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1. INTRODUCTION

Consider a bilinear control system with discrete-time dy-
namics

x(t+ 1) = A(t)x(t) +B(t, x(t))u(t),

B(t, x) = [B1(t)x, . . . , Br(t)x] ∈ Mn,r(R),
(t, x, u) ∈ Z× Rn × Rr,

(1)

where A(t), Bi(t) ∈ Mn(R), i = 1, r; Mn(K) := Mn,n(K);
Mn,m(K) is the space of n×m-matrices with elements of
the field K. We study the problem of asymptotic stabi-
lization of the origin for the system (1) by state feedback.
The well-known Jurdjevic–Quinn theorem (see Jurdjevic
and Quinn (1978)) provides sufficient conditions for global
asymptotic stabilization of the origin for continuous-time
autonomous bilinear systems. Later, these sufficient condi-
tions were generalized and extended to affine and general
nonlinear systems (see Gauthier (1984), Kalouptsidis and
Tsinias (1984), Lee and Arapostathis (1988), Byrnes and
Isidori (1989), Byrnes et al. (1991), Outbib and Sallet
(1992), Lin (1995b), Lin (1995a), Lin (1996b)).

Similar results were obtained for bilinear, affine, and
general nonlinear autonomous systems with the discrete
time (see Tsinias (1989), Byrnes et al. (1993), Byrnes and
Lin (1994), Lin and Byrnes (1994), Lin (1996a), Grüne and
Wirth (1999), Bacciotti and Biglio (2001), Navarro-Lopez
et al. (2002), Monaco and Normand-Cyrot (2011), Zaitsev
(2015b)).

The approach of damping control was extended to
continuous-time time-varying bilinear (Zaitsev (2013a),
Zaitsev (2013b)), affine (Zaitsev (2013c), Zaitsev (2013d)),
and general nonlinear systems (Zaitsev (2016)) with peri-
odic coefficients.

In this work, we obtain new sufficient conditions for
uniform global asymptotic stabilization of the origin for
bilinear periodic systems with discrete time dynamics.

⋆ This work was supported by the Russian Foundation for Basic
Research (projects no. 16–01–00346) and the Ministry of Education
and Science of the Russian Federation.

2. STABILITY OF DISCRETE-TIME PERIODIC
LINEAR SYSTEMS

Consider a linear discrete-time system

x(t+ 1) = A(t)x(t), t ∈ Z, x ∈ Kn, (2)

A(t) ∈ Mn(K). Here K = C or K = R. Denote by X(t, s)
the transition matrix of the system (2). Then X(t, s) =
A(t−1)A(t−2) · . . . ·A(s) if t > s and X(t, s) = I if t = s.
Recall that the system (2) is Lyapunov stable iff X(t, 0) is
bounded on N and the system (2) is asymptotically stable
iff X(t, 0) → 0 as t → +∞.

Denote by T the transposition, by ∗ the Hermitian conju-
gation of a vector or a matrix. Suppose R ∈ Mn(C) is a
Hermitian matrix, i.e., R = R∗. It defines the quadratic
form V (x) = x∗Rx on Cn. For each x ∈ Cn we have V (x) ∈
R. Indeed, let R = P + iS, x = p + iq, P, S ∈ Mn(R),
p, q ∈ Rn. The equality R = R∗ implies that PT = P ,
ST = −S. It follows that V (x) = x∗Rx = (pT − iqT )(P +
iS)(p+iq) = pTPp+qTPq−2pTSq. This equality implies,
in particular, that if x ∈ Rn, then

x∗Rx = x∗(ReR)x. (3)

We identify the quadratic form V (x) = x∗Rx with the
Hermitian matrix R = R∗ defining this form. For the
matrices R = R∗, Q = Q∗, the inequality R > Q (R ≤ Q)
means that the quadratic form V (x) = x∗(R − Q)x is
positive definite (respectively, negative semi-definite), i.e.,
∀x ∈ Cn \ {0} V (x) > 0 (respectively, V (x) ≤ 0).

Remark 1. It follows from (3) that if R ∈ Mn(C), R =
R∗ > 0, and P = ReR ∈ Mn(R), then PT = P > 0, i.e.,
∀x ∈ Rn \ {0} xTPx > 0. �

Consider a linear time-invariant discrete-time system

y(t+ 1) = Fy(t), t ∈ Z, y ∈ Kn, (4)

F ∈ Mn(K). The system (4) is Lyapunov stable iff F t is
bounded on N and the system (4) is asymptotically stable
iff F t → 0 as t → +∞. Suppose that the eigenvalues
λj(F ) of the matrix F satisfy conditions |λj(F )| < 1,
j = 1, n (i.e., the system (4) is asymptotically stable).
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Then for any matrix H ∈ Mn(K) such that H = H∗ > 0
there exists a R ∈ Mn(K) such that R∗ = R > 0 and
F ∗RF − R = −H. The solution of the last (discrete-
time Lyapunov) equation is unique and is defined by the
formula R = H +

∑∞
ν=1(F

∗)νHF ν . This series converges.

Lemma 2. Let K = C and the system (4) be Lyapunov
stable. Then there exists a matrix Q = Q∗ > 0 such that
F ∗QF −Q ≤ 0.

Proof. Let the system (4) be Lyapunov stable. Then
there exists a matrix S ∈ Mn(C) such that F = S−1JS,
where J = diag {J1, J2}; here J1 ∈ Mα(C) is a Jordan
matrix, |λj(J1)| = 1, j = 1, α, and the elementary divisors
corresponding to the eigenvalues λj(J1) of the matrix J1
are linear, i.e., J1 = diag {eδ1i, . . . , eδαi}, δj ∈ R, j = 1, α;
J2 ∈ Mn−α(C), |λj(J2)| < 1, j = 1, n− α. By the
structure of the matrix J1, we have J∗

1J1 = I ∈ Mα(C).

Let H ∈ Mn−α(C) be an arbitrary Hermitian positive
definite matrix, i.e., H = H∗ > 0. Set T = diag {0, H} ∈
Mn(C), where 0 ∈ Mα(C). Then T ∗ = T ≥ 0. Set
W = S∗TS. Then W ∗ = W ≥ 0 also. Since |λj(J2)| < 1,
there exists a matrix R ∈ Mn−α(C), R∗ = R > 0, such
that J∗

2RJ2−R = −H < 0. Set L = diag {I,R} ∈ Mn(C),
where I ∈ Mα(C). Then L∗ = L > 0. Set Q = S∗LS.
Then we have Q∗ = Q > 0 also. Thus,

F ∗QF −Q = (S−1JS)∗S∗LS(S−1JS)− S∗LS =

S∗(J∗LJ − L)S = S∗diag {J∗
1J1 − I, J∗

2RJ2 −R}S =

= S∗diag {0,−H}S = S∗(−T )S = −W ≤ 0.

