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Introduction

C. Berge [7]? published a short book on game theory that contained a wealth of concepts that
did not receive enough attention from game theory scholars for decades. M. Shubik’s [43] negative
review of Berge’s book (“...no attention is paid to the application to the economy ...the book is
of little interest for economists”) “discouraged” economists from exploring its concepts for a long
time. Berge’s book was translated into Russian in 1961. In the 1980s V.I. Zhukovskiy broke away
from this state of affairs; he started to investigate one of the concepts of equilibrium in normal form
games introduced by Berge in his book: the concept of equilibrium of a coalition P with respect
to another coalition K, or P/K-equilibrium. Such an equilibrium is reached when the coalition K
does its best to maximize the payoffs of players in coalition P. Using this concept, Zhukovskiy [52]
introduced the Berge equilibrium (BE) that is a {i}/I — {i}-equilibrium for all players i € I, where
I ={1,2,...,n} is the set of players, in static normal form games. That is, a Berge equilibrium
is reached when for each player i € I, all the other players in the coalition I — {i} do their best
to maximize his/her payoff. For a decade BE did not receive attention in the West as most of
related publications appeared in the Russian language and within Russia and were mainly authored
by Zhukovskiy, his students and colleagues only. Here it is important to pay tribute to Konstantin
Semenovich Vaisman, a student of V.I. Zhukovskiy, who conducted a pioneering first in-depth study
of BE and its properties and improved its definition, in his PhD thesis [45]. Unfortunately, he died
at the early age of 36 after a struggle with cancer. The main contributions of Vaisman are as follows.
He (i) constructed a counterexample showing that BE may not satisfy the well-known individual
rationality condition, thereby, improving it, (ii) pointed out that BE is immune against deviation of
coalitions of the form, (iii) initiated the investigation of BE in games involving uncertainty in the
payoff functions, (iv) was the first to investigate the Nash bargaining solution involving uncertainty in
payoff functions in cooperative games [46], and (v) introduced in non-cooperative games the concept

Konstantin Semenovich Vaisman was a young Russian mathematician who died on March 10, 1998, after a struggle
with cancer. He was born on August 29, 1962 in Moscow Region; his father was an electrical engineer graduating
from the famous Moscow Energy Institute; his mother dedicated her life to raising her two children. He went through
Orekhovo-Zuevo Pedagogical Institute (1984) and Moscow State University (1993). In 1995, he received his Ph.D.
from Saint-Petersburg State University. The theme of his thesis was Berge Equilibrium. In the last years of his short
life he worked as an Associate Professor at Orekhovo-Zuevo Pedagogical Institute. He has published 26 works in the
field of game theory. Most of them are related to Berge Equilibrium.

2The book was published in 1957 when Claude Berge, a French mathematician, was visiting professor at the
Institute of Advanced Study at Princeton (Courtois et al. [2015]). Berge is an outstanding mathematician; his research
and highly significant contributions cover a large spectrum of areas including operations research, optimization, graph
theory and game theory.
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of hybrid equilibrium where some players select their strategies from Nash equilibrium, while others
select their strategies based on the concept of threats and counter-threats equilibrium [54]. Later
this concept was developed in [74]. We will come back BE-related Vaisman’s contributions (i)-(iv)
mentioned above.

In the last decade, BE received a great deal of attention as this equilibrium presents a possi-
ble alternative besides Nash equilibrium in the new challenging and interdependent world that is
the result of globalization and the information and communication technology revolution. Indeed,
initially, Zhukovskiy introduced this equilibrium as an alternative to Nash equilibrium when Nash
equilibrium does not exist in a game. Further investigations have revealed that BE is a rich concept
as it has many interpretations and reflects many socio-economic behaviors in human interaction.
Indeed, it can express the moral Golden Rule, the principle of mutual support or “positive” recipro-
cation, coordination, cooperation in non-cooperative settings and altruism. Later, we will see these
interpretations in more detail.

All the above-mentioned socio-economic behaviors in human interaction are not captured by the
concept of Nash equilibrium in normal form games. Numerous works have been published on these
behaviors in human interaction; however, no formal conceptual framework has been put forward for
their formal analysis in normal form games. There is growing evidence that BE is an appropriate
concept to fill this huge gap. Therefore, BE has a great application potential in socio-economic
interactions.

At this stage of evolution of research on BE, it is time to make a small pause and analyze what
has been done and what needs to be done next regarding this equilibrium. The objective of this work
is to conduct a literature review of the published works on BE to evaluate the theoretical and applied
achievements made so far and to show some directions of further research. We do not pretend that
the review is exhaustive as many publications appear in Russia (local journals, conferences, etc.)
but not at an international level. However, the main results of Russian colleagues are reviewed here
as most of them are published by Zhukovskiy’s team or co-authored by him. Moreover, this review
focuses on static normal form games, whereas the most important works on BE in differential games
are only mentioned with few comments.

The work is organized as follows. In Section 1, to help the reader and make the work self-
contained, we provide the definition of BE and discuss it. Section 2 is devoted to the explanation
of different interpretations of BE. Section 3 reviews publications on the challenging problems of
existence, determination and computation of this equilibrium. Section 4 reviews publications on
applications of BE. Section 5 concludes and shows some research directions.

§ 1. Definition of Berge Equilibrium

Consider the following normal form game

G = (I,{Xi}ier, {fi(%) Yier),

where I = {1,...,n} is the set of players, X; is the set of strategies of player ¢ € I, fi(-) : X - R
(R is the real line) is the payoff function of player i € I; X = [],.; X; is the set of strategy profiles,
x = (x1,...,2,) € X is a strategy profile and z; € X; C RPi is the strategy selected by player
i € I; for any non-empty subset K of I and strategy profile x = (z1,...,x,), we use the notation
T = (K, rp\K), where 1xx € Xg = [[;cp Xi and 2 g = HieI\K X;. Particularly, when K = {i},
that is, a singleton, the counter coalition I \ K = I\ i is denoted by I \ 7; the strategy profile x is
denoted by (z;,xy\;). The payoff functions f;(), i € I, are such that the more the better.

Definition 1.1. A strategy profile * = (Z1,...,%,) € X is said to be a Berge Equilibrium
(BE) of the game G if for all i € I, yp\; € X

fi(@i, ypa) < fi(@). (1.1)

Condition (1.1) means that in BE each player’s payoff function is maximized by the coalition
of all the other players I \ i (in some publications BE is referred to as simple Berge equilibrium or
Berge-Zhukovskiy equilibrium).
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Condition (1.1) can be equivalently formulated as follows:

(Zi,ypg) = fi(z), 1€l

y]\r?ea))((]\i fz(xz y[\z) fz(x) v

To help the reader understand BE, let us compare it to the well-known concept of Nash equilibrium
that is the most used equilibrium in normal form games [33,34].

Definition 1.2. A strategy profile = (z1,...,7,) € X is said to be a Nash Equilibrium
(NE) of the game G if for alli € I, y; € X;

filyi,Tpa) < fi(®@). (1.2)

Condition (1.2) means that in NE it is not beneficial to any player to unilaterally deviate from
NE. Indeed, if player ¢ deviates from Z; to another strategy y; € X;, while the other players remain
in their equilibrium strategy, his payoff will remain the same or decrease. That is why NE is said to
be a self-enforcing equilibrium. Once the players are in NE, no player has an incentive to unilaterally
deviate from it. Let us give two examples for illustration.

Example 1.1. Consider the following Prisoner’s Dilemma game:

RP cP
RP ((20,20) (5,25)
A= cop <(25,5) (10,10))' (13)

This is a Prisoner’s Dilemma game where two firms selling the same product are competing for
market share, they can stick to a regular price or cut the price. The two players are the row player
and the column player, each of them has two strategies, regular price (RP) and cut down price
(CP). The strategies of the row player are displayed on the left side of the payoff matrix A, while
the strategies of the column player are displayed at the top of the matrix A. The first number in each
entry of the matrix A represents the payoff of the row player, while the second number represents
the payoff of the column player. For instance, if the players select the strategy profile (RP,CP),
i.e. the corresponding entry in the matrix A is (5,25), then the row player receives 5 units and the
column player receives 25 units.

It is easy to see that the strategy profile (RP, RP) is a BE with the payoffs (20,20). Indeed, if
the row player unilaterally deviates from RP to C'P, the column player’s payoff drops from 20 to 5,
while if the column player unilaterally deviates from RP to C'P, the row player’s payoff drops from
20 to 5. Thus, at (RP, RP) both players maximize each other’s payoff. The situation (CP,CP) is
an NE of the game (1.3). Indeed, if either of the players unilaterally deviates from CP, his own
payoff drops from 10 to 5. Thus, once the two players are in (C P, CP), none of them will have an
incentive to unilaterally deviate from CP. Finally, note that if the players (the two firms) stay in
the price cutting strategy profile NE (C' P, C'P), one of the players will have to leave the market: the
one whose unit cost equals the current price first. Therefore, BE seems more suitable for both firms
if they want to survive.

