

МАТЕРИАЛЫ

XIX Международной научно-практической конференции студентов и молодых ученых

ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ В ХХІ ВЕКЕ

XXT-2018

21 – 24 мая 2018 года, г. Томск

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ИНЖЕНЕРНАЯ ШКОЛА ПРИРОДНЫХ РЕСУРСОВ
ИНЖЕНЕРНАЯ ШКОЛА НОВЫХ ПРОИЗВОДСТВЕННЫХ ТЕХНОЛОГИЙ
ИНЖЕНЕРНАЯ ШКОЛА ЯДЕРНЫХ ТЕХНОЛОГИЙ
ИССЛЕДОВАТЕЛЬСКАЯ ШКОЛА ХИМИЧЕСКИХ И БИОМЕДИЦИНСКИХ ТЕХНОЛОГИЙ

ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ В XXI ВЕКЕ

Материалы XIX Международной научно-практической конференции имени профессора Л.П. Кулёва студентов и молодых ученых

21-24 мая 2018 г.

УДК 54+66(063) ББК 24+35л0 X46

Химия и химическая технология в XXI веке : материалы X46 XIX Международной научно-практической конференции имени профессора Л.П. Кулёва студентов и молодых ученых (г. Томск, 21–24 мая 2018 г.) / Томский политехнический университет. — Томск : Изд-во Томского политехнического университета, 2018. — 609 с.

ISBN 978-5-4387-0815-5

В сборнике представлены материалы XIX Международной научно-практической конференции имени профессора Л.П. Кулёва студентов и молодых ученых «Химия и химическая технология в XXI веке». В докладах обсуждаются проблемы химических исследований и современных материалов. Большое внимание уделено исследованиям в области подготовки и переработки углеводородного сырья, синтезу специальных органических соединений и их применению в окружающем мире. Значительная часть докладов посвящена экологическим изысканиям молодых ученых при исследовании промышленных и урбанистических объектов. Описаны различные математические подходы для моделирования процессов и аппаратов химической технологии.

Мероприятие проводится при финансовой поддержке Российского фонда фундаментальных исследований, Проект № 18-33-10007.

УДК 54+66(063) ББК 24+35л0

Оргкомитет 634050, Томск, пр. Ленина, 43а, ТПУ, ауд. 136,

конференции: ОХИ ИШПР ТПУ

Тел. +7-913-809-91-17 e-mail: orgcomHHT@tpu.ru

hht.tpu.ru

СОДЕРЖАНИЕ

ПЛЕНАРНЫЕ ДОКЛАДЫ27
New Generation Chromophores and Fluorophores for Photodynamic Therapy and Other Bio-Medical Applications
New approaches to large scale monitoring of various biologically active organic compounds using bare and modified electrodes based on non-traditional electrode materials
Active pharmaceutical substances – possibilities and expectations
Vibrational spectroscopy – from macro- to nano-world
Design of robust Ni-based catalysts and the application of an intensified process for CO ₂ dry reforming of methane to Syngas
СЕКЦИЯ 1 ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ И МАТЕРИАЛОВ
Направления исследований фундаментальных свойств нанопорошков металлов. Проблемы подготовки кадров высшей квалификации по наноматериалам
Повышение запасенной энергии в микро- и нанопорошках металлов облучением СВЧ
Влияние нормы природного цеолита на процесс сорбции катионов серебра (I) и индия (III)
Влияние окисления наноалмазов на транспортные свойства композитов на их основе
Разработка стекол с высоким содержание оксидов РЗЭ с комплексом специальных оптических свойств37 <i>Р.О. Алексеев, В.И. Савинков</i>
Получение сорбента на основе кремнезема, модифицированного полибреном и ферроном для концентрирования цветных и тяжелых металлов
Роль обесцвечивателей в производстве стекла, синтезированного на основе некондиционного сырья40 <i>И.И. Альбаева, Р.Ф. Хажиахметова</i>
Плазмохимический синтез наноразмерных порошков оксидов иттрия и циркония из водных нитратных растворов с добавлением органического компонента
Изучение марганец-замещенных ферритов лантана-стронция в качестве электродных материалов топливных элементов
Разработка технологии гранулированного пеностекла