The lemma is proved. �
Remark 3. Suppose that F ∈ Mn(R), y ∈ Rn in (4), and
(4) is Lyapunov stable. Then it follows from Lemma 2,
Remark 1 and equality (3) that there exists a P ∈ Mn(R),
P = PT > 0 such that FTPF − P ≤ 0. The matrix P is
defined by the equality P = ReQ, where Q is constructed
by Lemma 2.

The converse to Lemma 2 is obviously true. �

Suppose that the system (2) is periodic, i.e., there exists an
ω ∈ N such that A(t+ω) = A(t) for all t ∈ Z. Suppose that
there exists a quadratic form V (t, x) = x∗R(t)x, x ∈ Kn,
R(t) ∈ Mn(K), satisfying the following conditions for all
t ∈ Z:

R(t+ ω) = R(t), R∗(t) = R(t) > 0, (5)

(WAR)(t) := A∗(t)R(t+ 1)A(t)−R(t) ≤ 0. (6)

Conditions (5), (6) are sufficient for Lyapunov (non-
asymptotic) stability of the system (2) due to Lyapunov
Theorem for discrete-time systems (but are not sufficient
for asymptotic stability of the system (2); example: A(t) ≡
I, R(t) ≡ I, t ∈ Z). In fact, these conditions are also
necessary if the periodic system (2) is reducible, i.e., can
be transformed into a time-invariant one by a change of
basis.

Lemma 4. Suppose K = C, the system (2) is ω-periodic
and reducible. Then the implication 1 ⇒ 2 holds for the
following statements.

1. The system (2) is Lyapunov stable.

2. There exists a R(t) satisfying conditions (5), (6) for all
t ∈ Z.

Proof. Suppose the system (2) is ω-periodic and re-
ducible. Then there exists an ω-periodic nondegenerate
(complex, in general) matrix L(t) such that the state-space
transformation y(t) = L(t)x(t) reduces the system (2) into
a system (4) with a constant matrix F ∈ Mn(C). That
transformation is the Lyapunov transformation, hence, it
preserves the property of stability, i.e., the reduced system
(4) is Lyapunov stable. The matrices of the systems (2)
and (4) are related by the equality

A(t) = L−1(t+ 1)FL(t). (7)

By Lemma 2, there exists a Q = Q∗ > 0 such that
F ∗QF −Q ≤ 0. Hence, for all t ∈ Z

L∗(t)(F ∗QF −Q)L(t) ≤ 0. (8)

Let us construct the matrix

R(t) = L∗(t)QL(t). (9)

Then R(t) ∈ Mn(C), R(t + ω) ≡ R(t), R(t) = R∗(t) > 0,
t ∈ Z. Next, using (7), (9), and (8), we obtain (WAR)(t) =

= A∗(t)R(t+ 1)A(t)−R(t)=(L−1(t+ 1)FL(t))∗ ·
· L∗(t+ 1)QL(t+ 1)(L−1(t+ 1)FL(t))−
− L∗(t)QL(t) = L∗(t)(F ∗QF −Q)L(t) ≤ 0.

(10)

The lemma is proved. �
Lemma 5. Suppose K = R, the system (2) is ω-periodic
and reducible. Then the implication 1 ⇒ 2 holds for the
following statements.

1. The system (2) is Lyapunov stable.

2. There exists a P (t) ∈ Mn(R) satisfying the following
conditions for all t ∈ Z:

P (t+ ω) = P (t), PT (t) = P (t) > 0, (11)

(WAP )(t) := AT (t)P (t+ 1)A(t)− P (t) ≤ 0. (12)

Proof. Let us construct the matrix R(t) ∈ Mn(C) for
the matrix A(t) ∈ Mn(R) by using Lemma 4. Set P (t) =
ReR(t). Then P (t+ ω) ≡ P (t), P (t) = PT (t) > 0, t ∈ Z.
Next, (WAP )(t) = Re (WAR)(t). It follows from (3) that
for any x ∈ Rn the equality

xT (WAP )(t)x = xT (WAR)(t)x (13)

holds. Now, (WAP )(t) ≤ 0 follows from (10) and (13). �

Lemma 4 is similar to (Zaitsev, 2013c, Theorem 7) and
(Zaitsev, 2013d, Theorem 4) for continuous-time systems.

Remark 6. In contrast to continuous-time systems, not
every discrete-time periodic system (2) is reducible. The
necessary and sufficient conditions for reducibility of a pe-
riodic discrete-time linear system (2) into a time-invariant
one by a Lyapunov–Floquet transformation are given in
Dooren and Sreedhar (1994). In particular, if detA(t) ̸= 0,
t ∈ Z, then the periodic system (2) is reducible. If the
periodic system (2) is not reducible then the assertion of
Lemma 4 and Lemma 5 is questionable.

3. UNIFORM GLOBAL ASYMPTOTIC
STABILIZATION OF DISCRETE-TIME

PERIODIC BILINEAR SYSTEMS

Suppose that the system (1) is periodic, i.e., there exists
an ω ∈ N such that A(t + ω) = A(t), Bi(t + ω) = Bi(t),
i = 1, r, for all t ∈ Z. For the corresponding free system
(i.e., (1) with u(t) ≡ 0)

x(t+ 1) = A(t)x(t), t ∈ Z, x ∈ Rn, (14)
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we suppose that there exists a quadratic form

V (t, x) = xTP (t)x, x ∈ Rn, P (t) ∈ Mn(R), (15)

satisfying conditions (11), (12) for all t ∈ Z. Set

G(t, x) = I +
1

2
BT (t, x)P (t+ 1)B(t, x). (16)

Then G(t, x) ∈ Mr(R), G(t, x) = G(t + ω, x), G(t, x) =
GT (t, x) ≥ I > 0, and G−1(t, x) is defined for all t ∈ Z,
x ∈ Rn. Let us construct the control function