Example 1.2. Imagine that in a market there are three sellers: a man (husband), his wife and
their son. At their disposal they have resources Xp, X,, and X, respectively, and for gaining some
profit they allocate part of their resources x; € X; (i = h,w, s) to each family member. Which of
these values will ensure that every one of them gets the greatest (possible) profit (revenues—cost)
Pi(xf, x5, 2%) (i = h,w,s)? To date, the NE concept “reigns” in such decision problems or game
situations. According to Definition 1.2, a strategy profile 2° = (7,2, %) is a Nash equilibrium if
the following three equalities are satisfied:

ma Py (w1, 06,25) = Pa(af, 0, 05),
H;aXPw({EZ,.%'w,ng) = Pw(x?uxfuaxg)’
w

max Py(xf, 25, xs) = Py(af, x5, x5).
S
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Here, clearly “selfish nature” appears because everyone tends to increase (maximize) his/her profit
only, ignoring the interests of other family members. The concept of BE put forward in Berge’s
book is the opposite of Nash equilibrium. According to Definition 1.1, BE at 28 = (28,25, 28) is
characterized by the following three equalities:

max Ph(xﬁ7xwaxs) = Ph(xﬁ7x57st)7

LTw,Ts

gaiwa(xh,wﬁ,xs) = Py(zf, ), 22),
s

max Ph(xh,xw,st) = Ps(xf,xg,xf)

Th,Tw

These very equalities realize the Golden Rule that states “do to others as you would like them to do
to you”. Here, each family member wants more profit, therefore, he/she has to act in such a way as
to maximize the profit of the other members so that the other members act in the same way and
maximize his profit. Thus, the husband, by selecting x;, = xf, does his best to maximize the profit
of the wife and son, P, and P, respectively, as it appears in the last two equalities

B B B) B B B)

B B
max Py(zh, xy,xs) = Py(xp , xy,xy) and max Py(xh, xw, g ) = Ps(z,), 20y, T
hsts h>Lw

The wife and the son, by selecting z,, = ¥2 and x, = 25, respectively, reciprocate by maximizing

s

the husband’s profit, P, as it appears in the first equality

max Ph(xf,xw,xs) = Ph(xf,xf,xf)

Zw,Ts

The wife acts in exactly the same way. By selecting z,, = 22, she maximizes the profit of the

husband and the son, P, and P;, respectively, as evidenced by the first and last equalities
B B)

B B
max P, (v}, , Tw, Ts) = Pp(zy , Ty, T
Tw,Ts Thow

and  max Py(xp, Ty, 20) = Ps(zB, 28, 2B)

Reciprocating, both the husband and the son maximize the wife’s profit by selecting zp = xf and

Ty = xSB, respectively, as it clearly appears in the second equality

ina%XPw(xh,xg,xs) = Py(zB, 28 5.
hyls
A similar reasoning shows that the son maximizes the profit of both the husband and the wife, while
the husband and the wife maximize the son’s profit when all of them select as their strategy BE
B = (xf, 2B, 28). Thus, in BE each of the members maximizes the profit of the other two members
and enjoys the same behavior from the other two members, which means that BE fully realizes or
characterizes the Golden Rule. We later come back to the Golden Rule.

Comparisons between BE and NE appear in almost all publications related to BE (see, for
example, [10,12,22, 54]).

Later, K. S. Vaisman [44] discovered that BE may not satisfy the individual rationality condition,
that is, in BE some players may get a payoff that is less than what they can guarantee (maximin
value or security level) for themselves, whatever the other players in I\ i do. The security level for

a player 7 in [ is defined as follows:

a; = max min fi(x;,zn).
T €Xs x\i€X\; \

The following example by K.S. Vaisman’s [45] illustrates the individual rationality problem in BE.

Example 1.3. Assume that in the game G there are two players, I = {1, 2}, the strategy sets
are X7 = (—o0,400) and Xy = [—1,1], and the payoff functions are

fl(xl,.%'g) = —2%% + 2x129 + (E%, fg(.%'l,.%'g) = —(.%'1 — 1)2 + 5.
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Let us verify that 2° = (1,1) is a BE of this game. We have
fiel wo) = fi(l,ms) = =4 + 229 + 73, @y € Xo = [-1,1].
32f1($1113,.%'2)

Ox3
boundary point x5 = 2¥ = 1. We also have

As

= 2 > 0, this function is strictly convex, therefore, it reaches its maximum at the

fg(.%'l,.’EQB) = fg(.%'l, 1) = —(.%'1 — 1)2 +5 x1€ X = (—OO,—i—OO).

As —(x1 — 1)? < 0, this function reaches its maximum at x; = 2P = 1. Consequently, fi(x1,z%)
reaches its maximum at x1 = 2 = 1. Thus, we have the relations

%@Xfl(xixz) = fi(a?,2P), H;?Xh(xhxf) = fola?,2P),

which means #” = (1,1) is a BE. Let us now check whether 8 = (1,1) satisfies the individual
rationality condition. We have

fl(xfg,xg) =—1, a3 = max min f(z1,22) =0.
r1€X1 T2€X2

This implies that f; (2P, 22) < a;. Therefore, the individual rationality condition is not satisfied for
the BE z¥ = (1,1).

Consequently, K.S. Vaisman [44]| proposed the following new definition of BE to eliminate this
drawback.

Definition 1.3. A strategy profile * = (z1,...,%,) € X is said to be a Berge—Vaisman
Equilibrium (BVE) of the game G if for all i € T

fi@i,ypa) < fi(@), yne € Xpe, o < fi(@).

It is important to note that in some games all or some of the maximin values «;, ¢ € I, may not
exist (especially in linear-quadratic games). In this case, the corresponding individual rationality
conditions in BVE can be dropped. Moreover, let

.= max min f;(x;, xn; 1€ 1.
Bi II\¢€X1\¢£B¢€XifZ( 5 I\z)a

The following result is a sufficient practical condition for the individual rationality of BVE.

Proposition 1.1 (see [27]). Suppose the following inequalities are satisfied
a; < /3i7 (ASWE
Then the individual rationality condition of BVE is satisfied.

Note that this result appeared later in [10].
§ 2. Different Interpretations of BE

BE is a rich concept of solution for normal form games. It can be interpreted in many ways.
From the published literature, at least three interpretations have been put forward: the moral Golden
Rule, capturing cooperation and mutual support in non-cooperative settings and altruism. Each of
them can be used to handle games related to different contexts of socio-economic interaction. These
interpretations show also that the scope of application of BE could be large and cover socio-economic
interactions where NE may not be appropriate. In the following three sections we explain the three
interpretations.

84



§2.1. The Moral Golden Rule Interpretation

Guseinov et al. [22] provide a philosophical and moral basis and justification of BE. In fact, BE
can be seen as a straightforward expression of one of the most ancient rules of social interaction, the
moral Golden Rule. This rule states that “do unto others as you would have them do unto you” or
“you should treat people the way you would like other people to treat you” or “and just as you want
men to do to you, you also do to them likewise” (Gospel of Luke 6:31). Written evidence of the
existence of this rule could be traced back to the period 705-681 B.C.; it is also mentioned and given
as a guidance for conduct and interaction in all major religions such as Christianity, Islam, Judaism,
Buddhism and Confucianism (see [22]). In contemporary language, this rule can be said to express
the principle of Positive Reciprocation in human behavior. The moral Golden Rule interpretation
of BE was introduced recently in [62] and developed extensively by Zhukovskiy and his colleagues
and students. Its mathematical foundations can be found in [57] and [62,68].

Let us explain how BE is a mathematical expression of the moral Golden Rule through Defini-
tion 1.1. We start by illustrating the rule through Example 1.1. As mentioned above, the strategy
profile (RP, RP) is a BE. It is easy to see that in this strategy profile both players follow the moral
Golden Rule. Indeed, the row player does what he would like the column player to do to him,
maximize his payoff. Indeed, by playing RP, the row player allows the column player to get the
maximum payoff of 20 units. Similarly, by playing RP, the column player does what he would like
the row player to do to him, maximize his payoff. Indeed, by selecting the strategy RP, the column
player allows the row player to get the maximum payoff of 20 units. Clearly, if one of the players
does not follow the moral Golden Rule, by deviating to the strategy C'P, the other player gets the
worst payoff of the game, 5 units.

Now we turn to the general case. Consider BE in Definition 1.1. Without loss of generality,
select any two players i, j € I. We show that in BE both ¢ and j follow the moral Golden Rule with
respect to each other, and thereafter all players follow the moral Golden Rule with respect to each
other. Consider player i. From (1.1), it is clear that all the other players in I \ ¢ do their best to
player i by selecting the bundle of strategies Z\;, as in BE 7, he/she gets the maximum payoff f;(z).
Any deviation of the players in I\ i from their BE bundle of strategies z; would make player 4’s
payoff worse or at most stay at the same level as f;(Z). In other words, the remaining players in
I'\ i behave as player i would like them to behave towards him. This means that 50 % of the moral
Golden Rule is satisfied in the game G. For the rule to be completely satisfied, the player ¢ should
also behave according to the moral Golden Rule towards all the other remaining players in I\ i, i.e.
do to them what they would like him to do to them (maximize their payoffs). Take player j, who is
also in the set of the remaining players I \ i. Now, considering (1.1) with respect to player j, we get

fi(@jung) < f3(@) forall ypj; € Xp

Here also it is clear that the remaining players in I'\ j are doing what the player j would like them to
do for him, i.e. maximizing his payoff by adopting their BE bundle of strategies ¥, ;. Any deviation
of players in I\ j from Zp; would worsen player j’s payoff or at best keep it at the same level
as f;j(z). Therefore, all the players in I\ j are following the moral Golden Rule in their behavior
towards player j. As player ¢ is also in the set I\ j, he is also following the moral Golden Rule
towards player j. Therefore, player ¢ is implementing the moral Golden rule towards all the other
players in I\ i. Thus, all players observe the moral Golden Rule with respect to each other.

