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Abstract⎯The analytical dependences of the stress-state characteristics of the single-component nanocrys-
talline-materials on the magnitude of the excess volume have been determined. It has been shown that local
f luctuations in the internal stresses of these materials can significantly exceed the values of the macroscopic
ultimate strength.
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INTRODUCTION
The volume per mass unit of the nanocrystalline

materials (nanomaterials) produced by the extreme
mechanical treatments (mechanical alloying, equal-
channel angular pressing, etc.) increases slightly com-
pared with that of single crystals of the same chemical
composition [1, 2]. The measured volume increment

 is called the excess volume [1] or free volume [2],
and its value depends on the average size of the nano-
crystallites. The free volume can significantly affect
the kinetic and thermodynamic properties of the
nanomaterials. For example, in nanomaterials, the
rate of mass transfer [3], as well as the solubility of the
impurities and alloying elements [4], is significantly
enhanced; the formation of metastable phases and
chemical compounds, which do not exist in single
crystals, becomes possible [5]; and anomalies of some
physicomechanical properties are observed [1, 6].

The reason for these significant changes in the
properties of the nanomaterials becomes clear if we
note that many of these properties are structure-
dependent. The only significant difference in the
nanomaterials from single crystals is the presence of a
dense system of intercrystallite boundaries. Thus, the
majority of the nanomaterial properties should be
related to the properties of their system of boundaries.
Moreover, the effect of the intercrystallite boundaries
can manifest most clearly in the change of the proper-
ties of single-component materials.

From the thermodynamic point of view, the
appearance of free volume in nanomaterials occurs by
no means accidentally, since the thermodynamic the-
ory of surface phenomena suggests that the interface
boundaries can have their own excess volume [7].

Hence, the free volume of the nanomaterials must be
proportional to the total number of the intercrystallite
boundaries. Taking this fact into account, using the
available experimental data on the measurements of
the free volume in metallic nanomaterials with an
average size of nanocrystals of about  nm (see,
e.g., [1, 6]), it can be shown that the value of the free vol-
ume in the nanocrystalline materials with  nm
can reach  ~ (1–3)%. These estimates are in good
agreement with the calculated values given in [2].

The intercrystallite boundaries substantially
change the local atomic density of materials [7, 8] and,
thus, introduce irreversible volumetric deformations
into the crystal lattice. In nanomaterials, these defor-
mations can cause significant internal stresses [1, 6]. If
the volume fraction of the intercrystallite boundaries
is large, the change in the atomic density and the inter-
nal stresses will contribute significantly to the thermo-
dynamic potentials [7], which provides the difference
between the properties of the nanomaterials and single
crystals.

The irreversible changes in the atomic density that
are introduced by the system of the intercrystallite
boundaries cannot be measured experimentally. How-
ever, they must contribute to the value of the free vol-
ume of the nanomaterials, since it characterizes the
irreversible volume changes that occur upon the severe
plastic deformation. This means that there can be a
correlation between the values of the internal stresses
and free volume. Such a correlation would be conve-
nient for experimental investigations of the nanomate-
rials in the stressed state.

The aim of this work is to determine the analytical
dependence of the stress-state characteristics of the
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single-component nanocrystalline materials on the
value of the free volume.

THEORETICAL MODELS
Statistical Determination of the Fields 

of Internal Stresses and Free Volume of Nanomaterials
The structure of a single-component nanomaterial

can be characterized by a set of macroscopic parame-
ters, i.e., the number of atoms  the average size of
the crystallites D, a set of values χ that define the tex-
ture parameters, etc. The application of this definition
allows one to obtain an almost infinite number of sam-
ples that vary in shape, dimension, and nanocrystallite
orientation. One of the possible ways to produce these
samples is shown below.

The volume of any single crystal can be divided in
mind into smaller nanovolumes, e.g., Bernal polyhe-
dra or Voronoi–Delaunay polyhedra [9], which corre-
spond to the macroscopic parameters of the nanoma-
terial. After this division is made, we can arbitraryly
change the crystallographic orientation of the crystal-
lites with the continuity of the material being pre-
served. As a result, we obtain a sample with one of the
possible realizations of the required nanocrystalline
structure.

