть.

1.1. Приток несжимаемой жидкости к горизонтальной скважине.

2. Расчетная часть.

2.1. Рассчитать безразмерный коэффициент продуктивности горизонтальной скважины длиной –11, радиусом r_c в пласте толщиной h при радиусе контура питания R_{κ} .

2.2. Построить графики зависимости приведенного коэффициента продуктивности и проанализировать полученные результаты.

2.3. Сравнить коэффициенты продуктивности вертикальной и горизонтальной скважины.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 126-129 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 18.

Выполнить анализ расчетных формул для определения коэффициента продуктивности горизонтальных скважин для газовой залежи.

1. Теоретическая часть.

1.1. Приток газа к горизонтальной скважине.

2. Расчетная часть.

2.1. Рассчитать безразмерный коэффициент продуктивности горизонтальной скважины длиной –11, радиусом r_c в пласте толщиной h при радиусе контура питания R_k .

2.2. Построить графики зависимости приведенного коэффициента продуктивности и проанализировать полученные результаты.

2.3. Сравнить коэффициенты продуктивности вертикальной и горизонтальной скважины.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 126-129 с.

Задание № 19

Дать сравнительную оценку приближенных методов решения задач теории упругого режима фильтрации нефти.

1. Теоретическая часть.

1.1. Точное решение осесимметричного притока нефти к скважине.

1.2. Приближенные методы решения задач упругого режима фильтрации нефти.

2. Расчетная часть.

2.1. Рассчитать депрессию на пласт по точной формуле и по приближенным формулам.

2.2. Найти относительную погрешность расчетов.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 181-196 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 20.

Дать сравнительную оценку приближенных методов решения задач теории упругого режима фильтрации газа.

1. Теоретическая часть.

1.1. Точное решение осесимметричного притока газа к скважине.

1.2. Приближенные методы решения задач упругого режима фильтрации газа.

2. Расчетная часть.

2.1. Рассчитать депрессию на пласт по точной формуле и по приближенным формулам.

2.3. Найти относительную погрешность расчетов.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 181-196 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 21.

Оценить условия нарушения устойчивого движения границы раздела нефти и воды.

1. Теоретическая часть.

1.1. Устойчивость движения границы раздела жидкостей.

2. Расчетная часть.

2.1. Рассчитать критическую скорость фильтрации нефти при нарушении устойчивого движения границы раздела с водой.

2.2. Рассчитать критический градиент давления.

2.3. Рассчитать положение ВНК при нарушении устойчивости раздела жидкостей при дебитах скважины Q.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 213-215 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 22.

Оценить условия нарушения устойчивого движения границы раздела газа и воды.

1. Теоретическая часть.

1.1. Устойчивость движения границы раздела газа и жидкостей.

2. Расчетная часть.

2.1. Рассчитать критическую скорость фильтрации газа при нарушении устойчивого движения границы раздела газа с водой.

2.2. Рассчитать критический градиент давления.

2.3. Рассчитать положение ГВК при нарушении устойчивости раздела газа и воды при дебитах скважины Q.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 213-215 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 23.

Оценить динамику обводненности продукции скважины при поршневом вытеснении нефти водой из неоднородного по проницаемости пласта.

1. Теоретическая часть.

1.1. Теоретическая модель плоскорадиального потока в неоднородных пластах.

1.2. Плоскорадиальное вытеснение нефти водой.

2. Расчетная часть.

2.1. Задаться функциями фазовой проницаемости при фильтрации нефти и воды.

2.2. Задаться законом распределения неоднородных по проницаемости пропластков.

2.3. Рассчитать время обводнения пропластков и динамику обводненности продукции скважины.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 94-98 с., 209-213 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 24.

Оценить динамику обводненности продукции скважины при поршневом вытеснении газа водой из неоднородного по проницаемости пласта.

1. Теоретическая часть.

1.1. Теоретическая модель плоскорадиального потока в неоднородных пластах.

1.2. Плоскорадикальное вытеснение газа водой.

2. Расчетная часть.

2.1. Задаться функциями фазовой проницаемости при фильтрации газа и воды.

2.2. Задаться законом распределения неоднородных по проницаемости пропластков.

2.3. Рассчитать время обводнения пропластков и динамику обводненности продукции скважины.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 94-98 с., 209-213 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 25.

Оценить влияние давление на индикаторную линию при плоскорадиальной фильтрации нефти в трещиновато- пористой среде.

1. Теоретическая часть.

1.1. Зависимость параметров флюидов и трещиновато-пористой среды от давления.

1.2. Плоскорадиальный фильтрационный поток сжимаемой жидкости и породы.

2. Расчетная часть.

2.1. Рассчитать дебит скважины при установившейся фильтрации нефти для различных депрессий на пласт и пластовых давлений.