From economic, social and global points of view, adopting the moral Golden Rule behavior
would solve many long-lasting conflicts and problems at local and global levels. And solutions
reached through the moral Golden Rule would be more stable than those reached through NE, as
in BE all parties act in such a way as to maximize the satisfaction of the other parties. The moral
Golden Rule includes the well-known win-win situation.

Van Dam [49] has discussed the compatibility of the Golden Rule and rationality. He concluded
that the former and the latter are consistent in two player games, while this may not occur in games
with more than two players. He formalized the Golden Rule in a symmetric normal form game,
which is a special case of Definition 1.1. The drawbacks of the Golden Rule pointed out by Van
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Dam are expressed in terms of BE in Example 1.3 (inconsistency with rationality) and Section 3
(existence).

§ 2.2. Capturing Cooperation and Mutual Support in Non-Cooperation Setting

Efforts to provide a rational justification for BE in game theory are made in [10,12,32,38]. BE
provides a compelling model of cooperation in social dilemmas, including the Prisoner’s Dilemma
and n-Player Prisoner’s Dilemma games [10]. Unlike zero-sum games, normal form games require
cooperation or coordination to reach acceptable solutions. For instance, when a game has several
NEs, it is not always clear for all the players which NE will be played; some pre-play consultations
must be conducted, otherwise, players may select strategies from different NEs or even from non-NE
strategy profiles, and the game ends up in a strategy profile that is not an NE at all. Similarly, when
a game has no NE and it is a one-shot game, it is not clear which strategy profile the players will
select, and some form of cooperation must take place to avoid worse scenarios. Thus, normal form
games are generally not 100 % non-cooperative. In fact, when players see that it is in their interest to
cooperate, they do. This means that players may rationally resort to cooperation in non-cooperative
settings. BE is an equilibrium concept that captures a form of cooperation within the framework
of normal form games. The first hint at this fact appeared in [36]. It was further investigated and
justified in the above-mentioned series of works.

The main principle put forward is mutual support among players. Courtois et al. [12] contend
that in zero-sum games players play NE, that is, they do not cooperate; however, in non-zero-sum
games players do not always play Nash equilibrium, and cooperation may take place depending on
the context they are in and the society in which they live. They also adopt different behavior rules
depending on which type of game they are playing. For instance, meta-analysis of experimental
results shows that on average, about 50 % of subjects cooperate in the Prisoner’s Dilemma game
[9,29,40]. Similar anomalies related to Nash’s predictions have been documented in studies of
the Chicken game. The behavioral hypothesis put forward is that the choice in many interactive
situations requires that each player make the welfare of the others a key feature of his or her
reasoning. The cooperation among players takes the form of reciprocation or mutual support. The
above-mentioned hypothesis is also supported by the Nobel Prize winner Sen [42] as quoted by Musy
et al. [32]: “individuals who maximize their personal interests may adopt a mutual support behavior
since they consider the goals of others in recognizing the nature of the mutual interdependence of the
results achieved by each of them. Sen [41] adds that, by considering these interactions and adopting
a different behavior, everyone eventually finds themselves in a better situation regarding their own
objective; this modification of the behavior can then be justified.”

Let us illustrate the mutual support principle using the Prisoner’s Dilemma game of Example 1.1.
In this game, the strategy profile (RP, RP) is a BE, while the strategy profile (CP,CP) is an NE.
The outcome of the game depends on what type of behavior the players adopt. If the players adopt
individualistic behavior, they end up in (C'P,CP), with payoffs (10,10). However, if they adopt
mutual support behavior, they will end up in (RP, RP), with payoffs (20, 20), which are double of
the payoffs yielded by the strategy profile (CP,CP). Thus, in (RP, RP) the players support each
other for a better reward. This behavior is in line with Sen’s statement above. The players reach a
cooperative outcome in no-cooperative settings through mutual support.

§ 2.3. Interpretation Based on Altruism

The interpretation of BE based on altruism appeared in [10]. The authors state that players
are invariably motivated to maximize their expected utilities in any situations in which they find
themselves, but that these expected utilities are not necessarily individualistic — they may be altru-
istic, cooperative, competitive, or equality-seeking, depending on the psychological characteristics
of the decision maker and the circumstances of the social interaction. Then they show that Berge
equilibria arise in circumstances in which utility maximizing players are motivated by the altruistic
social value orientation. Indeed, in BE each player selects a strategy that is individually rational and
maximizes the payoff of the others, ignoring the maximization of his own payoff, which is a form of
altruism. Thus, BE can be selected by players in a game when all of them are motivated by altruism.
However, if only part of players is altruistic and the other part is individualistic, altruistic players
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may lose. This is in line with the very nature of altruism as being altruistic is accepting or being
ready to give without compensation, especially in the short term. Colman et al. [10] argued that
BE may also arise because of coordination in situations of common interest games. The altruistic
interpretation of BE is also developed in the framework of Bertrand Duopoly model in [6].

Let us illustrate the altruistic interpretation of BE by the Prisoner’s Dilemma game (1.3). If
both row and column players are motivated by altruism in their strategy selection processes, both
would select the BE strategy RP. Indeed, if the row player selects the non BE strategy C'P, the
game would end up in one of the two outcomes: (C'P, RP) with payoffs (25,5) if the column player
selects the strategy RP or (C'P,CP) with payoffs (10, 10) if the column player selects C'P as well. In
the first outcome, the column player gets 5 units, the worst outcome in the game, and in the second
outcome he/she gets only 10 units. In both cases the column player does not get the maximum
payoff he can get in BE, 20 units. Consequently, being motivated by altruism, the row player must
play the BE strategy RP. A similar reasoning shows that being motivated by altruism, the column
player must play the BE strategy RP. Thus, when both players are motivated by altruism in the
strategy selection process, they naturally and rationally converge to BE.

As mentioned above, if part of the players is not motivated by altruism, BE may not be selected.
For instance, in the Prisoner’s Dilemma game (1.3), if the row player, by altruism, adopts the BE
strategy RP, while the other player, being individualistic, adopts the strategy C P, the payoffs are
(5,25), that is the row player (altruist) receives the worst payoff in the game, 5 units, while the
column player (the individualist) receives the highest payoff of the game, 25 units.

§ 2.4. Properties of BE

Besides the previous three different interpretations, BE has many properties that make it in-
teresting and suitable in applications. The first is that it may exist in games where NE does not
exist, hence, players can use it as a solution in such games. The second is that in many cases it
yields a payoff that is better than in NE for all players (see Section 5 and the Prisoner’s Dilemma,
game (1.3)). The third is that under reasonable conditions, if the set of BEs is non-empty, there
exists a BE that is Pareto optimal. The properties of BEs are discussed in [27,44,45,48]. However,
finding and/or computing BE is more difficult than finding and/or computing NE as we will see in
Sections 3 and 4.

§ 3. Existence and Determination of BE

In this section, we review some studies on the problem of existence and determination of BE.
Establishing sufficient conditions for the existence of BE has received a great deal of attention in
the literature, while works on constructing and developing numerical methods and procedures for its
determination and computation are scarce. After the landmark thesis of Vaisman [45], Larbani and
his student Fariza Krim carried out another landmark study of BE in [26] and [25]. They conducted
an in-depth and comprehensive study of BE, including its properties, existence results using fixed
point theorems, and methods of effective computation of BE in static non-linear and linear quadratic
n-person games, as well as non-linear and linear-quadratic differential games. Only a small part of
these results is published in [26]; the remaining part will be published soon in journals. We mention
some of them below.

§3.1. The Problem of BE Existence

The problem of existence of BE is a challenging one as common sufficient conditions for the
existence of NE, such as convexity and compactness of strategy sets, continuity of payoff functions
and concavity of these functions with respect to strategies of players are not sufficient for the existence
of BE. To illustrate the difficulty of BE existence problem, many related publications that appeared
in international standard journals involve significant mistakes, as we will discuss below. BE existence
has been investigated in most types of normal form games. We will present the existing results for
each type of game. Basically, researchers use the same tools as those used for establishing the
existence of NE, but with some significant changes or adjustments.

1. BE in Two Person Games. The first work on BE in two-person games appeared in
[10,19,27]. The existence of BE in bimatrix games has been studied in simple cases involving two
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strategies for each player, generally, for illustration and justification of the rationale behind BE.
Without being exhaustive, we mention [10,12,32]. In the general case of two-person games, it
has been proven that BE is just a NE of the game obtained from the initial game by permutation
(or exchange) of the payoff functions of players [19]. Therefore, BE existence conditions can be
established via NE’s. However, in n-person games, it is not the case as we discuss below.