We can count the total number of the samples 
which represent the macroscopically isotropic nano-
material. To this end, we should note that using 
sites of the crystal lattice we can construct  ~ 
intercrystallite boundaries of various types. The
amount of the faces in the faceting of the nanomaterial
can be calculated as follows:

(1)
Here, V is the nanomaterial volume; and a is the lattice
parameter. The majority of the nanomaterials have

 nm; therefore, at  m3 we have
 Since  the magnitude of  is

of the same order of magnitude as the total number of
the various sets of the intercrystallite boundaries, each
of which completely covers all the faces of the nano-
structure as follows:

(2)

The choice of these sets of boundaries is almost
arbitrary and is only restricted by the conditions of
mechanical equilibrium of the facets at the junctions
of the nanocrystallites. It follows from the obtained
estimates that an investigation of the relationship
between the internal stresses and the free volume in
nanomaterials requires a statistical description.

To this end, let us choose a sample of the nanoma-
terial and enumerate all the faces of its faceting of its
nanocrystallites in a definite order. Each part of the
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intercrystallite boundary (facet), which is located at a
face j (j = 1, 2, …, Nb), creates in its vicinity a nonuni-
form distribution of the atomic density 
Here,  is the radius vector of the points inside the vol-
ume of the nanomaterial;  is the radius vector of a
geometrical position of a facet center;  is the set of
parameters that characterize the macroscopic and
microscopic properties of the facet [7, 8]. The distri-
bution  differs from the atomic-density
distribution of a single crystal  as follows:

(3)

In the model of unrelaxed boundaries [7, 8], any
changes in the atomic density are completely localized
in the thin layer with a thickness on the order of the
crystal-lattice parameter (we assume that the volume
of the jth face is equal to the volume of the jth facet).
These changes are determined by inelastic displace-
ments of atoms. The changes in the atomic density
introduced by these displacements are designated by

 The function  is
defined by an atomic model of the corresponding facet
and is assumed to be known for each facet. We deter-
mine the distribution of irreversible changes in the
atomic density over the volume of the entire nanoma-
terial by the summation over all faces of the nano-
structure:

(4)

Inhomogeneous changes in the density  cre-
ate a field of internal pressure  in the material,
which causes additional elastic deformations. The ten-
sors of elastic stresses  and the total deformations

 in the bulk of the nanomaterial can be determined
by solving the corresponding boundary problem [10,
11]. The set of equations for this problem includes the
equation of the mechanical equilibrium

(5a)
the constitutive equations of the medium

(5b)

compatibility equations for the  tensor [10, 11],
and the conditions of equilibrium for the internal A
and external  boundaries of the material

(5c)

where  , and  are the tensors of the
elastic and inelastic deformations, respectively; n is the
vector normal to the considered surfaces; and fA and fex
are the density vectors of the corresponding surface
forces.

Given the stress tensor , using the constitutive
equations, we can determine the tensor of elastic
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deformations  and the corresponding additional
changes in the atomic density  in the bulk of the
material, including the volume of the system of
boundaries. Then, the total distribution of the changes
in the atomic density of the bulk of the nanomaterial is
given by the following expression:

(6)
The difference  can be correlated with the

volume deformation at any point described by r. To
this end, in the small vicinity of this point, we fix a cer-
tain number of the nearest-neighbor atoms, N0. In the
case of the single crystal, they would occupy the vol-
ume V0, but in the case of the nanomaterial, the local
volume is

(7)
where  is the change in the volume at point r due
to the displacement of atoms. Hence, the following
relationships appear:

(8)

(9)

(10)

Here,  is the total local volume deformation at
the point r of the nanomaterial and 
and  are the local and macroscopic atomic
densities of the nanomaterial and of the single crystal,
respectively. The volume deformation  is related
to the invariants of the total deformation tensor  as
follows [11]:

(11)

where  (i, j = 1, 2, 3) are the components of the ten-
sor  and  are the components of the unit anti-
symmetric tensor of the third order. The repetition of
symbols implies summation over them.

It follows from Eqs. (3) and (5)–(9) that the tensor
of  can be expanded into the elastic  and
inelastic  components:

(12)

(13)

where  is the distribution of the irrevers-
ible volume deformation, which is determined by the
jth face.

For different samples of the nanomaterial, the set
of parameters  and  can have arbitrary values. This

means that the functions   , and 
should be considered as functionals of a random array
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of the parameters  and  Therefore, only their aver-
age values over the statistical ensemble, i.e., 

 , and , which take into
account an array of all arbitrary realizations of the
samples that represent the structure of the nanomate-
rial, can be useful for investigations. The angular
brackets  designate averaging over the statistical
ensemble.

The systems of boundaries can introduce a free vol-
ume into the nanomaterial, which is determined by
the following expression:

(14)

Angular brackets  designate averaging over the
entire volume of the nanomaterial. Therefore, to cal-
culate internal stresses in the nanomaterials, it is suffi-
cient to solve the boundary problem (5a)–(5c) for the
stochastic field of the volume deformation ,
which is associated with the system of intercrystallite
boundaries.