�u(t, x) = −G−1(t, x)BT (t, x)P (t+ 1)A(t)x. (17)

Then �u(t+ ω, x) = �u(t, x), t ∈ Z, x ∈ Rn, and(
BT (t, x)P (t+ 1)A(t)x

)T
= −�uT (t, x)G(t, x). (18)

Substituting
u(t) = �u(t, x(t)) (19)

into the system (1), we obtain the closed-loop system

x(t+1) = C(t, x(t)) = A(t)x(t)+B(t, x(t))�u(t, x(t)). (20)

We have C(t+ω, x) = C(t, x), t ∈ Z, x ∈ Rn. Considering
the difference ∆V (t, x(t)) = V (t+1, x(t+1)−V (t, x(t)) of
the Lyapunov function (15) along the trajectory of (20),
we obtain

∆V (t, x(t)) = xT (t)
(
AT (t)P (t+ 1)A(t)−

− P (t)
)
x(t) + 2µ(t, x(t))�u(t, x(t)),

where

µ(t, x) = xTAT (t)P (t+ 1)B(t, x) +

+
1

2
�uT (t, x)BT (t, x)P (t+ 1)B(t, x). (21)

Substituting (18) for the first summand in (21) and taking
into account (16), we obtain that µ(t, x) = −�uT (t, x).
Hence,

∆V (t, x(t)) = xT (t)
(
AT (t)P (t+ 1)A(t)−

− P (t)
)
x(t)− 2�uT (t, x(t))�u(t, x(t)). (22)

Thus, by (12), we obtain that ∆V (t, x(t)) ≤ 0. Hence, the
origin of the system (20) is Lyapunov stable. Consider the
set

E(V ) = {(t, x) ∈ Z× Rn : ∆V (t, x) = 0}.
By (22) and (12), the set E(V ) coincides with

�E(V ) = {(t, x) ∈ Z× Rn : xT (WAP )(t)x = |�u(t, x)| = 0}.
Set Ω0(V ) = {(t, x) ∈ Z × Rn : xT (WAP )(t)x = 0},
S0(V ) = {(t, x) ∈ Z × Rn : xTAT (t)P (t + 1)B(t, x) = 0},
E0(V ) = Ω0(V ) ∩ S0(V ). By (17), �E(V ) = E0(V ). Let
M(V ) be the largest positive invariant set of the system
(20) relative to E(V ), i.e., M(V ) is the union of all semi-
trajectories x(t), t ≥ t0 (t0 ∈ Z), of the system (20)
such that (t, x(t)) ∈ E(V ) for all t ≥ t0. Then we have
0 ∈ M(V ) because ξ0(t) ≡ 0, t ≥ t0, is a solution of (20)
and ∆V (t, 0) ≡ 0, t ≥ t0. If M(V ) = {0}, then the origin
of the system (20) is uniformly globally asymptotically
(UGA) stable due to the Krasovsky–La Salle invariance
principle for discrete-time periodic systems.

Denote by ξ(t) = ξ(t, t0, x0), t ≥ t0 (t0 ∈ Z), a solution
of the system (20) such that ξ(t0) = x0. Suppose that

ξ(t) ∈ M(V ), t ≥ t0. Since E(V ) = �E(V ) = E0(V ), we
obtain

ξT (t)(WAP )(t)ξ(t) = 0, t ≥ t0, (23)

ξT (t)AT (t)P (t+ 1)B(t, ξ(t)) = 0, t ≥ t0, (24)

and �u(t, ξ(t)) = 0, t ≥ t0. By (20), ξ(t + 1) = A(t)ξ(t),
t ≥ t0, i.e., ξ(t) is a solution of the free system (14). Hence,

ξ(t) = X(t, t0)x0. Substituting this equality in (23), (24),
we obtain the equalities

xT
0 X

T (t, t0)(WAP )(t)X(t, t0)x0 ≡ 0, t ≥ t0, (25)

xT
0 X

T (t+ 1, t0)P (t+ 1)Bi(t)X(t, t0)x0 ≡ 0,

t ≥ t0, i = 1, r.
(26)

Let M0(V ) be the largest positive invariant set of the
free system (14) relative to E0(V ). Thus, we obtain that
ξ(t) ∈ M0(V ), t ≥ t0. It follows that M(V ) ⊂ M0(V ).
Therefore if M0(V ) = {0}, then M(V ) = {0}. The
condition M0(V ) = {0} means that for any t0 ∈ Z the
identities (25), (26) hold only if x0 = 0. In the last
sentence, the phrase “for any t0 ∈ Z” can be replaced
by the phrase “for some t0 ∈ Z”. Let us prove this fact.

Lemma 7. The following statements are equivalent.
1. For any t0 ∈ Z the identities (25), (26) hold only if
x0 = 0.
2. For some t0 ∈ Z the identities (25), (26) hold only if
x0 = 0.

Proof. The implication 1 ⇒ 2 is obvious. Let us prove
the implication 2 ⇒ 1. Suppose that for some t0 ∈ Z
the identities (25), (26) hold only if x0 = 0. Consider
an arbitrary t1 ∈ Z. There exists a k ∈ N such that
t0 + kω ≥ t1. Suppose that the identities

xT
1 X

T (t, t1)(WAP )(t)X(t, t1)x1 ≡ 0, (27)

xT
1 X

T (t+1, t1)P (t+1)Bi(t)X(t, t1)x1 ≡ 0, i = 1, r, (28)

hold for t ≥ t1. Then (27), (28) hold for all t ≥ t0 + kω as
well. Denote x2 = X(t0 + kω, t1)x1. It follows from (27),
(28) that the identities

xT
2 X

T (t, t0 + kω)(WAP )(t)X(t, t0 + kω)x2 ≡ 0, (29)

xT
2 X

T (t+ 1, t0 + kω)P (t+ 1) ·
·Bi(t)X(t, t0 + kω)x2 ≡ 0, i = 1, r,

(30)

hold for t ≥ t0 + kω. Denote s = t − kω. Then t = s +
kω. The inequality t ≥ t0 + kω is equivalent to s ≥ t0.
We have X(t, t0 + kω) = X(s + kω, t0 + kω) = X(s, t0)
by ω-periodicity of the system (14). Next, (WAP )(t) =
(WAP )(s+ kω) = (WAP )(s) due to ω-periodicity of A(t)
and P (t). Thus, (29), (30) mean that

xT
2 X

T (s, t0)(WAP )(s)X(s, t0)x2 ≡ 0,

xT
2 X

T (s+ 1, t0)P (s+ 1)Bi(s)X(s, t0)x2 ≡ 0, i = 1, r,

for s ≥ t0. By assumption, it follows that x2 = 0, i.e.,

X(t0 + kω, t1)x1 = 0. (31)