2. BE in n-Person Games. As mentioned above, establishing general sufficient existence
conditions for BE is a difficult task. The first results on the existence of BE were established for
differential games in [17,18] (stochastic case) and [39]. Later Dinovsky [15] established some existence
results for BE in static games. As stated above, Vaisman [45] discovered that BE may not satisfy
the individual rationality condition; therefore, he suggested adding this condition to Definition 1.1,
which led to a new BE definition, Definition 1.3. Vaisman [44,45] established the existence of BVE in
two-person static games and three-person differential games with linear-quadratic payoff functions.
Vaisman'’s results on BE appear also in [51]|. His doctoral thesis [45] is the first landmark in the study
of BE. It is an in-depth study of BVE of three player static and differential linear-quadratic games.
Existence conditions are formulated in terms of properties of the matrices and vectors involved in
the payoffs.

In [57], the problem of determination of BE is transformed into the problem of finding a saddle
point as follows. Consider the following functions:

ei(z,y) = fi(zi,yp) — filz) forall (z,y) € X x X, i€ [,
p(x,y) = max @;(z,y). (3.1)
i€l
Next, the following two-person zero-sum game is associated with the initial game G:
Gz = <I = {L 2}a {Xa Y = X}a Qp(x’ y)>

A strategy profile (z%,9%) € X x X is said to be a saddle point of the function o(x,y) (or Nash
equilibrium of the game G5), if it satisfies the following relationship:

e(2%y) < (2, y°) < p(z,y°) for all (z,y) € X x X.

Proposition 3.1 (see [57]). If (2°,4°) € X x X is a saddle point of the function ¢(x,y),
then 2° is a BE of the initial game G.

Proof. Indeed, if (z° y") € X x X is a saddle point of the function ¢(z,y), then
o’ y) <% y°) <ey’y°) =0 forall ye X.
Hence,
o(x%,y) <0 forall ye X,
which means
0i(x% y) < 1) < r°,y°) =0 forallye X and i€ I.
This implies
fila?,ypg) < fi(a®) forall yp; € Xpy, i€l

That is, 2¥ is a BE of the game G. O

Thus, the problem of determining BE of the game G is transformed into the problem of deter-
mining a saddle point of the function ¢(z,y). In [57], it has been established that the set of BEs of
the game G may be internally unstable in the sense that a given BE may be dominated by another
BE. Let XB be the set of all BEs of G. Let 2% and 252 be in XB. We say that 27" dominates 252
if

fi@P) < fi@P), i=1,...n.

The following example illustrates the internal instability of X? [57].
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Example 3.1. Consider the game G where I = {1,2}, X; = X9 = [—1,1] and
fi(wr,wa) = =25 4 21w, fowy, w2) = —27 + 27179,

One can easily verify that X? = {288 = (3,8),8 € [~1,1]}. Thus, the set of all BEs is infinite.
Let us now consider two particular BEs, namely, (0,0) and (1,1) obtained for § = 0 and 8 = 1,
respectively. Then the payoffs are f1(0,0) = 0, f2(0,0) = 0 for the BE (0,0) and fi(1,1) = 1,
f2(1,1) =1 for the BE (1,1). Clearly, f;(0,0) < fi(1,1),7 = 1,2, that is, the BE (1,1) dominates
the BE (0,0). Thus, when there are multiple BEs, it is advised to select a non-dominated BE from
the set of all BEs. Such BE can be determined using an extension of the saddle point approach
presented above and the notion of Pareto optimality as follows from [57].

Proposition 3.2. The set X? of all BEs of the game G is compact if:
(1) the payoff functions fi(xz), i =1,...,n, are continuous over X;
(2) the strategy sets X;, i =1,...,n, are compact.

Let us now recall the definition of Pareto optimality. A BE z? of the game G is said to be Pareto
optimal (non-dominated) with respect to XB if for all z € XP the system of inequalities

fl(xB) <fl(x)? Z:1,,TL,

with at least one strict inequality is impossible. It is well-known that if the maximum max > f;(x)
r€XB e

is reached at some BE z?, then 2” is Pareto optimal with respect to X?. Using this result and
Proposition 3.2, a sufficient condition for the existence of a Pareto optimal BE (with respect to X7)
can be established. First, along with the functions (3.1), consider the following functions:

ona1(z,y) =D filz) =D fi(y) for all (x,y) € X x X,

el iel
o(z,y) = max ¢;(z,y) for all (z,y) € X x X.
i=1,...,n+1

Proposition3.3. If (2°4°) € X x X is a saddle point of the function, then x° is a Pareto
optimal BE of the game G.

The drawback of the saddle point approach is that the functions ¢(z,y) and ¢(x,y) are generally
not differentiable, which makes it difficult to use the well-known numerical methods of saddle point
determination that use derivatives.

For games with linear-quadratic payoff functions, explicit forms of BE were obtained in Vaisman
[45] and Belskikh et al. [6]. As an illustration, we consider the game G where I = {1,2}, X; = R™
and

fi(z1,22) = 2] A1y + 22 Brzs + 25,C 29 + 207 21 + 27 20,
fo(z1,22) = 2 Agxy + 22 Boxo + 25,Coxe + 2abx1 + 2chxo,

where the apostrophe means the transposition operation, A; is an n; X nq square matrix, C; is an
ng X ng square matrix, B; is an ni X ng matrix, a; is an ni-vector and ¢; is an no-vector for i = 1, 2.
The notation A > 0 (A < 0) means that the quadratic form 2’ Az is positive (negative) definite. Let
us introduce the following determinant related conditions:

det[Cy — Bj A5 By # 0, (3.2)
det[Ay — 131] 0, (3.3)
det[Cy — B # (3.4)
det[A; — BlC 132] ;A 0. (3.5)

Then we have the following table for the existence of BE and NE [6].
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Table 1. Explicit Form of BE in Two-Person Linear-Quadratic Games

Only one of the Equilibria exists BE | NE
A1 >0 A >0 C1 <0 (3.2) Yes | No VO3, By, a;, ¢;
Ay <0 C1 <0 | Cy>0 (3.3) Yes | No VA1, B;,a;i,c
A1 <0 | A3 >0 Oy <0 (3.4) No | Yes | VC4, Bj,ai,c¢;
A <0 Ci>0|Cy<0 (35) No | Yes VAsy, B;, a;, C;
Neither BE nor NE Exist
A1 >0 | A3 >0 No | No VB;,C;, a4, ¢
A >0 Cy >0 No | No | VAy, Co, B, a;, ¢
A2 >0 CQ >0 No No VAl,Cl,Bl',ai,Ci
Ci>0|Cy>0 No | No | VA, As, B;, a;, ¢
Both BE and NE Exist
A1 <0 | A <0 | Ci<0|Cy<0 (3.2) and (3.4) Yes | Yes VB;,a;,c;
A1 <0 | A3 <0 | C1 <0 ] Cy<0](3.3) and (3.5) | Yes | Yes VB;, a;, ¢;

Moreover, when BE 28 = (28, 28) exists, its explicit form can be of two types.
a) If (3.2) is true, then
.%'IB = —A2_1B2[Cl — BiA;lBQ]il(BiAglag — Cl) — A;lag,
.%'QB = [Cl - BiA;lBQ]il(BiAglag — Cl).

b) If (3.3) is true, then
xP = [Ay — BoO7 ' By Y (BoC ey — as),
1‘2B = —Cl_lBi[AQ — BQCl_lBH_l(BQCl_lcQ — a1) — Cl_lcl.

When NE z¢ = (2§, z§) exists, its explicit form can be of two types.
c) If (3.4) is true, then

2 = —A7'B[Cy — B4AT By N (BLAT a1 — ¢3) — AT lay,
2§ = [Cy — BYLAT By H(BYAT \ay — c9).

d) If (3.5) is true, then
xi = [Al — Blcngé]*l(Bl(JQ_lcg — al),
1‘5 = —C{lBé[Al — BnglBé]*l(Bng_lcg — al) — 02_102.

In [25] the following more general n-person games with linear-quadratic payoff functions are
studied:

Gro = (I.{Xi}ier, {fi(z) = o' Ajz + bz }ier),

where z = (x1,...,2,), ; € X; C R™, the matrices A; and the vectors b;, i = 1,...,n, are of
corresponding dimensions. Explicit forms of BE are given using a matrix partitioning approach.
Both the constrained and unconstrained strategy sets cases are investigated.

General sufficient conditions for BE existence in n-person static games were established in [26]
using the Fan minimax inequality and the Kakutani [23] fixed point theorem. Let us briefly present
the two approaches. Consider the following real-valued function:

H(z,y) = Z [filzi, o) — fi(z)], (3.6)
iel
where z € X and y € [] X1 ;. We have the following sufficient condition for the existence of BE.
iel
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Lemma 3.1. If a strategy profile T € X satisfies the inequality
H(z,y) <0 forall ye X,
then it is a BE of the game G.

Proof. Assume T € X satisfies the inequality of Lemma 3.1. Consider a player ¢ € I. Then for
each j € I such that j # i let yp; = Tp\;, and leave yp\; free in Xp; in the inequality of Lemma 3.1
and (3.6), then we get

H(E,§) = i@, Grg) — (@ + > [f@Tn) — @] <0 for all g € X
jel\i

In the last inequality, all the terms equal zero except for the i-th term, then
fi(@i,ypi) — fi(@) <0 forall ypn; € Xp.