2.2. Определить коэффициент продуктивности, построить индикаторные линии.

2.3. Оценить влияние давления на форму индикаторной линии.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 350-362 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 26.

Оценить влияние давление на индикаторную линию при плоскорадиальной фильтрации газа в трещиновато- пористой среде.

1. Теоретическая часть.

1.1. Зависимость параметров флюидов и трещиновато-пористой среды от давления.

1.2. Плоскорадиальный фильтрации поток сжимаемой жидкости (газа) и породы.

2. Расчетная часть.

2.1. Рассчитать дебит скважины при установившейся фильтрации газа для различных депрессий на пласт и пластовых давлений.

2.2. Определить коэффициент продуктивности, построить индикаторные линии.

2.3. Оценить влияние давления на форму индикаторной линии.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 350-362 с. 3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 27.

Определить условия эксплуатации нефтяной скважины при наличии подошвенной воды и газовой шапки.

1. Теоретическая часть.

1.1. Теория образования конуса подошвенной воды и газа.

2. Расчетная часть.

2.1. Рассчитать безводный дебит скважины.

2.2. Рассчитать безгазовый дебит скважины.

2.3. Обосновать интервал перфорации.

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К. С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 221-226 с. 3. Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений. Проектирование разработки. Гиматудинов Ш.К. и др. М.: Недра, 1983 г., 221- 235 с. 4. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Задание № 28.

Определить условия эксплуатации газовой скважины при наличии подошвенной воды.

1. Теоретическая часть.

1.1. Теория образования конуса подошвенной воды.

2. Расчетная часть.

2.1. Рассчитать безводный дебит скважины.

2.2. Обосновать интервал вскрытия пласта (первичное вскрытие).

2.3. Обосновать интервал перфорации (вторичное вскрытие).

Выводы.

Литература:

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с. 2. Басниев К.С. и др. Подземная гидромеханика. М.: Недра, 1993 г., 221-226 с. 3. Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений. Проектирование разработки. Гиматудинов Ш.К. и др. М.: Недра, 1983 г., 221- 235 с. 4. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

3. ОФОРМЛЕНИЕ КУРСОВЫХ РАБОТ

Текстовая часть курсовой работы должна быть написана на одной стороне листа белой бумаги формата A4 (297х210) чернилами одного цвета (шариковой ручкой), четким и понятным почерком. Высота букв должна быть не менее 2,5 мм. Расстояние между основаниями строк текстовой части должно быть не менее 8 мм.

Текстовая часть текста может быть также, и отпечатана на принтере через полтора межстрочных интервала. Шрифт Times New Roman, формулы в редакторе Microsoft Equation 3,0.

Текст следует печатать, соблюдая следующие размеры полей: левое – 30 мм, правое – 10 мм, верхнее – 20 мм, нижнее – 15 мм.

На протяжении всего текста должно строго соблюдаться единообразие терминов, обозначений, условных сокращений и символов. Не допускается применять одинаковые термины и обозначения для различных понятий без указания их смыслового значения.

При выполнении расчетной части проекта должна использоваться только

международная система единиц измерения – СИ (ГОСТ 8.417-81; СТ СЭВ 1052 – 78). При пользовании источниками, содержащими справочные данные в системах единиц СГС, МКГСС и др., необходимо предварительно пересчитать их в единицах СИ и уже в таком виде вводить в расчетах.

Номер страницы проставляется цифрами в правом верхнем углу без точки и черточек. На первых двух страницах (титульный лист, задание) номер страницы не ставят. Список использованных источников и приложения необходимо включать в сквозную нумерацию.

Иллюстрации (таблицы, схемы, графики), которые располагаются на отдельных страницах курсовой работы, также включаются в общую нумерацию страниц.

Все рисунки должны иметь наименования (заголовок). Наименование рисунка должно быть кратким и соответствовать содержанию. Заголовок пишется над рисунком с прописной буквы. Если рисунок имеет поясняющие данные, то их оформляют под рисуночным текстом. Номер иллюстрации располагают ниже поясняющей надписи. В тексте при ссылках на номер рисунка его следует писать сокращенно, например: рис.1. Рисунки должны размещаться сразу после ссылки на них в тексте. Рисунки следует размещать так, чтобы их можно было рассматривать без поворота текста.

Цифровой материал, помещенный в работе, как правило, оформляется в виде таблиц. Таблицу размещают после первого упоминания о ней в тексте, таким образом, чтобы ее можно было читать без поворота записки или с поворотом по часовой стрелке. Таблицы должны нумероваться в пределах всего текста арабскими цифрами (без знака № перед цифрой). Надпись «Таблица» с указанием порядкового номера помещается над правым верхним углом таблицы, например Таблица 1. Каждая таблица должна иметь содержательный заголовок. Заголовок помещается под словом «Таблица».