The solution of this problem for even one randomly
chosen sample encounters significant difficulties of
both calculational and physical character. The calcu-
lation difficulties are due to the fact that the number of
faces in each sample is too large, i.e.,  and the
number of samples required to construct the statistical
ensemble is still greater, i.e.,  Difficulties of
a physical character emerge in an attempt to establish
the constitutive equations (5b).

Constitutive Equations of Elasticity 
of Isotropic Nanocrystalline Materials

The main problem of formulating constitutive
equations (5b) lies in taking into account the effect of
the total deformation  on the elastic properties of
the nanomaterials. In this case, the methods of the
nonlinear theory of elasticity are inapplicable, since the
total deformations include irreversible inelastic defor-
mations. This means that the study of deformation
fields in the bulk of the nanomaterials requires imple-
menting completely different methods of investigation.
The multiparameter approximation of Grüneisen [12]
can become the possible base for these methods.

In this approximation, a differential correlation is
established between the phonon frequencies  of
the isotropic material and its volume V as follows:

(15)
where s is the index that indicates the polarization of
the normal oscillation,  is the wave vector, and  is
the constant of the normal oscillation  The exis-
tence of a correlation between the phonon frequencies
and the volume is characteristic of the nonlinear
deformation theory in which the deformations can be
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irreversible. That is why the relationship (15) is fully
applicable to the description of the intercrystallite-
boundary systems.

The values of the frequency of the long-wave oscil-
lations are determined by the macroscopic properties
of the elastic body. For this range of the spectrum, the
integration of Eq. (15) with a fixed wave vector results
in the following expression:

(16)
Here, ε is an arbitrary volume deformation of a
medium;  and  are the velocities of an acous-
tic mode with s polarization in deformed and unde-
formed media, respectively;  represents two con-
stants that are independent of k; and  where
indices l and t represent longitudinal and transverse
polarization, respectively.

Formula (16) can be used to determine the depen-
dences of the elastic moduli of the medium on the vol-
ume deformation ε. To this end, we consider the 
dependence on the elastic moduli and the mass den-
sity of the isotropic material [13]:

(17)

Here,  is the modulus of isothermal compression
of the deformed material;  is the Poisson coeffi-
cient;  is the local mass density of the
nanomaterial; and  is the macroscopic mass density
of the undeformed material.

From relationships (16) and (17), we have

(18)

(19)

(20)

Here,  and  are the modulus of isothermal com-
pression and the Poisson coefficient of the single crys-
tal, respectively.

The presented data can be used to determine the
free volume of the nanocrystalline materials.

Free Volume and Fluctuations of Atomic Density 
in Intercrystallite Boundaries

The boundary problem (5a)–(5c) for nanomateri-
als can be significantly simplified. The simplification
can be carried out using available experimental data on
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the defect structure and on the level of internal defor-
mations in nanomaterials. To this end, we divide the
volume of the nanomaterial into two parts, i.e., the
volume occupied by the system of intercrystallite
boundaries  and the total volume of the internal
parts of the crystallites 

In the  volume of the mechanically equilibrium
nanomaterials, single dislocations or their groups are
experimentally observed [1]. This means that the elas-
tic deformations in this volume should not exceed the
macroscopic elastic strength of the material. Hence,
the average values of the tensor components  in
the  volume should satisfy the following inequality:

 (i, j = 1, 2, 3).

In the  volume, the values of the components of
the tensor of the total deformation  are large, i.e.,

 ~ 1, [7, 8]. Therefore, their average value over

the material bulk  ~   is
the volume fraction of the boundaries in the material;

 ~ a, the average thickness of the boundary; and
, the total area of all faces per unit volume [7].

These estimates agree with the experimental data on
X-ray diffraction in nanomaterials [1, 6]. Now, we can
find the average size of the nanocrystallites at which we
can neglect the elastic deformations in the  volume.
To this end, it is sufficient for the following inequality be

satisfied:  As a result, we

have  and  Assuming that
 nm, we obtain  nm. This is valid for

almost any nanocrystalline material in use.
The solution to the boundary problem (5a)–(5c) in

the  volume can be also simplified by considering it
separately for each facet. This approximation is conve-
nient, since it allows one to arbitrary set the shape of a
facet and its position in the coordinate system. How-
ever, this approximation neglects the contribution
from the junctions of the crystallites into the excess
volume. In this approximation, the relative accuracy
of the calculation results is close to the ratio of the vol-
ume of all junctions to the volume of the boundary
system of the nanomaterial, which is considered satis-
factory at the magnitudes of  ~ a and  nm.