Since i is arbitrarily selected, T is a BE according to (1.1). O
Then we have the following existence theorem.

Theorem 3.1. Assume the following conditions are satisfied:

(1) the strategy sets X;, i € I, are nonempty, compact and convex;

(2) the function yp; — fi(wi,yr\;) is concave for all x; € X; and i € I;
(3) for all x € X there exists z € X such that

fi(a?i,t[\i) < fi(xi,z[\i) for all tl\i S Xl\ia 1€l
Then the game G has o BE.

The proof of Theorem 3.1 is based on Lemma 3.1 and the Fan minimax inequality.

The approach based on the function (3.6) is more practical that the approach using the functions
in (3.1) as finding a saddle point is generally more difficult than solving an inequality.

Moreover, the functions in (3.1) involve the “max” operator, which makes it difficult to use
numerical methods to find BE, as functions involving this operator are generally not differentiable.
In Section 3.2, we present a method for computing BE based on the function (3.6), Lemma 3.1 and
Theorem 3.1.

Another approach to establishing the existence of BE is to use fixed point theorems. This
approach was first developed in [27] as follows. First the following correspondence is constructed.
Let x € X define the correspondences

)

Fi(x) = {z € X | fi(wi,2zpni) = max fi(xi,y[\i)} forallz € X, i e,
Yi€Xni
F(z) = (| Fi(z) for all z € X.
el

Lemma 3.2. If a strategy profile T € X is a fized point of the correspondence x — F(x), that
is, T € F(T), then T is a BE of the game G.

The existence of BE is established under the conditions of Theorem 3.1.

Another approach for BE existence was developed in Krim [25] based on Brouwer’s fixed point
theorem. This approach is more practical than the correspondence fixed point approach as there are
effective numerical methods for finding fixed points of ordinary functions.

In a series of papers Abalo and Kostreva [1-5] published BE existence results for games with an
infinite number of players, abstract strategy spaces and weak compactness and continuity conditions
using the following condition.
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The set

Arg max(z;) = {zm € Xpy | filenzng) = max f@m,ym)} (3.7)
Y E€Xr\q

is a singleton for each i € I and z; € X;.

In 28] and [36], it has been established that condition (3.7) is not sufficient to prove the existence
of BE; therefore, all the existence theorems stated in the Abalo and Kostreva series of papers
mentioned above are invalid, and a correction of these theorems is proposed. It is important to
know that a condition similar to (3.7) works well for the existence of NE, but (3.7) does not work
for BE. The same conclusion can be drawn on existence theorems of Radjef [39] as the condition
(3.7) was first used in this work.

To compare the difficulty of establishing the existence of BE with that of NE, a relationship
has been found between BE and NE. This relationship was first discovered in [27]; later it appeared
in [10] as Lemma 3.2, Theorem 3.1 and Corollary 1. Let us explain briefly this relationship. Consider
the game G. First, define the special set of permutations of the set of players I = {1,...,n},

Y ={o(") ! o(+) is a permutation of the set I such that o(i) # i, for all i € I}

It is the set of all permutations o(-) of the set of players I such that for each player i, o(i) # i for
all ¢ € I. ¥ is called the set of deranged permutations of I = {1,...,n}. Now consider the set of
games

GJ(_) = <I, {Xi}ie[, {fa(-)(x)}i€f> for all 0() €. (3.8)

For each o(-) € X, the game G, is obtained from the game G by permutation of the payoff
functions of players according to o(-). As o(i) # i, each player is assigned a new payoff function
different from his initial payoff function, but he/she keeps his strategy set.

Then the following relation between a BE of the game GG and NE of the games G,(.y,0(:) € ¥
in (3.8) has been established. Each BE of the game G is at the same time a NE of all the games in

the number of which 1s equal to the cardinality o ar =n or 1mstance, for
(3.8), th ber of which is equal to the cardinality of ¥, Card{>} 'z( . For i f

a game G with n = 4 players, Card{X} =9, there are 9 games of type (3 8) and for game G with
n = 5 players, Card{X} = 44, there are 44 games of type (3.8). Formally, we have the following
implication between BE and NE

r € XisaBEof G=xisaNEofall G,),0 €X.

In other words, denoting by BE(G) the sets of BEs of the initial game G' and by NE(G,(.)) the set
of NEs of the game G, o(+) € 3, the previous implication can be written as

BE(G) ¢ [] NE(Gu)).
()ex

This implication gives an idea about the relative difficulty of finding BE. It also implies that if one
of the games has no NE, the initial game G has no BE. Later, Pottier and Nessah [38] investigated
further this relationship between BE and NE.

Another interesting relationship between BE and NE has been established in [27] as follows.
Consider the n two-person games

Gy =T ={i, I\ i} {X:, Xp}, {fil2), D fula =1,...,n).

sel\i

That is, each G(;) is a game between player i with his/her initial set of strategies X; and payoff
function f;(z) against the coalition of the rest of players I \ i with the strategy set Xp; and the
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payoff function ) . N fs(x) consisting of the sum of the payoff functions of all players in 7\ i. Then
it is proved that

7z € X isa BE = 7 is NE for all games G(;),i € I.

In other words, denoting by NE(G;)) the set of NEs of the game G ;), i € I, the previous equivalence
can be written as

BE(G) = [ | NE(Gg).

el

Later, this relationship and the result appeared in [10] as Theorem 3.

Using the g-maximum inequality in [35], which is a generalization of the Fan minimax inequal-
ity, some sufficient conditions of BVE existence like Theorem 1 are established in [37]. Recently,
Deghdak [13] have established sufficient existence results of BE when payoff functions of players are
pseudo-continuous using the correspondence x — F'(z) of Lemma 2, without referring to [26] or [25].
Moreover, it is claimed that Deghdak [13] generalizes the existence results in [37] and [36], while
they generalize the results in [26] only, as in the previous works the Abalo and Kostreva approach
developed in the above-mentioned series of papers is discussed and existence results are based on
condition (3.6) not on the correspondence & — F(z) of Lemma 2. In [32], the following result is
presented as a theorem. Consider a player ¢ € I and his strategy z; € X;, one can define the best
support correspondence of players in for player I \ i by

BSi(z;) = {yl\i € Xp | filzi,yni) = max fi(mi7zl\z‘)}7
ZN\iEYT\:

which is like the correspondence z — F'(z) of Lemma 2. The graph GR(BS-)) of this correspondence
is a subset of the strategy profile set X; X X = X of the game GG. We get the relation

The set X of all BEs of the game G is characterized by the equality

XP = GR(BS;(")). (3.9)

el

In fact, this result is just an equivalent formulation of Definition 1.1 in terms of correspondences.
Indeed, Condition (1.1) of Definition 1.1 can be reformulated as follows:

T€ XisaBE < 7p; € BS(T;) for all i € I.

Therefore, it seems that stating that this result is a theorem is an overstatement; a proposition
or a lemma may be more appropriate, as it is similar to Lemma 3.2. Similarly, in the problem of
NE existence, the best response correspondence is used as a preliminary result in the proof of the
existence of Nash equilibrium by Kakutani [23] correspondence fixed point theorem [34]. In contrast,
a result related to the difficult problem of finding sufficient conditions for the non-emptiness of the
intersection in (3.9) in terms of properties of the strategy sets X; and payoff functions f;(z), i € I,
for the existence and computation of BE could be stated as a theorem.

The existence of mized strategy BE in an infinite game has been established in [57]. A game in
mixed strategies is associated to the initial game G in pure strategies as follows. Assume that the
strategy sets X;, i € I, are compact and the payoff functions f;(-), ¢ € I, are continuous, in the game
G. To each player ¢ € I a set of mixed strategies v; is associated. A mixed strategy v; of the player
i is a countable-additive, non-negative and normed on [0, 1] function with domain the set of Borel
o-algebra of subsets of the compact strategy set X;. In other words, v; is a probability measure on
his/her pure strategy set X; The strategy profile set {v(:)} consists of probability measures on the
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set X = [[;c; Xi, of the form v(-) = (v1(:),...,vn(-)), where v;(-) € {14}, i € I. Thanks to Fubini
theorem, for any continuous real-valued function g(z), with domain X, we have

glv] = /Xg(x)u(dx) - /Xl.../ng(x)yn(dxn)...yl(dxl) for all v € {v(-)},

where the order of the integrals can be changed. Particularly, the expected value of player ¢ € [ is
given by

filv] = / fi(z)v(dz) = / fi(x)vn(dxy,) .. .v1(dzy) for all v e {v(-)}.
X X3 Xn
To the initial pure strategy game G, the following mized strategy game is associated
G = (I {v} {filv]}ier)-
A mixed strategy profile v*(-) € {v} is said to be a BE of the game G if

max f;[v},vp ] = fi[v*] for all i € I,
[ZAVAN

where {vp\;} = {(v1,-..,¥i-1,Vi11,...,vs)}. Now consider the functions defined in (3.1), the follow-
ing zero-sum two-person game is introduced

C~7V2 = <I = {172}7{V}7 {u},cp[u, u]>7

where ¢y, u] = / o(x,y) v(dr)u(dy). A strategy profile (1°,u") € {v} x {u} is said to be a
XxX
saddle point of the function ¢[v,u] (or NE of the game Go) if it satisfies the relationship

[0, u] < o[, 1] < v, u’] for all (v,u) € {v} x {u}.