Получение керамики на основе ${\rm Si_3N_4}$ методом искрового плазменного спекания	44
Исследование возможности нанесения медных порошков на сталь 12X18H10T и фторопласт-4	46
Синтез керамических и стеклокерамических матриц, содержащих цезий, предназначенных для активных зон источников ионизирующего излучения	47
Исследование золы-уноса Северской ТЭЦ	48
Получение керамических материалов триботехнического назначения на основе нитрида кремния	49
Новый способ получения биметаллических Pd–M (M–Sn, Ga) наночастиц	50
Влияние состава и реологических свойств шликера на качество отлитой ленты и спеченную керамику $O.B.\ Бородич$	52
Свойства цемента с гидроалюминатной добавкой	53
Получение и термические свойства молибденофосфатных стёкол	54
Расчёт теплопередачи в графитовом реакторе	55
Установление области стеклообразования в системе WO_3 – SiO_2 – P_2O_5	57
Исследование физико-механических свойств газоблоков с диатомитами	58
Разработка составов бетонной смеси для 3D печати	59
Влияние технологических параметров на синтез оксинитрида алюминия	60
О влиянии энергетики процесса плазмодинамического синтеза в системе «железо-кислород»	62
Исследование процесса кристаллизации порообразователя для создания керамики с проницаемой пористостью	63
Синтез, характеризация и цитотоксическая активность комплексов Cu (II) с производными енаминдиона Ю.А. Еремина	65
Исследование шлаковых отходов Северской ТЭЦ	66
Изучение влияния условий искрового плазменного спекания на структуру и свойства керамики на основе оксинитрида алюминия	67
Коррозионное поведение никеля при осаждении иммерсионных покрытий	68
Исследование прочности и долговечности безобжиговых высококремнеземистых материалов	70
Формирование нанопроводов оксида цинка на подложках с развитой поверхностью для газочувствительных слоёв	71

Синтез, строение и изучение свойств комплексов переходных металлов с производными тетразола $A.\mathcal{A}$. Иванова	72
Использование техногенных материалов в производстве сульфоалюминатного клинкера	73
Золь-гель синтез и свойства материалов на основе системы SiO_2 – P_2O_5 – CaO – MgO	74
Определение физико-механических свойств карбамида	75
Электрокинетические свойства биметаллических наночастиц с различным соотношением металлов C.O. Казанцев, $A.H.$ Фоменко, $A.H.$ Кондранова	77
Влияние высокочастотного электромагнитного излучения на пеностекло с покрытием	78
Получение упрочненной пористой керамики с проницаемыми порами	79
Комплексы металлов и органические макроциклические кавитанды кукурбитурилы	80
Разработка перспективных материалов для использования в химических циклах	81
Синтез алюмината Ва–Са методом непрерывного осаждения	82
Определение сорбционных свойств различных минералов при извлечении ими из водных сред ионов тяжёлых металлов	83
Влияние суспензий нанодисперсного оксида алюминия на свойства портландцемента	85
Синтез гидроксиапатита кальция методом гомогенного осаждения в присутствие пектина	86
Алюмосиликатные микросферы летучих зол — прекурсоры микроисточников радиоактивного излучения для ядерной медицины	87
Состав металлизационной пасты для металлизации фарфора	89
Получение композитных порошков ${\rm ZrO_2/OYHT}$ и ${\rm ZrO_2/hahoboлokha}$ ${\rm Al_2O_3}$ $A.A. Леонов$	90
Повышение термической стабильности катализаторов Me/C (Me – Ru, Pd, Pt) в окислительной и восстановительной среде	92
Огнезащитные силикатные составы для дерева <i>Е.М. Мальцева, К.А. Шаркевич</i>	93
Исследование наноструктурных сорбционных материалов для очистки воды от микробиологических загрязнений	94
Расчет и анализ кривых плавкости силикатных материалов	95
Процессы очистки воды, содержащей растворенные гуминовые вещества, соединения кремния и ионы железа в блочно-модульных станциях с производительностью до 2 400 м ³ в сутки	97