Consider the equalities (27) at t = t1, t1+1, . . . , t0+kω−1.
From these equalities, taking into account the definition of
WAP , we obtain

xT
1 P (t1)x1 = xT

1 X
T (t1 + 1, t1)P (t1 + 1)X(t1 + 1, t1)x1 =

= xT
1 X

T (t1 + 2, t1)P (t1 + 2)X(t1 + 2, t1)x1 = . . . =

= xT
1 X

T (t0 + kω, t1)P (t0 + kω)X(t0 + kω, t1)x1. (32)
It follows from (32) and (31) that xT

1 P (t1)x1 = 0. Since
P (t) > 0, we have x1 = 0. The lemma is proved. �

Thus, the following theorem is proved.

Theorem 8. Let the system (1) be ω-periodic. Suppose
that there exists a matrix P (t) satisfying conditions (11),
(12) for all t ∈ Z. Suppose that for some t0 ∈ Z the
identities (25), (26) hold only if x0 = 0. Then the state
feedback control (19) UGA stabilizes the origin of the
system (1).

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12023

Then for any matrix H ∈ Mn(K) such that H = H∗ > 0
there exists a R ∈ Mn(K) such that R∗ = R > 0 and
F ∗RF − R = −H. The solution of the last (discrete-
time Lyapunov) equation is unique and is defined by the
formula R = H +

∑∞
ν=1(F

∗)νHF ν . This series converges.

Lemma 2. Let K = C and the system (4) be Lyapunov
stable. Then there exists a matrix Q = Q∗ > 0 such that
F ∗QF −Q ≤ 0.

Proof. Let the system (4) be Lyapunov stable. Then
there exists a matrix S ∈ Mn(C) such that F = S−1JS,
where J = diag {J1, J2}; here J1 ∈ Mα(C) is a Jordan
matrix, |λj(J1)| = 1, j = 1, α, and the elementary divisors
corresponding to the eigenvalues λj(J1) of the matrix J1
are linear, i.e., J1 = diag {eδ1i, . . . , eδαi}, δj ∈ R, j = 1, α;
J2 ∈ Mn−α(C), |λj(J2)| < 1, j = 1, n− α. By the
structure of the matrix J1, we have J∗

1J1 = I ∈ Mα(C).

Let H ∈ Mn−α(C) be an arbitrary Hermitian positive
definite matrix, i.e., H = H∗ > 0. Set T = diag {0, H} ∈
Mn(C), where 0 ∈ Mα(C). Then T ∗ = T ≥ 0. Set
W = S∗TS. Then W ∗ = W ≥ 0 also. Since |λj(J2)| < 1,
there exists a matrix R ∈ Mn−α(C), R∗ = R > 0, such
that J∗

2RJ2−R = −H < 0. Set L = diag {I,R} ∈ Mn(C),
where I ∈ Mα(C). Then L∗ = L > 0. Set Q = S∗LS.
Then we have Q∗ = Q > 0 also. Thus,

F ∗QF −Q = (S−1JS)∗S∗LS(S−1JS)− S∗LS =

S∗(J∗LJ − L)S = S∗diag {J∗
1J1 − I, J∗

2RJ2 −R}S =

= S∗diag {0,−H}S = S∗(−T )S = −W ≤ 0.

The lemma is proved. �
Remark 3. Suppose that F ∈ Mn(R), y ∈ Rn in (4), and
(4) is Lyapunov stable. Then it follows from Lemma 2,
Remark 1 and equality (3) that there exists a P ∈ Mn(R),
P = PT > 0 such that FTPF − P ≤ 0. The matrix P is
defined by the equality P = ReQ, where Q is constructed
by Lemma 2.

The converse to Lemma 2 is obviously true. �

Suppose that the system (2) is periodic, i.e., there exists an
ω ∈ N such that A(t+ω) = A(t) for all t ∈ Z. Suppose that
there exists a quadratic form V (t, x) = x∗R(t)x, x ∈ Kn,
R(t) ∈ Mn(K), satisfying the following conditions for all
t ∈ Z:

R(t+ ω) = R(t), R∗(t) = R(t) > 0, (5)

(WAR)(t) := A∗(t)R(t+ 1)A(t)−R(t) ≤ 0. (6)

Conditions (5), (6) are sufficient for Lyapunov (non-
asymptotic) stability of the system (2) due to Lyapunov
Theorem for discrete-time systems (but are not sufficient
for asymptotic stability of the system (2); example: A(t) ≡
I, R(t) ≡ I, t ∈ Z). In fact, these conditions are also
necessary if the periodic system (2) is reducible, i.e., can
be transformed into a time-invariant one by a change of
basis.

Lemma 4. Suppose K = C, the system (2) is ω-periodic
and reducible. Then the implication 1 ⇒ 2 holds for the
following statements.

1. The system (2) is Lyapunov stable.

2. There exists a R(t) satisfying conditions (5), (6) for all
t ∈ Z.

Proof. Suppose the system (2) is ω-periodic and re-
ducible. Then there exists an ω-periodic nondegenerate
(complex, in general) matrix L(t) such that the state-space
transformation y(t) = L(t)x(t) reduces the system (2) into
a system (4) with a constant matrix F ∈ Mn(C). That
transformation is the Lyapunov transformation, hence, it
preserves the property of stability, i.e., the reduced system
(4) is Lyapunov stable. The matrices of the systems (2)
and (4) are related by the equality

A(t) = L−1(t+ 1)FL(t). (7)

By Lemma 2, there exists a Q = Q∗ > 0 such that
F ∗QF −Q ≤ 0. Hence, for all t ∈ Z

L∗(t)(F ∗QF −Q)L(t) ≤ 0. (8)

Let us construct the matrix

R(t) = L∗(t)QL(t). (9)

Then R(t) ∈ Mn(C), R(t + ω) ≡ R(t), R(t) = R∗(t) > 0,
t ∈ Z. Next, using (7), (9), and (8), we obtain (WAR)(t) =

= A∗(t)R(t+ 1)A(t)−R(t)=(L−1(t+ 1)FL(t))∗ ·
· L∗(t+ 1)QL(t+ 1)(L−1(t+ 1)FL(t))−
− L∗(t)QL(t) = L∗(t)(F ∗QF −Q)L(t) ≤ 0.