Proposition3.4. If (°,u%) € {v} x {u} is a saddle point of the function @[v,u] (or NE of
the game Gs), then v° is a mized strategy BE of the game G.

Thus, the existence of BE is a consequence of the Glicksberg [20] mixed strategies NE existence
theorem of a zero-sum two-person game. B

Let XB be the set of mixed strategy BE of the game G. Following the case of pure strategy
BE (Propositions 3.1 and 3.2), a theorem of existence of a Pareto optimal (with respect to XB and
{filv]}ier}) mixed strategy BE is proved in [57].

The investigation of the problem of existence of BE in games involving uncertainty in payoff
functions has been initiated in [47]. Almost all non-trivial decision problems in all human activ-
ities involve uncertainty. The quality of our decisions depends substantially on how we deal with
unknowns. In games, generally, uncertainty appears in the following different forms:

(1) uncertainty can appear as actions of persons or entities having their goals, but are not players
in the game, e.g., a government;

(2) uncertainty can reflect fuzzy knowledge of the players have of their own objectives or strate-
gies;

(3) uncertainty can appear when processes or quantities are not sufficiently studied or identified;

(4) uncertainty may arise in the process of collecting, processing and transmitting information.

Therefore, a great deal of research efforts is devoted to the construction of decision models that
incorporate uncertainty.

BE in games involving unknown parameters in the payoff functions (in the form f;(z,y), ¢ =
1,...,n, where y € Y is the unknown parameter) has been investigated for the first time in [45,47,
48,55,62-65,69, 71].

At the substantive level, the presence of uncertainty requires basically using BE and at the same
time considering any possible realization of the uncertainty to formalize concepts of solution of the
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following extension of the initial deterministic game G to normal form games under uncertainty of
the form

Gu = (I, {Xi}ier, Y, { fi(x,y) biel),

where y = (y1,...,yp) € Y is an unknown vector-parameter with range in ¥ C R and the remaining
parts are defined as in the initial game G. The parameter y affects all the players’ payoffs and only
its range is known to them; no information is available about its behavior. The game Gy was
introduced in [47] and further studied for NE in [59,60].

Two ways for dealing with normal form games involving uncertainty of type Gy are introduced:
the first one is based on the concept of saddle point analysis (balanced BE) [59], while the second
one is based on maximin principle analysis (guaranteed BE) [60]. Here the basic idea is simple.

The following two problems are derived from the game Gy: the game

Ty = (I, {X; }ier, {fi(z,y%) }ier),

where y° is fixed and the multi-criteria problem

Dy = (Y, {fi(«",y) }ier),

where P is fixed. Next, find a BE z? in the game Ty and a Slater minimum (Pareto weak) y*
with respect to the parameter value y of the problem I'y. A balanced BE of the game is defined
as the pair (27, {f;(2®,y%)}icr), where the players select their strategy from the BE 27 and their
guaranteed payoffs is f(zZ,y%) = (f1(zB,y%),..., fo(z®, ")), and the system of inequalities

fila®,y) < fizP,y®), i=1,..0m,
is impossible for all y € Y. Formally, we have the following definition.

Definition 3.1. A pair (EB,TS) € X x R™ (is said to be a Slater guaranteed balanced BE of
the game Gy if there is an uncertainty value 7° € Y such that:
(1) 78 is a BE of the deterministic game

(I AX:Yier {fi(z.7%) Yier),
that is,

foralli el max fi(@l ep,.7°) = fi(@",7%);
T E€XT\s

(2) the uncertainty value 7° is a Slater minimal (Pareto weak optimal) solution of the minimiza-
tion multiple criteria problem

<Y7 {f’l(fB7 y)}i61>7
that is, there is no uncertainty value y € Y such that the system of inequalities
fi(jB’y) <fi(EBagS) Viel

is satisfied;
(3) denote by {ZB,y%} the set of pairs of BE and corresponding uncertainty value that satisfy
conditions 1 and 2. Then there is no pair (z,y) € {Z2,7°} such that the system of inequalities

75 = (@2, 5%) < fila,y) Viel

is true.
Then 7?2 is called the Slater guaranteeing strategy profile and the value fs is called the guaranteed
payoff vector.
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We have the following Slater guaranteed balanced BE existence theorem in two-person games
when payoff functions are separated with respect to  and y in the game Gy, that is,

Gus = (I = 1,2,{X;}ier, {9i(%) + hi(y) bier)-
We have the following BE existence theorem.

Theorem 3.2. Assume the following conditions are satisfied in the game Gyg:

(1) X; and Y are compact, and X; is convezx for all i € I,

(2) real-valued functions g;, h; are continuous on X and Y, respectively, for all i € I;

(3) the function g;(x) is strictly concave with respect to x; (i,j = 1,2,j # i), the other variable
being constant (i € {1,2}).

Then there exists a Slater guaranteed balanced BE in the game Gysg.

By analogy with the maximin, in the value max mi}l;l f(x,y), the operator min is used in
rTEX YeE

mi}r/l fi(z,y) = filx] and the max operator is devoted to the construction of BE in the following
ye

deterministic game:

I3 = (I, {Xi}ier, { filz]}ier)-

Here one needs to recall some important result of operations research.

1. If f;(z,y) is continuous over X x Y, then f;[z] is continuous over X.

2. If, in addition to the continuity of f;(z,y) and the compactness of X, the set Y is convex and
fi(x,y) is strictly convex with respect to y for each z € X, then the vector function 2 — y®(z)
defined by

min f;(z,y) = fi(x,y(i)(x)) = filz] for all z € X
yey

is well-defined and continuous with respect to x.
Consider an extension of the game G to games in mixed strategies and with uncertainty of the
following form:

C~7VU = <I7 {V}v {N}7{fi[”7ﬂ]}iel>7

where {v}, {1}, {fi[v, u]}icsr are defined as in the game G and {u} represents the set of probability
distributions on the set Y. Definition 3.1 has been extended to the case of mixed strategies for the
game G;;. We have the following existence theorem of Slater guaranteed mixed strategy BE of the

game G;; [58].

Theorem 3.3. Assume that the sets X; and Y are compact and the function f;(z,y) is con-
tinuous on X XY, for alli € I. Then the game Gy has a Slater guaranteed mized strateqy BE.

Let us present an analog of maximin. For this purpose, consider the game
GS = <Ia {Xi}iela YX, {fz(xa y)}i€1>,

where I, {X;Yier, { fi(z, ) }ier are defined as in the game Gy and Y is the set of m-vector functions
z — y¥(x) with domain X and range Y, which are called uncertainties (informational strategies) in
the game Gg, and f;(z,y) = fi(z,y(x)) is the payoff function of player i € I. One shot of the game
G takes place as follows. The players simultaneously select their strategies x; € X;, ¢ € I. Thus,
a strategy profile z = (z1,...,2,) € X = X3 X ... x X, is obtained. Informational discrimination
of the players and additional informational uncertainty are proposed, as in a hierarchical game.
The first move from the players: they select their strategies x; € X;, ¢ € I, and inform the decision
maker (DM), the player responsible for selecting or constructing the uncertainty function. In the
second move, the DM selects or constructs the n uncertainties in the form of m-vector functions,
y® (x), i € I, and informs all the n players. And it is assumed that uncertainty is constructed in
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Figure 1. The way the game Gg takes place

such a way as to reduce maximally the payoff of each player individually. Using this information,
the players select a BE 28 € X.

Following this way of playing the game Gg, the players select such a “good” BE Z” from the
set of all BEs ¥ using the Slater (Pareto weak) maximization. By the way, as we have seen in
Example 3.1, the set of all BEs X7 is not internally stable: one may find two BE (1), () such that
one dominates the other, for instance,

fi(:v(l),y(:n(l)) > fi(x(Q),y(:B(z)) forall i¢el.

To eliminate this drawback, the Slater maximization is used to select non-dominated BE Z?. Such
a hierarchical decision making procedure is explained in the Figure 1.

The strictly guaranteed Berge equilibrium is constructed in three steps.

Step 1. To each player i € I associate a unique continuous vector-function z — y® (z) over X
such that

yey

Step 2. To the game Gy associate the following deterministic (without uncertainty) normal
form game T3, called Guarantee Game. Next, find BE 2 € X of the game I's; recall that BE is
characterized by the following relation:

B B -
a 105 | = Ji el
xl\r?e)}{(l\i fl[xz awl\z] fl[w ]a ¢

Step 3. From the set of all BEs 2 of the game I's select the maximal (in the vector sense) BE
7P, that is, find the Slater maximum (Pareto weak) strategy profile ZZ in the n-criteria optimization
problem

(XP {filz]}ier)-
In the case of Slater maximum, it is sufficient to determine Z” as follows:
max Z i filz] = Z a f;[7"),
el el
where a;, i € I, are such that a; > 0,4 € I, and ), a; > 0. We have the following theorem.
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Theorem 3.4. Assume that the following conditions are satisfied in the game Gij:

(1) the strategy sets {X;}ier are compact and the unknown parameter set Y is compact and
conver;

(2) payoff functions {fi(x,y)}ier are continuous over X XY and strictly convex with respect to
the parameter y over Y, for each r € X.