120

4. ДАННЫЕ ДЛЯ РАСЧЕТА И СПРАВОЧНЫЕ ДАННЫЕ

Основные исходные данные для курсовой работы

N⁰	Показатели	Единица	Символическое	Величина
п/п		измерения	обозначение	
1	Площадь нефтеносности	тыс.м ²	F	13456,00
2	Средняя эффективная нефтенасыщенная	м	h	32
	толщина			
3	Коэффициент открытой пористости	доли ед.	т	0,18
4	Коэффициент проницаемости	мкм ²	k	0,37
5	Коэффициент динамической вязкости	мПа · с	μ	
	для воды			
	для нефти			1
	для газа			56
				0,012
6	Радиус контура питания	м	R_K	300
7	Среднесуточный дебит скважины			
	по нефти	M^3/cym	Q_H	23,5
	по газу	тыс.м ³ /сут	$\mathcal{Q}_{arGamma}$	560
8	Радиус скважины	м	r	0,08
9	Плотность нефти	кг/м ³	$ ho_{H}$	890
10	Плотность газа	кг/м ³	$ ho_{\Gamma}$	0,076
11	Давление на контуре	МПа	\mathbf{P}_{K}	24,8
12	Давление на забое	МПа	\mathbf{P}_{C}	20,5
13	Коэффициент пьезопроводности	M^2/c	χ	0,01
14	Длина горизонтальной части ствола	\mathcal{M}	l	от 50 до
				600

Показатели	Нефтепромысловая единица измерения	В системе СИ
Проницаемость	$1 \square (\square apcu = 1, 02 \cdot 10^{-12} M^2 \approx 1 M \kappa M^2)$	1 <i>m</i> ²
Давление		Па
Динамическая вязкость	$1c\Pi(сантипуаз) = 0,01\Pi(пуаз) = 0,001\Pi a \cdot c$	Па · с
Кинематическая вязкость	$1Cm((Cmo\kappa c) = 10^{-4} M^2/c)$	M^2/c
	$(1cCm((cahmucmokc) = 10^{-6} M^2/c))$	

5. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная литература

1. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебник для вузов. – Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с.

2. Дмитриев Н.М., Кадет В.В. Подземная гидромеханика. Пособие для семинарских занятий. М.: РГУ нефти и газа им. И.М. Губкина, 2008.

3. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика: Учебное пособие для вузов. – М. – Ижевск: Институт компьютерных исследований, 2005, 544 с.

Дополнительная литература

1. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. – М.: Недра, 1993. – 416 с.

2. Дмитриев Н.М., Кадет В.В., Разбегина Е.Г. Методические указания к выполнению курсовых работ по дисциплине подземная гидромеханика. – М.: нефть и газ, 1998. - 61 с.

3. Евдокимова В.А., Кочина И.Н. Сборник задач по подземной гидравлике: Учебное пособие для вузов. — 2-е изд., стереотипное. Перепечатка с издания 1979 г. - М.: ООО ИД «Альянс», 2007. - 168 с.

4. Пыхачев Г.Б., Исаев Р.Г. Подземная гидравлика. - М.: Недра, 1973. – 360 с.

5. Щелкачев В.Н., Лапук Б.Б. Подземная гидравлика. – М.: Гостоптехиздат, 1949. – 358 с.

6. Чарный И.А. Подземная гидрогазодинамика. – М.: Гостоптехиздат, 1963. – 396 с.

7. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в пластах. – М.: Недра, 1984. -270 с.

8. Коллинз Р. Течение жидкости через пористые материалы. – М.: Мир, 1964. – 207 с.

9. Азиз Х., Сеттари Э. Математическое моделирование пластовых систем. – М.: Недра, 1982. – 407 с.

БОРХОВИЧ СЕРГЕЙ ЮРЬЕВИЧ ИВАН ВАСИЛЬЕВИЧ ПЧЕЛЬНИКОВ КОЛЕСОВА СВЕТЛАНА БОРИСОВНА

ПОДЗЕМНАЯ ГИДРОМЕХАНИКА УЧЕБНОЕ ПОСОБИЕ

для студентов очной и заочной форм обучения по направлению подготовки 21.03.01 «Нефтегазовое дело» профиль: «Эксплуатация и обслуживание объектов добычи нефти»

> Напечатано в авторской редакции с оригинал – макета заказчика Подписано в печать 28. 04. 17. Формат 60х84 1/16. Печать офсетная. Усл. печ. л. 4,39. Уч.-изд. л. 5,3. Тираж 100 экз. Заказ № Типография УдГУ. 426034, Ижевск, Университетская, 1, корп.4.