Исследование получения силикатов бария, используя гидросиликагель, выделенный из серпентинов С.А. Меликян	98
Изучение условий протонирования слоистого ниобата калия, аттестация термических и электрических свойств	99
Влияние ванадия на электрокаталитическое поведение многокомпонентных сплавов (TiCr $_{1,8}$) $_x$ V $_{1-x}$ и (TiCr $_{1,8}$) $_x$ V $_{1-x}$ + Zr $_7$ Ni $_{10}$ в реакции выделения водорода	100
Получение карбида кремния с высокими физико-механическими свойствами с применением методов механической активации и искрового плазменного спекания	102
Разработка технологии сухой газобетонной смеси	103
Плазмодинамический синтез в системе Si–C–N–O	104
Локальная кристаллизация литиевониобиевосиликатного стекла фемтосекундным лазерным излучением	105
Влияние способа получения порошка нитрида алюминия на его структурно-физические и технологические свойства	107
Зажигание гелеобразного топлива в условиях локального нагрева источником ограниченного теплосодержания	108
Влияние состава шихты на свойства высокотемпературной керамики	110
Защита от коррозии сплава АД31 в хлоридсодержащей среде марганец и молибденсодержащими конверсионными покрытиями	111
Поиск оптимальных условия синтеза наноразмерных порошков CoFe ₂ O ₄ методом анионообменного осаждения	113
Возможности использования золы уноса ТЭЦ в технологии алюмосиликатной керамики для нефтедобывающей отрасли	114
Влияние природы водоредуцирующих добавок на свойства шлакосодержащих цементов	115
Определение оптимального режима нагрева шихты при СВ-синтезе интерметаллидной матрицы на основе системы Zr—AI для дисперсионного ядерного топлива	116
Влияние энергии плазменной струи на продукт плазмодинамического синтеза системы Ti–B	117
Синтез и каталитические свойства систем CeO_2 – ZrO_2 – Me_2O_3 , где Me – Sm , Bi , Gd , Nd , Bi реакции окисления монооксида углерода	119
Получение металлического композиционного материала Мо–Си искровым плазменным методом Ю.Н. Половинкина, Ю.Л. Шаненкова	120

Сравнительные исследования эффективности обезжелезивания и деманганации подземных вод в процессе использования известных каталитических материалов	.121
Исследование механических свойств кристаллического и аморфно-кристаллического Ti ₅₀ Ni ₂₅ Cu ₂₅ сплава после электролитического насыщения водородом	.123
Применение перлитовых микросфер в тампонажных растворах	124
Влияние катодного смещения от стационарного потенциала поверхности на шероховатость покрытия в электролите химического никелирования	. 125
Подбор состава для безвисмутовой керамики на основе оксида цинка	126
Получение SiC-композита со спекающей добавкой на основе элементоксанового олигомера, армированного многослойными углеродными нанотрубками	.128
Формирование неметаллических неорганических наноструктурных радиопоглощающих покрытий на сплавах алюминия и титана в микроплазменном режиме	.129
Низкотемпературное окисление монооксида углерода на катализаторе Au/MeOx и Au/CuO/MeOx, где Me — Al, Sn	.131
Определение параметров флотации углеродного сырья с использованием углеводородных соединений	. 132
Газоблоки на основе механоактивированных цементов	133
Электроосаждение титана из расплава электролита под действием импульсного тока С. Сейтказы, С.А. Тюрпеко, М.А. Шипейкина, Е.Ю. Коновалова	134
Катализаторы Au/CuO/CeO₂−MnO _x для конверсии CO	136
Технология и свойства пористого гранулированного стеклокристаллического материала из высокодисперсного кремнеземистого сырья	.137
Получение новых железосодержащих препаратов для ветеринарии	138
Фотолюминесцентные комплексы Cd (II) и Zn (II) с производными триазола	139
Изучение процесса регенерации сернокислых травильных растворов с помощью щавелевой кислоты А.О. Соломонова, А.С. Пашко	.141
Определение содержания свободного кальция ускоренным методом	142
Электроразрядная технология очистки природных вод, содержащих органические вещества	.143
Использование железосодержащих осадков станций обезжелезивания воды для получения водоочистных сорбционных материалов	. 144