Then the game éij has a strong guaranteed mized strateqy BE.

Similar results can be found in [55], where the existence of BE is established for such games in
mixed strategies.

At an abstract level, BE has been analyzed using players’ preferences and lattice methods.
Mashchenko [31] has investigated BE in games where players’ payoff functions are not available. He
used preferences of players to characterize BE. Keskin and Saglam [24] analyzed the existence of
BE by lattice theoretical methods using the correspondence z — F'(x) of Lemma 2 and introduced
Berge modular games, then proved that BE set is a complete lattice.

As this literature review focuses on BE in static games, we only mention the most important
results on BE analysis in differential games without detailed comments. BE analysis in positional
differential games is one area that is extensively explored by Zhukovskiy and his team in Russia.
Gaidov [17,18] provided some results on the existence of BE in stochastic differential two-person and
n-person games. Boribekova and Jarkynbayev [8] investigated BE in differential-difference games
involving uncertainty. A BE existence result based on condition (3.7) above appeared in [39]. The
first work on BVE in differential games appeared in [44,66] investigated BVE in linear-quadratic
differential games. Then an in-depth study of BVE in linear-quadratic differential three person
games followed by Vaisman in his doctoral thesis [45]. Vaisman published his works in [44,72]. After
Vaisman’s early death at the age of 36, Zhukovskiy published the book [53] dedicated to Vaisman.
The approach used by Zhukovskiy’s team is based on the application of Lyapunov’s function in
differential games. BE is investigated as the Golden Rule in n-person differential positional games
in [70]. As an exception, a full chapter in the thesis [25], is devoted to the existence of BE n-
person non-linear and linear-quadratic open loop differential games; this work has been conducted
in Algeria.

For the last two years, V.I. Zhukovskiy and his students have been actively investigating BE
in feedback differential games (FDG) in the framework of N.N. Krasovky’s FDG mathematical
formalization. The specificity of BE with respect to FDG required considering the following three
factors. First, in their well-known counterexamples, A.I. Subbotin and A.F. Kononenko had to
somehow change and modernize the above-mentioned formalization (see the fundamental results
in [66]). Second, active use of the idea of “guide system” proposed by Krasovsky. Third, using
the Y.B. Germayer guaranteeing convolution max ©i(+) introduced in (3.1). The results of [68]

are based on these three factors. The existence and uniqueness of a BE is established for FDG
with separated dynamics. Further results on such games are obtained in [56,67,68|. Finally, using a
dynamic programming approach, BE in multi-step differential feedback games related to Cournot and
Bertrand oligopoly mathematical models has been investigated in the series of works [21,50,58,73].

§ 3.2. Determination and Computation of BE

Establishing sufficient conditions for the existence of a concept of equilibrium is an important
step towards its implementation in real-life situations, but this is not enough. If the determination
and/or computation of this equilibrium concept is not possible with existing methods and computer
processing power, such a concept cannot be useful for solving real-world problems. In this section,
we give an account of the publications related to BE determination and computation. Our review
reveals that there are interesting results, however, this research area is not well explored. Most of
the results are obtained in linear-quadratic static or differential games and in finite games.

As an exception, Larbani and his student Krim [25] developed numerical methods of BE deter-
mination and computation based on [26]. Many effective methods for computing BE in n-person
nonlinear and linear-quadratic infinite static n-person games are presented. A method of determi-
nation of BE based on the minimax Fan inequality is presented in [26] based on the function (3.6),

98



Lemma 3.1 and Theorem 3.1 as follows. Compute the value

0 = maxmin H (z,7).
max iy (z,9)

Let T be a solution related to the variable x to this problem. Then if § = 0, T is a BE of the
game G. If the conditions of Theorem 3.1 are satisfied, then § = 0. We have the general result. If
the strategy sets are compact and the payoff functions are continuous in the game G, the following
equivalence takes place

G hasa BE < § =0.

Here the well-known numerical methods of solving the maximin problem can be used to compute
the value 4. This result is used in [28,36,37]. A generalization of this method using the g-maximum
inequality [35] is presented in [37].

For games with linear-quadratic payoffs an explicit form of BE is computed (see also the Table 1
above and the following page) and in linear-quadratic differential games involving uncertainty in
payoffs [69]. Explicit forms of BE are obtained for Cournot oligopoly and Bertrand duopoly models
(see application Section 4 below) in [50,57,61].

e-BE is introduced in [30]. This concept is characterized by using a generative relation and a
procedure for its computation based on evolutionary multiobjective optimization algorithms with
illustrative examples. Corley and Kwain [11]| present an algorithm based on the notion of disap-
pointment matrix for computing all BVE in finite games with an illustration. Another algorithm
for finding BE in finite games is presented in [32], but without illustration. In [16], the concept of
meta-strategy is described that allows players to have different rationality types. This concept is the
basis of an evolutionary approach for BE detection that is illustrated by numerical examples. The
structure of BE is given in [48].

Computation of BE in differential games is being investigated by Zhukovskiy and his team.
Explicit forms of BE in linear-quadratic games are obtained in [45,51,53,54].

Here also, it is important to emphasize that computing BE is more difficult than computing NE,
and well-known methods of computing NE cannot be used directly to compute BE. Some significant
changes and/or adjustments must be made to adapt them to BE determination.

§ 4. Applications of BE

As BE is an equilibrium that reflects the moral Golden Rule, mutual support, cooperation and
altruism in normal form games, it has a great application potential in socio-economic interactions.
So far few publications on the application of BE have appeared. Only two BE applications are
known. Both are in economics, namely, on Cournot oligopoly and Bertrand duopoly models. The
former model appeared in [50,57,58,61], while the latter model appeared in [73] and [21]|. Explicit
forms of BE are computed and a comparison is made with NE. Note that in [58] and [73], Cournot
and Bertrand models are investigated in the framework of multi-step differential games. Let us give
some results as an illustration.

1. Cournot oligopoly model. (See [50,61]). Consider a market that is dominated by few
big firms producing the same product. It is assumed that these firms compete for the market share
and the price is determined by the law of demand and supply. Precisely, assume there are n firms
and I = {1,...,n} is the set of these firms. Let ¢; be the supplied quantity by the firm ¢ € I. In
oligopoly, the quantity g¢; is subjected to the following constraints:

where the inequality ¢; < [ means that the production capacity of the firms is limited, while
a < ¢; means that each firm must supply the market with a guaranteed minimum quantity « to
be admitted to the market (which is the case for example in electricity market). The quantity «
is generally imposed by the government; a firm that cannot supply this quantity is not allowed in
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the market. Next, we assume that the production cost of the quantity ¢; is a linear function of this
quantity for the firm ¢ € I, that is,

Cq; + da

where ¢ and d are constants and the same for all the firms. The price p is determined by the supply
and demand law depending on the supplied total quantity § =q; + ... + ¢,- It is assumed that the
price p is a linear function of the total supply g as follows:

p(a) =a— bq7

where a is the initial price, a positive constant and b is the elasticity of the price, a positive constant
as well. Thus, the revenue of firm ¢ € I from selling the quantity g; is

@i = (a=t9)gi=(a—bY g | ¢
J€el

and its profit (revenue—cost) is p(q)q; — (cd; + d) or

Trl(Qlaaqn): a_bij ql_(Cdl+d)
Jjel

Thus, we obtain the following normal form game for the Cournot oligopoly game

Geoor = (I ={1,...,n},{Qi = [, Bl}ier, {mi(q1, - - - n) }ier)-
We have the following explicit form of BE [58,61].

Proposition 4.1. If a > ¢, then the game Goor has a BE equilibrium ¢® = (¢f,...,q¢2)
where ¢ = a, and m;(¢®) = (a — c)a — bna? — d for all i € I.

A detailed comparison with NE shows that the payoffs (profits) of the firms can be better in BE
than in NE depending on the values of the constants n,a,b,c,a and . For instance, when a > ¢
and

a—c a—c
n(n+1)b sas (n+1)b <
the payoffs of all the firms at BE are larger than their payoffs at NE.

Further, explicit forms of BE are obtained in Cournot duopoly model (Firm 1 and Firm 2) involv-
ing uncertainty in the payoffs function ([61] and [22]) via approaches used to deal with uncertainty
in games of the form Gy . The uncertainty appears as a third firm that imports the same product
and sells it in the same market. The problem is that Firms 1 and 2 do not know the quantity y,
the entering Firm 3 will put into market, they just know its range y € (0, 00). Based on the form of
payoff functions of the Cournot model above, the profits of both functions are affected by the import
Firm 3 (its supply quantity, the unknown parameter y) as follows:

P(q1,q2,y) =la—blg1 + 2+ y)| ¢i — (cq; +d), i=1,2.