(10)

The lemma is proved. �
Lemma 5. Suppose K = R, the system (2) is ω-periodic
and reducible. Then the implication 1 ⇒ 2 holds for the
following statements.

1. The system (2) is Lyapunov stable.

2. There exists a P (t) ∈ Mn(R) satisfying the following
conditions for all t ∈ Z:

P (t+ ω) = P (t), PT (t) = P (t) > 0, (11)

(WAP )(t) := AT (t)P (t+ 1)A(t)− P (t) ≤ 0. (12)

Proof. Let us construct the matrix R(t) ∈ Mn(C) for
the matrix A(t) ∈ Mn(R) by using Lemma 4. Set P (t) =
ReR(t). Then P (t+ ω) ≡ P (t), P (t) = PT (t) > 0, t ∈ Z.
Next, (WAP )(t) = Re (WAR)(t). It follows from (3) that
for any x ∈ Rn the equality

xT (WAP )(t)x = xT (WAR)(t)x (13)

holds. Now, (WAP )(t) ≤ 0 follows from (10) and (13). �

Lemma 4 is similar to (Zaitsev, 2013c, Theorem 7) and
(Zaitsev, 2013d, Theorem 4) for continuous-time systems.

Remark 6. In contrast to continuous-time systems, not
every discrete-time periodic system (2) is reducible. The
necessary and sufficient conditions for reducibility of a pe-
riodic discrete-time linear system (2) into a time-invariant
one by a Lyapunov–Floquet transformation are given in
Dooren and Sreedhar (1994). In particular, if detA(t) ̸= 0,
t ∈ Z, then the periodic system (2) is reducible. If the
periodic system (2) is not reducible then the assertion of
Lemma 4 and Lemma 5 is questionable.

3. UNIFORM GLOBAL ASYMPTOTIC
STABILIZATION OF DISCRETE-TIME

PERIODIC BILINEAR SYSTEMS

Suppose that the system (1) is periodic, i.e., there exists
an ω ∈ N such that A(t + ω) = A(t), Bi(t + ω) = Bi(t),
i = 1, r, for all t ∈ Z. For the corresponding free system
(i.e., (1) with u(t) ≡ 0)

x(t+ 1) = A(t)x(t), t ∈ Z, x ∈ Rn, (14)
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Theorem 8 is similar to (Zaitsev, 2013c, Theorem 8) and
(Zaitsev, 2013d, Theorem 5) for continuous-time systems.

Corollary 9. Let the system (1) be ω-periodic, the system
(14) be reducible and Lyapunov stable, and for some t0 ∈ Z
the identities (25), (26) hold only if x0 = 0, where the
matrix P (t) is constructed by Lemma 4. Then the state
feedback control (19) UGA stabilizes the origin of the
system (1).

Corollary 9 follows from Lemma 4 and Theorem 8.

Let us construct the following matrices:N1(τ, x)= B(τ, x),
Ni+1(τ, x) = [A(τ+i)Ni(τ, x), B(τ+i,X(τ+i, τ)x], i ≥ 1.
Note thatNi(τ+ω, x) = Ni(τ, x) ∈ Mn,ir(R) for any i ∈ N,
τ ∈ Z, x ∈ Rn.

Theorem 10. Let the system (1) be ω-periodic. Suppose
that there exists a matrix P (t) satisfying conditions (11),
(12) for all t ∈ Z. Suppose that the following condition
holds:

∃t0 ∈ Z ∀x ∈ Rn \ {0} ∃ν ≥ 1 rankNν(t0, x) = n. (33)

Then the state feedback control (19) UGA stabilizes the
origin of the system (1).

Proof. Let us prove that M0(V ) = 0 under the assump-
tions of the theorem. Then, by the proof of Theorem
8, the theorem will be proved. We prove the theorem
by contradiction. Suppose M0(V ) ̸= 0. Then there exist
t1 ∈ Z and x1 ∈ Rn, x1 ̸= 0, such that the solution
ξ(t) = ξ(t, t1, x1) of the free system (14) satisfies the
condition ξ(t) ∈ M0(V ) for all t ≥ t1. Hence, identities
(27), (28) hold for t ≥ t1. Let us show that ξ(t, t1, x1) ̸= 0
for any t ≥ t1. Suppose that ξ(t2, t1, x1) = 0 for some
t2 ≥ t1. Hence, X(t2, t1)x1 = 0. By (27) at t = t1, t1 +
1, . . . , t2 − 1, we obtain similarly to (32):

xT
1 P (t1)x1 = xT

1 X
T (t1 + 1, t1)P (t1 + 1)X(t1 + 1, t1)x1 =

= . . . = xT
1 X

T (t2, t1)P (t2)X(t2, t1)x1 = 0.

Since P (t) > 0, we have x1 = 0. This is contradiction.
Hence, ξ(t, t1, x1) ̸= 0, t ≥ t1. Let us construct the number
t0 ∈ Z from condition (33). By periodicity of Ni(τ, x), one
can assume without loss of generality that t0 > t1. Set
x0 = ξ(t0, t1, x1). Hence,

ξ(t, t0, x0) ̸= 0, t ≥ t0. (34)

Let us construct for x0 ̸= 0 the number ν ≥ 1 from condi-
tion (33) such that rankNν(t0, x0) = n. Since ξ(t, t0, x0) ∈
M0(V ) for all t ≥ t0, the equalities (25), (26) hold.

Consider the function φ(t, x) = xT (WAP )(t)x. We have
Ω0(V ) = {(t, x) ∈ Z × Rn : φ(t, x) = 0}. The function

φ(t, x) attains its maximum at any point (�t, �x) ∈ Ω0(V )
because φ(t, x) ≤ 0 for all (t, x) ∈ Z × Rn, by (12).

Consequently, (∂φ/∂x)(�t, �x) = 0 for any (�t, �x) ∈ Ω0(V ).
We have (∂φ/∂x)(t, x) = 2xT (WAP )(t). Therefore for any
m ∈ N and for any function (s, y) → z(s, y) ∈ Mn,m(R)
the equality

�xT
(
AT (�t)P (�t+ 1)A(�t)− P (�t))z(s, y) = 0,

(�t, �x) ∈ Ω0(V ), s ∈ Z, y ∈ Rn,
(35)

holds. Equality (26) for t = t0 implies that

xT
0 A

T (t0)P (t0 + 1)Bi(t0)x0 = 0, i = 1, r.