Therefore, when analyzing the internal stresses and
excess volume of the majority of practically important
nanocrystalline materials, it is sufficient to take into
account only total deformations that are only distrib-
uted over the volume of separate facets covering the
nanocrystallites.

In connection with this, we will consider the pecu-
liarities of the volume deformation distribution over a
separate intercrystallite boundary. An example of this
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boundary in a simple cubic lattice is shown in the fig-
ure. This is a symmetric tilt boundary that separates
the K1 and K2 crystallites which are turned by an angle
of θ = 36.87° relative to each other about the axis [001]
orthogonal to the plane of the figure [7, 8]. The
boundary is characterized by the reciprocal density of
the coinciding sites  and a set of microscopic
parameters which are defined by the vector d. This
vector describes the shift of the atomic plane  of
the crystallite K2 relative to the atomic plane  of
the crystallite K1. The planes are specified in the crys-
tallographic coordinate system (x1, y1, z1) of the K1
crystallite. For convenience, we assume that the area
of the boundary is not limited, and the distribution of
the volume deformation  is averaged over the
thickness of the boundary.

In this case, each of the facets located at face j of
the system of faceting of the nanocrystallites,
where , has a two-dimensional peri-
odic or quasiperiodic structure [7, 8]. Therefore, the
function  that corresponds to the facets is also
periodic or quasiperiodic. It is convenient to write it as
follows:

(21)

Here,  is the value of  aver-
aged over the area of a facet at the jth face;  is
a function that describes the deviation of the atomic
density in the plane of the intercrystallite boundary
from the average value (f luctuation): 
The angular brackets  designate averaging over the
area of the jth facet. Since the different types of
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boundaries at the nanocrystallite faces are located
randomly, the values of  are also random.

The deformation  at each point in the vol-
ume of the jth facet induces an appropriate internal
pressure . In this case, the condition of the
mechanical equilibrium (5c) should be satisfied. The
application of this condition to a separate facet means
that the average value of the pressure over the area of
the facet must be equal to the external pressure p0 as
follows:

(22)

Condition (22) allows one to determine the values
of  for all facets . Indeed, if the tem-
perature is fixed and the macroscopic continuity of the
material is retained, the pressure  correlates with
the volume deformation ε via the following differential
equation:

(23)

This equation follows from the thermodynamic

relationship  and local dependence

 where T is the absolute temperature.
Therefore, at , based on condition (22), along
with expression (23), the equation for determining the
value of  can be derived. The explicit form of this
equation is derived by integrating expression (23), tak-
ing into account relationships (18) and (19).

The direct substitution of expressions (18) and (19)
into formulas (22) and (23) results in the equation that
contains the required parameter  in the arguments
of the special functions. The solution to such equa-
tions is possible only by numerical methods. However,
in the majority of practically important cases, the
problem can be solved analytically. To this end, we
expand expressions (18) and (19) into Taylor series. As
a result, limiting the series to the square power of , we
have the following equations:
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In this case, Eq. (22) has a fairly simple form

(31)

As the first approximation, we assume that
 Assuming that, in (31)  ~ 

we find

(32)

Expression (32) establishes the correlation between
the value of the free volume of an individual intercrys-
tallite boundary and fluctuations of the atomic density
of its structure.

Only the average value of  over the statistical
ensemble has practical significance. This value is equal
to the average density of the distribution of the excess
volume over the system of intercrystallite boundaries
and can be determined by the following expression:

(33)

In the considered approximation, formula (14)
defines the value of the excess volume of the nanoma-
terial as follows:

(34)
where V0 is the volume of the single crystal, and

(35)
is the specific value of the excess volume of the nano-
crystalline material.

It can be concluded from the above-described esti-
mates that, in the case of the nanomaterials, we have

 ~ (1–3) × 10–2. This means that the approxima-
tion introduced by formulas (24)–(32) describes the
volume changes in the nanomaterials with fairly high
accuracy.

Elastic Constants and Internal Stresses 
in Nanocrystalline Materials

Let us determine the values of the elastic constants
of the nanomaterial. After averaging expressions (24)
and (25) over the volume and over the statistical
ensemble, we obtain the following linear dependences
of the elastic constants on the value of 

(36)

(37)
Using expressions (26) and (33), we find the mag-

nitude of the mean-square f luctuation of the internal
pressure  in nanocrystalline materials as
follows:
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The pressure is determined as the average value of
the diagonal components of the stress tensor [10, 11].
That is why expression (38) provides a convenient
estimate of the stressed state of the nanocrystalline
materials.