The parameter y appears in the total supplied quantity ¢1 + g2 + y = g. At the same time both
Firms 1 and 2 want to minimize the effect of the import Firm 3. This is considered in the payoff
functions of both firms as follows:

mi(q1,92,9) = Pi(q1,q2,y) — v, i=1,2.

Each of these payoff functions involve two criteria, P; is to be maximized and the effect of the
uncertainty y is to be minimized. The following game is obtained:

Georrv = (I = {1,2},{X; = (0,00) }ier, Y = (0,00),{mi(q1, 92, ¥) }ic1)-
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This game is a game under uncertainty of type Gy presented in Section 3. Using similar methods
to those used to solve Gy, explicit BE is constructed.

2. Bertrand Duopoly Model. (See [6,21,73]). In a different and more natural approach,
instead of the quantity supplied-based firm’s strategy in the Cournot model, Bertrand proposed
a model of competition in a market involving two firms producing the same product, duopoly, in
which the firm’s strategy is price-based. The game takes place as follows. Each firm i € I = {1,2}
announces its price p; > 0, a situation p = (p1, p2) is obtained. This price situation creates a demand
for the product of each firm. We assume that the demand is linear for both firms:

Q1(p) = q—lipr + lap2,  Q2(p) = q — lipz + lapy,

where ¢ is the initial demand, and l; and [5 are elasticity coefficients with respect to prices. Denoting
by a positive number ¢ the unit cost of the product, the profits of the firms are

fi(p) = g — lip1 + lap2](p1 — ¢),  fa(p) = [q — lup2 + lap1](p2 — ©).

As each ¢ € I firm rationally selects a unit price p; > ¢, the prices will vary in an interval of the
form (e, 8], with 8 being the maximum price that is the result of market equilibrium (when demand
equals supply). Thus, we obtain the following two-person normal form game for Bertrand duopoly:

Gppu = (I ={1,2},{P; = (¢, Bl}ier, { fi(p) }ier)-
We have the following explicit form of BE [6,21,61].
Proposition4.2. Ifly >y the game Gppy has a BE pB = (pP,p2) of the form
pt =B and pf = 3
and the two firms’ profits are
fip) = (o —1)(B =)+ [g+clla—1)](B—c), i =1,2.

Here also, a detailed comparison with NE shows that in some cases BE provides bigger profits
than NE for both firms depending on the values l1, 2, ¢, ¢, 3. For instance, when the relation

q+ cly
201 — Iy

O0<li<lyg<2L; and 5>

is satisfied, the payoffs of both firms at BE are larger than their payoffs at NE.

Further, similarly to Cournot duopoly, a Bertrand duopoly model involving uncertainty related
to import like Goorras above has been also investigated and explicit forms of BE are constructed
by Gorbatov and Zhukovskiy [21].

§ 5. Conclusion and Further Research

In this literature review, we have reviewed most of the published works on BE in static normal
form games. We can say that research on BE is gaining momentum as more scholars are attracted to
this equilibrium. Moreover, new interesting properties and application potential of BE are discovered,
especially, in the last five years (45 % of the publications directly related to BE). Indeed, we have
seen that BE is a rich concept of equilibrium, as it has many interpretations:

(i) it expresses the moral Golden Rule;

(ii) it captures mutual support and cooperation among players and

(iii) models altruistic behavior in games.

Thus, it is more suitable than NE in game situations or contexts where players behave according
to one of the types (i)—(iii). These behaviors are an integral part of socio-economic human interaction
besides the competitive or NE behavior. The literature review reveals that BE is accepted and
established as a well-grounded concept from game theory, social and philosophical points of view.
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From a mathematical perspective, BE analysis is well advanced, but not complete. More research
is needed in the following areas:

(a) finding simpler or more practical sufficient existence conditions of BE and/or BVE in n-person
non-linear games,

(b) investigating BE in finite games with mixed strategies (open area);

(c) investigating n-person games involving uncertainty of different types;

(d) developing more effective and efficient methods of determination and computation of BE in
all types of games and

(e) investigating BE in extensive form games (open area).

In what follows we provide some research problems related to BE existence and computation.

Problem 1. For the existence of BE, we have the following challenge: Consider the multi-valued
mapping (best support correspondence) of Lemma 3.2,

x — F(x)= ﬂfl(x), for all z € X.
el

Unlike the best response correspondence of NE, there is no guarantee that for BE F'(z) is nonempty
for all z € X, when the strategy sets are compact and the payoff functions are continuous. Con-
dition 3 of Theorem 3.1 is equivalent to the nonemptiness of F'(z). Moreover, it is an extremal
condition that may not be easy to verify. Under what additional conditions is the nonemptiness
of F(x) guaranteed or can be dropped in BE existence investigation? Note that in almost all the
publications on BE existence, it is just assumed that F'(z) is non-empty for all x € X, e.g., [13,24].
Problem 2. Let X and Z be two subsets of R™. Consider n real-valued functions f;(z,z2) :
XxZ—-R,iel={1,...,n}and the Y.B. Germayer convolution

olx,z) = max fi(z,2), (z,2)€e X xZ.
1€
The problem is to develop effective methods to find a saddle point of o(z, z), that is, find (2°,2%) €
X x Z that satisfies the following inequalities:

p(a°,2) < (e, y") < p(a,y?) forall (z,2) € X x Z.

Such methods have never been developed so far. They can be used in the computation of
NE (see [58]) and BE (see [57]). The complexity of the operator max;—; ., spoils the properties
of convexity and differentiability of the convolution ¢(z,z), which make it difficult to use most
of existing optimization methods. We think that it is worth trying ti introduce new approaches,
mathematical tools of concepts to find saddle points of ¢(z,z) as it is done to find its extrema in
Saint Petersburg University under the supervision of D. V. Dem’yanov (see [14]).

Problem 3. Find practical sufficient conditions for the existence of BE that is at the same time
Pareto optimal (BEP). Further, develop numerical methods for computation of BEP.

Problem 4. Find practical sufficient conditions for the existence of BE that is at the same time
NE (BNE). Further, develop numerical methods for computation of BNE. BNE is very interesting
as in this equilibrium self-interest and altruism are aligned, which makes it an individually and
collectively acceptable solution to conflicts.

BE justification through experimental research is also an unexplored area. Determining experimen-
tally in which situations players play BE is a major topic in this area.

BE application in real-world is the area where more efforts and research are needed as there are
just few related publications; it is a new and wide open area. The three interpretations (i)—(iii)
mentioned above show that BE has potentially a very large application spectrum. Social problem
resolution, politics, geopolitics and global problems (e.g. Global Warming) are instances where BE
can be applied successfully. Finally, we hope that this literature review will trigger interest of many
scholars and researchers in investigating unexplored theoretical, practical and application aspects
of BE.
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M. JIapbaru, B. . 2Kyxosckut

PaBHoBecue mo Bepxky B urpax B HoOpMaJbHOM (popMe: JUTEpaTypPHBIA 0630p

IMurara: Hzsecmusa Hncmumyma Mamemamuky U UHGOPMAMUKY YOMYypmcrkozo 20cyo0apcmeerHozo YHU-
eepcumema. 2017. T. 49. C. 80-110.

Kaouesnie crosa: pasaosecue o Bepiky, B3auMHas mofiep:kKa, Koolepaiys, 3omoroe [IpaBuio, aibTpynsM, omnpe-
JejeHne paBHOBecusi 10 BepxKy, cyrecTBOBaHMe paBHOBecHs MO Bepiy, BhIYMCIeHNe paBHOBeCHS M0 Bepiky.

YIK: 517.958, 530.145.6
DOT: 10.20537/2226-3594-2017-49-04

TIpencraBien 0630p JMTEpaTypHl, TIOCBSIIEHHON paBHOBeCHIO 10 Bepxky B mrpax B HopMmasbHoi dhopme. O630p mo-
Ka3bIlBaeT, YTO HCCIEIOBAHHS DaBHOBecHs 1O Bepxky 3a mocieqHune HECKOIBKO JIET HAOHPAIOT 000POTHI, IOCKOJIBKY
B HACTOsIee BPeMsi 5TO PABHOBECHE OCHOBAHO Ha Teopuu wurp, dmnocobun u conpmaabHoM B3aumomeicTsuu. OHO
OXBATHIBAET B3AMMHYIO MOAEPIKKY, COTPYIHNIECTBO, KOOPIMHAIMIO W MOJEINPYET aJIbTPYU3M M MODPAIbHOE 30I0TOe
[IPABU/IO B Urpax B HOpMabHOU (dopme. Maremarmdeckoe wcciaeI0BaHue paBHOBecHs 0 Bepxky mponsuraercs, HO
HE SIBJISIETCS MOJIHBIM; TPEOYIOTCS TOMOJHUTEIbHBIE UCCIeI0BAHUS B 0O/IACTAX, CBS3aHHBIX C €r0 CYIIeCTBOBAHHEM U
BBIYMCIIEHNEeM. [IprMmeHeHne paBHOBecusi MO Bepiky B peasbHBIX COIMAIHHO-IKOHOMUTIECKUX B3aUMOIEHCTBUSIX, TIe
UIPOKY B3AUMHO JIOIOJIHAOT APYT APYra, SBASeTCS MOYTU HEM3yYeHHON 00/I1aCThIO UCC/IeOBAHNUIA.
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