This means that the row vector xT
0 A

T (t0)P (t0 + 1) is
orthogonal to the columns of the matrix N1(t0, x0).

Let us prove, by induction, the following assertion (A):
for all k ∈ N the row vector xT

0 X
T (t0 + k, t0)P (t0 + k) is

orthogonal to the columns of the matrix Nk(t0, x0). The
basis for k = 1 is proved. Assume (A) holds for k = i, i.e.,

xT
0 X

T (t0 + i, t0)P (t0 + i)Ni(t0, x0) = 0. (36)

By (25), the inclusion (t, ξ(t, t0, x0)) ∈ Ω0(V ) holds for all
t ≥ t0. Substituting i · r for m, t0 for s, x0 for y, t0 + i for
�t, X(t0+ i, t0)x0 for �x, Ni(t0, x0) for z(s, y) in (35), we get

xT
0 X

T (t0 + i, t0)
(
AT (t0 + i)P (t0 + i+ 1)A(t0 + i)−

− P (t0 + i)
)
Ni(t0, x0) = 0.

Taking into account (36), we obtain

xT
0 X

T (t0 + i+ 1, t0)P (t0 + i+ 1) ·
·A(t0 + i)Ni(t0, x0) = 0. (37)

It follows from (37) and (26) at t = t0 + i that

xT
0 X

T (t0 + i+ 1, t0)P (t0 + i+ 1) ·
· [A(t0 + i)Ni(t0, x0), B(t0 + i,X(t0 + i, t0)x0] = 0

Thus, assertion (A) holds for k = i + 1. By induction,
assertion (A) holds for all k ∈ N. In particular, for k = ν,
we have

xT
0 X

T (t0 + ν, t0)P (t0 + ν)Nν(t0, x0) = 0.

Since rankNν(t0, x0) = n, we obtain

xT
0 X

T (t0 + ν, t0)P (t0 + ν) = 0.

Since P (t) > 0, we have X(t0 + ν, t0)x0 = 0. This
contradicts (34). The theorem is proved. �

Let us construct the subspaces

Γ(t, t0) = span {Bi(t)A(t− 1) · . . . ·A(t0),

A(t)Bi(t− 1)A(t− 2) · . . . ·A(t0), . . . ,

A(t)A(t− 1) · . . . ·A(t0 + 1)Bi(t0), i = 1, r} ⊂ Mn(R)
and

∆(t, t0, x) = Γ(t, t0)x ⊂ Rn,

where t0, t ∈ Z, t ≥ t0, x ∈ Rn. Obviously, the linear span
of the column vectors of the matrix Nν(t0, x) coincides
with the space ∆(t0 + ν − 1, t0, x).

Theorem 11. Let the system (1) be ω-periodic. Suppose
that there exists a matrix P (t) satisfying conditions (11),
(12) for all t ∈ Z. Suppose that at least one of the following
conditions holds:

(i) ∃t0 ∈ Z ∀x ̸= 0 ∃t ≥ t0 dim∆(t, t0, x) = n;

(ii) ∃t0 ∈ Z ∃t ≥ t0 Γ(t, t0) = Mn(R).

Then the state feedback control (19) UGA stabilizes the
origin of the system (1).

Theorem 11 follows from Theorem 10 because condition
(i) is equivalent to (33) and (ii) is sufficient for (i).
Theorem 11 is similar to (Zaitsev, 2013d, Theorem 7.1)
for continuous-time systems.

Corollary 12. Let the system (1) be ω-periodic, the system
(14) be reducible and Lyapunov stable, and at least one of
conditions (i), (ii) holds. Then the state feedback control
(19) UGA stabilizes the origin of the system (1); here P (t)
is a matrix satisfying conditions (11), (12).

Corollary 12 follows from Lemma 4 and Theorem 11.
Corollaries 9 and 12 are similar to (Zaitsev, 2013d, Corol-
lary 1) for continuous-time systems.
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4. CONSISTENT SYSTEMS

The system (1) is said to be consistent on the interval
[t0, t1) (t1 > t0) if for every matrix G ∈ Mn(R) there
exists a control function �u(t) = (�u1(t), . . . , �ur(t)) ∈ Rr,
t ∈ [t0, t1), such that the solution of the matrix equation

Z(t+ 1) = A(t)Z(t) + (�u1(t)B1(t) + . . .

+ �ur(t)Br(t))X(t, t0), t ∈ Z,
with the initial condition Z(t0) = 0 satisfies the condition
Z(t1) = G.

The definition of consistency was introduced for the
discrete-time system (1) and for a linear system closed-
loop by a linear output feedback in Zaitsev (2014) sim-
ilarly to the definition for continuous-time systems (see
references in Zaitsev (2014)). This notion was studied in
Zaitsev (2014), Zaitsev (2015a) in the connection with the
eigenvalue assignment problem for time-invariant bilinear
discrete-time systems.

Theorem 13. The system (1) is consistent on [t0, ϑ) ⇐⇒
Γ(ϑ− 1, t0) = Mn(R).

The proof is given in (Zaitsev, 2014, Equality (8)). The-
orem 13 is similar to (Zaitsev, 2013c, Proposition 13) for
continuous-time systems.

Thus, if the system (1) is consistent on some [t0, ϑ) then
condition (ii) of Theorem 11 holds, where t = ϑ − 1.
Therefore, we have the following statements.

Theorem 14. Let the system (1) be ω-periodic. Suppose
that there exists a matrix P (t) satisfying conditions (11),
(12) for all t ∈ Z. Suppose that the system (1) is consistent
on some [t0, ϑ). Then the state feedback control (19) UGA
stabilizes the origin of the system (1).

Theorem 14 follows from Theorems 11 and 13.

Corollary 15. Let the system (1) be ω-periodic and con-
sistent on some [t0, ϑ), and the system (14) be reducible
and Lyapunov stable. Then the state feedback control (19)
UGA stabilizes the origin of the system (1); here P (t) is a
matrix satisfying conditions (11), (12).

Corollary 15 follows from Lemma 4 and Theorem 14.
Corollary 15 is similar to (Zaitsev, 2013c, Corollary 14)
for continuous-time systems.