DISCUSSION
Expression (38) allows one to estimate the stressed

state of the nanomaterials using the known value of 
while the formulas (16), (20), (32), (33), and (35)–(37)
can be used in the experiments to determine 

In particular, the inhomogeneous deformation of
the crystal lattice enables the broadening of X-ray dif-
fraction lines. This effect is used to determine the

mean-square deformation  in

nanomaterials [1, 6]. The angular brackets  desig-
nate averaging over the volume, while  is the
local change in the interplanar spacing d of the lattice.
The volume and the linear deformations are con-
nected at point r by the relationship 
Hence, using (32), (33), and (35), we find

(39)

This relationship connects the average values of
internal deformations in the nanomaterials that are
experimentally determined using the excess volume.

Other approaches to the experimental determina-
tion of  , and  are given by the formulas (16),
(20), and (36), (37). For example, the dependences
that are specified by expressions (16) and (20) can be
measured [14]. This makes it possible to obtain two
equations that connect the quantities  , and 
for a fixed stressed state of the material. On the other
hand, the quantity

, (40)

which is the average value of the constants  and 
over the acoustic spectrum (Grüneisen constant [15]),
can also be determined experimentally. Its values for
many materials are well known [15]. Thus, the experi-
mental data provide an opportunity to construct a
closed system of three equations that define three
required values, i.e.,  , and  Measurements of
the elastic moduli of the nanomaterials and the appli-
cation of the expressions (27)–(39), (36), (37), and
(40) provide an opportunity of the independent deter-
mination of  , and 

For approximate numerical estimates, expressions
(36) and (37) can be used in a simpler one-parametric
Grüneisen approximation. To this end, it is sufficient
to assume that  Let us estimate the mod-
ulus of isothermal compression of nanocrystalline
iron in this approximation assuming in formula (37)

Nm,ε

Nm.ε

( )
1 22

d
S

( )
V

d dε = Δ r

...
V

( )d dΔ r

( ) 3 ( ) .V d dε ≈ Δr r

1 2
d Nm Gb l 1 0{ ( 0.5 (1 ))} 3.ε = ε υ γ − σ + σ

Nm,ε lγ tγ

Nm,ε lγ tγ

G l t( 2 ) 3γ = γ + γ

lγ tγ

Nm,ε lγ t.γ

Nm,ε lγ t.γ

l t G.γ = γ = γ
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that   Pa,  [15], and
~  In this case, the relative change in

the compression moduli is  ~

 It is an easily measurable quantity.

In the approximation of , the ratio of the
values of  and  can be estimated by formula (39);
e.g., for nanocrystalline iron at ,
we obtain  (0.7–1.2) × 10–2. These estimates are
in good agreement with the known experimental data
[1, 6]. Thus, relationship (39) can be used to experi-
mentally estimate the value of the excess volume of the
nanomaterials.

In the same approximations, we now calculate the
mean-square of the f luctuation of the internal pres-
sure in nanocrystalline iron. To this end, we substitute

 ~ 10–2 into formula (38). As a result, we obtain

 Pa. For comparison, here, we
provide the magnitudes of the theoretical and macro-
scopic ultimate strength for iron, i.e.,  Pa
and  Pa, respectively [15]. It can be seen
from these estimates that the local f luctuations of the
internal stresses in the nanomaterials can significantly
exceed the value of  Since the high internal stresses
are found only in small volumes at the intercrystallite
boundaries with  the material is not
destructed on the macroscopic level. Here, L ~ (2–5)a
is the period of the change in the atomic density in the
plane of the high-angle boundary [7, 8]. However, it is
necessary to take into account such high values of local
internal stresses in the analysis of the physical pro-
cesses that occur in the nanomaterials.

CONCLUSIONS

(1) Elastic properties and other characteristics of
the stressed state of the single-component nanomate-
rials are defined by the value of the excess volume.

(2) The f luctuations of the internal stresses in the
nanomaterials can significantly exceed the value of the
macroscopic ultimate strength.

(3) The value of the excess volume in the single-
component nanomaterials is characterized by the
nonlinear effects caused by the dependence of the
elastic moduli on the irreversible volume deformation
introduced by intercrystallite boundaries.
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0,Δγ ≈ 11
0 1.7 10K ≈ × G 2γ ≈

Nmε 2(1 3) 10 .−− ×
0) 0(K K K−

2(5 15) 10 .−− ×

0Δγ ≈
Nmε dε

2
Nm (1 3) 10−ε = − ×

dε ≈

Nmε
1 22 101.2 10pδ ≈ ×

10
Th 2 10σ ≈ ×

8
Fr 5 10σ ≈ ×

Fr.σ
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