5. TIME-INVARIANT SYSTEMS

Suppose the system (1) is time-invariant, i.e. A(t) ≡ A,
Bi(t) ≡ Bi, i = 1, r. Then the free system (14) is time-
invariant (hence, reducible) and Lyapunov stability of the
free system (14) is equivalent to existence of a stationary
matrix P (t) ≡ P satisfying conditions (11), (12).

We obtain that Theorem 8 and Corollary 9 coincides with
(Byrnes et al., 1993, Theorem 2.1), where g(x) = B(x);
Theorem 11 and Corollary 12 with (i) coincides with
(Zaitsev, 2015b, Theorem 7); Theorem 11 and Corollary
12 with (ii) coincides with (Zaitsev, 2015b, Theorem 8);
Theorem 14 and Corollary 15 coincides with (Zaitsev,
2015b, Theorem 9).

6. EXAMPLE

Consider the discrete-time bilinear system

x(t+ 1) = (A(t) + u(t)B(t))x(t),

(t, x, u) ∈ Z× R2 × R;
(38)

A(t) :=

����
cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

���� , t ∈ Z; (39)

B(0) :=

����
1 −2
1 −1

���� , B(1) :=

����
2 1
1 1

���� ,

B(2) :=

����
−1 1
−2 1

���� , B(3) :=

����
1 1
1 2

���� ;
B(t+ 4) := B(t), t ∈ Z, t ≥ 0;

B(t) := B(t+ 4), t ∈ Z, t < 0.

(40)

This system is ω-periodic with the period ω = 4. The
matrix P = I satisfies conditions (11), (12). Suppose
t0 = 0, t1 = 2. Let us construct ∆(t1, t0, x0) ⊂ R2. We have

B(2)A(1)A(0) =

����
1 1
1 2

����, A(2)B(1)A(0) =

����
−2 −1
−1 −1

����,

A(2)A(1)B(0) =

����
1 −1
−1 2

����. Suppose x0 = col (α, β). Then

∆(t1, t0, x0) = span {z1, z2, z3} ∈ R2, where

z1 = col (α+ β, α+ 2β),

z2 = col (−2α− β,−α− β),

z3 = col (α− β,−α+ 2β).

We have

d1 := det[z1, z2] = α2 + 3αβ + β2,

d2 := det[z1, z3] = −2α2 + 4β2.

The equalities d1 = d2 = 0 holds only if α = β = 0. Hence,
if x0 ̸= 0 then span∆(2, 0, x0) = R2. Thus, condition (i)
of Theorem 11 is satisfied. Therefore, the system (38),
(39), (40) is UGA stabilizable by the feedback control
u(t) = �u(t, x(t)). Here the feedback control law has the
form (17):

�u(0, x) = −2(x2
1 − x1x2 − x2

2)/(2 + 2x2
1 − 6x1x2 + 5x2

2),

�u(1, x) = −2(x2
1 − x1x2 − x2

2)/(2 + 5x2
1 + 6x1x2 + 2x2

2),

�u(2, x) = −2(x2
1 + x1x2 − x2

2)/(2 + 5x2
1 − 6x1x2 + 2x2

2),

�u(3, x) = −2(−x2
1 − x1x2 + x2

2)/(2 + 2x2
1 + 6x1x2 + 5x2

2),

�u(t+ 4, x) = �u(t, x), t ∈ Z, t ≥ 0;

�u(t, x) = �u(t+ 4, x), t ∈ Z, t < 0.

Remark 16. Note that the system (38), (39), (40) cannot
be stabilizable by any non-feedback control u(t) = �u(t) de-
pending only on t. In fact, the system (38) with u(t) = �u(t)
is linear in x. One can check that det(A(t)+�u(t)B(t)) = 1+
(�u(t))2 for all t ∈ Z. Hence, for the transition matrix
X�u(t, s) of the system (38) with u(t) = �u(t), we have

detX�u(t, 0) =
t−1∏
i=0

(1 + (�u(i))2) ≥ 1

for all t > 0, i.e., detX�u(t, 0) ̸→ 0 as t → +∞. Thus the
system (38) with u(t) = �u(t) is not asymptotically stable.

7. CONCLUSION

We have extended the results on UGA stabilization
of discrete-time autonomous bilinear homogeneous sys-
tems obtained in Byrnes et al. (1993), Byrnes and Lin
(1994), Lin and Byrnes (1994), Zaitsev (2015b) to non-
autonomous periodic discrete-time bilinear homogeneous
systems. It seems true that one can extend the results
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Theorem 8 is similar to (Zaitsev, 2013c, Theorem 8) and
(Zaitsev, 2013d, Theorem 5) for continuous-time systems.

Corollary 9. Let the system (1) be ω-periodic, the system
(14) be reducible and Lyapunov stable, and for some t0 ∈ Z
the identities (25), (26) hold only if x0 = 0, where the
matrix P (t) is constructed by Lemma 4. Then the state
feedback control (19) UGA stabilizes the origin of the
system (1).

Corollary 9 follows from Lemma 4 and Theorem 8.

Let us construct the following matrices:N1(τ, x)= B(τ, x),
Ni+1(τ, x) = [A(τ+i)Ni(τ, x), B(τ+i,X(τ+i, τ)x], i ≥ 1.
Note thatNi(τ+ω, x) = Ni(τ, x) ∈ Mn,ir(R) for any i ∈ N,
τ ∈ Z, x ∈ Rn.

Theorem 10. Let the system (1) be ω-periodic. Suppose
that there exists a matrix P (t) satisfying conditions (11),
(12) for all t ∈ Z. Suppose that the following condition
holds:

∃t0 ∈ Z ∀x ∈ Rn \ {0} ∃ν ≥ 1 rankNν(t0, x) = n. (33)

Then the state feedback control (19) UGA stabilizes the
origin of the system (1).

Proof. Let us prove that M0(V ) = 0 under the assump-
tions of the theorem. Then, by the proof of Theorem
8, the theorem will be proved. We prove the theorem
by contradiction. Suppose M0(V ) ̸= 0. Then there exist
t1 ∈ Z and x1 ∈ Rn, x1 ̸= 0, such that the solution
ξ(t) = ξ(t, t1, x1) of the free system (14) satisfies the
condition ξ(t) ∈ M0(V ) for all t ≥ t1. Hence, identities
(27), (28) hold for t ≥ t1. Let us show that ξ(t, t1, x1) ̸= 0
for any t ≥ t1. Suppose that ξ(t2, t1, x1) = 0 for some
t2 ≥ t1. Hence, X(t2, t1)x1 = 0. By (27) at t = t1, t1 +
1, . . . , t2 − 1, we obtain similarly to (32):

xT
1 P (t1)x1 = xT

1 X
T (t1 + 1, t1)P (t1 + 1)X(t1 + 1, t1)x1 =

= . . . = xT
1 X

T (t2, t1)P (t2)X(t2, t1)x1 = 0.

Since P (t) > 0, we have x1 = 0. This is contradiction.
Hence, ξ(t, t1, x1) ̸= 0, t ≥ t1. Let us construct the number
t0 ∈ Z from condition (33). By periodicity of Ni(τ, x), one
can assume without loss of generality that t0 > t1. Set
x0 = ξ(t0, t1, x1). Hence,

ξ(t, t0, x0) ̸= 0, t ≥ t0. (34)

Let us construct for x0 ̸= 0 the number ν ≥ 1 from condi-
tion (33) such that rankNν(t0, x0) = n. Since ξ(t, t0, x0) ∈
M0(V ) for all t ≥ t0, the equalities (25), (26) hold.

Consider the function φ(t, x) = xT (WAP )(t)x. We have
Ω0(V ) = {(t, x) ∈ Z × Rn : φ(t, x) = 0}. The function

φ(t, x) attains its maximum at any point (�t, �x) ∈ Ω0(V )
because φ(t, x) ≤ 0 for all (t, x) ∈ Z × Rn, by (12).

Consequently, (∂φ/∂x)(�t, �x) = 0 for any (�t, �x) ∈ Ω0(V ).
We have (∂φ/∂x)(t, x) = 2xT (WAP )(t). Therefore for any
m ∈ N and for any function (s, y) → z(s, y) ∈ Mn,m(R)
the equality

�xT
(
AT (�t)P (�t+ 1)A(�t)− P (�t))z(s, y) = 0,

(�t, �x) ∈ Ω0(V ), s ∈ Z, y ∈ Rn,
(35)

holds. Equality (26) for t = t0 implies that

xT
0 A

T (t0)P (t0 + 1)Bi(t0)x0 = 0, i = 1, r.

This means that the row vector xT
0 A

T (t0)P (t0 + 1) is
orthogonal to the columns of the matrix N1(t0, x0).

Let us prove, by induction, the following assertion (A):
for all k ∈ N the row vector xT

0 X
T (t0 + k, t0)P (t0 + k) is

orthogonal to the columns of the matrix Nk(t0, x0). The
basis for k = 1 is proved. Assume (A) holds for k = i, i.e.,

xT
0 X

T (t0 + i, t0)P (t0 + i)Ni(t0, x0) = 0. (36)

By (25), the inclusion (t, ξ(t, t0, x0)) ∈ Ω0(V ) holds for all
t ≥ t0. Substituting i · r for m, t0 for s, x0 for y, t0 + i for
�t, X(t0+ i, t0)x0 for �x, Ni(t0, x0) for z(s, y) in (35), we get

xT
0 X

T (t0 + i, t0)
(
AT (t0 + i)P (t0 + i+ 1)A(t0 + i)−

− P (t0 + i)
)
Ni(t0, x0) = 0.

Taking into account (36), we obtain

xT
0 X

T (t0 + i+ 1, t0)P (t0 + i+ 1) ·
·A(t0 + i)Ni(t0, x0) = 0. (37)

It follows from (37) and (26) at t = t0 + i that

xT
0 X

T (t0 + i+ 1, t0)P (t0 + i+ 1) ·
· [A(t0 + i)Ni(t0, x0), B(t0 + i,X(t0 + i, t0)x0] = 0

Thus, assertion (A) holds for k = i + 1. By induction,
assertion (A) holds for all k ∈ N. In particular, for k = ν,
we have

xT
0 X

T (t0 + ν, t0)P (t0 + ν)Nν(t0, x0) = 0.

Since rankNν(t0, x0) = n, we obtain

xT
0 X

T (t0 + ν, t0)P (t0 + ν) = 0.

Since P (t) > 0, we have X(t0 + ν, t0)x0 = 0. This
contradicts (34). The theorem is proved. �

Let us construct the subspaces

Γ(t, t0) = span {Bi(t)A(t− 1) · . . . ·A(t0),

A(t)Bi(t− 1)A(t− 2) · . . . ·A(t0), . . . ,

A(t)A(t− 1) · . . . ·A(t0 + 1)Bi(t0), i = 1, r} ⊂ Mn(R)
and

∆(t, t0, x) = Γ(t, t0)x ⊂ Rn,

where t0, t ∈ Z, t ≥ t0, x ∈ Rn. Obviously, the linear span
of the column vectors of the matrix Nν(t0, x) coincides
with the space ∆(t0 + ν − 1, t0, x).

Theorem 11. Let the system (1) be ω-periodic. Suppose
that there exists a matrix P (t) satisfying conditions (11),
(12) for all t ∈ Z. Suppose that at least one of the following
conditions holds:

(i) ∃t0 ∈ Z ∀x ̸= 0 ∃t ≥ t0 dim∆(t, t0, x) = n;

(ii) ∃t0 ∈ Z ∃t ≥ t0 Γ(t, t0) = Mn(R).

Then the state feedback control (19) UGA stabilizes the
origin of the system (1).

Theorem 11 follows from Theorem 10 because condition
(i) is equivalent to (33) and (ii) is sufficient for (i).
Theorem 11 is similar to (Zaitsev, 2013d, Theorem 7.1)
for continuous-time systems.

Corollary 12. Let the system (1) be ω-periodic, the system
(14) be reducible and Lyapunov stable, and at least one of
conditions (i), (ii) holds. Then the state feedback control
(19) UGA stabilizes the origin of the system (1); here P (t)
is a matrix satisfying conditions (11), (12).

Corollary 12 follows from Lemma 4 and Theorem 11.
Corollaries 9 and 12 are similar to (Zaitsev, 2013d, Corol-
lary 1) for continuous-time systems.
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of Byrnes et al. (1993), Byrnes and Lin (1994), Lin and
Byrnes (1994) on UGA stabilization of discrete-time affine
and general nonlinear autonomous systems to periodic
systems.
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