Расчет реактора для непрерывной технологии синтеза активных веществ для металлопористых термоэлектронных катодов	146
Д.С. Тасмасыс, А.О. Безматерных, Ю.Б. Швалев	
Получение алюминиевых порошков в среде аргона и гелия	147
Композиты на основе полилактида-кальциевых фосфатов для 3д-печати	148
Разработка самонивелирующейся строительной смеси на основе гипсоцементно-пуццоланового вяжущего	150
А.В. Урбанов, Е.А. Дмитриева	
Исследование влияния термической обработки на структурный и химический состав побочных продуктов процесса обогащения серпентинитовой руды	151
Влияние функциональных добавок на свойства строительного гипса	152
Влияние концентрации добавки бора на спекание и свойства керамики на основе карбида кремния полученной методом искрового плазменного спекания	153
Свойства сульфоалюминатного цемента с добавкой доменного гранулированного шлака	155
Синтез и свойства обменных форм цеолита типа Y	156
Исследование влияния газовой среды на материал, полученный с помощью коаксиального магнитоплазменного ускорителя	157
Исследование состава плазмообразующего газа в микроплазменном реакторе	158
Особенности фазового состава продуктов сгорания нанопорошка алюминия с пентаоксидом тантала <i>А.О. Чудинова</i>	159
Распределение температурных полей при горении интерметаллидных шихт в режиме CBC	160
Синтез пигментов на основе продуктов фтораммонийной обработки циркона	162
Биокерамика композитного ZrO ₂ /ГАП состава синтезированная реакционным искровым плазменным спеканием	163
Фотокаталитическая активность гетероструктур на основе оксида цинка	164
Коррозионное поведение сплава АД31 в присутствии перманганата калия	165
СЕКЦИЯ 2 ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ И МАТЕРИАЛОВ	167
Люминесцентные комплексы меди (I) и серебра (I): новые оригинальные структуры и функциональные свойства	167
Широкий спектр противовирусной активности производных каркасных монотерпенов	168

Синтез тимин содержащие мономера ПНК на основе глицина	169
Термодеструкция моносахаридов в присутствии ароматических аминов	170
Получение биоразлагаемых авиационных масел на основе растительного сырья	172
Синтез и исследование координационных соединений бис(3,4,5-триметилпиразол-1-ил)алканов	173
Образование газогидратов – одно из свойств нефтей при транспорте по трубопроводу в зоне Арктики . <i>А.Г. Антонов</i>	174
Синтез новых гетероциклических систем с использованием циклических иодониевых солей	176
Получение и доказательство строения N-алкилзамещенных нитрозопиразолов с альфа-нафтильным заместителем	177
Олигомеризация амиленов на микро- и микро-мезопористом цеолите Beta	178
Получение оксазолина	180
Получение окислительных реагентов на основе 2-иодбензолсульфокислоты	181
N-модификация 5-[(дифенилфосфорил)метил]-1,2,4-триазол-3-тионов обладающих потенциальной нейротропной активностью	182
Амбивалентность иодониевых солей на основе 2-иодфенилбензимидазола: структурные особенности Ю.А. Власенко	183
Деполимеризация отходов полиэтилентерефталата с последующей возможностью синтеза новых сополимеров, как перспективный метод рециклинга твердых отходов	185
Разделение четырехкомпонентных смесей с использованием комплексов различного функционального действия	186
Применение адамантилзамещенных комплексов PEPPSI-типа в катализе арилирования тиофенов М.С. Денисов, В.А. Глушков	187
Синтез изо-салирепозида	188
Получение 4-гидрокси-6-трифторметил-2-(3,4-диметоксифенил)-1H-индола	190
Синтез ранее неизвестных производных ряда пиразола с алкоксиметильными и арильными заместителями	191
Исследование процесса селективного превращения глицерина в молочную кислоту	192
Основание Трёгера как единственный источник хиральности в новом саленовом катализаторе для нуклеофильного раскрытия окиси пропилена	193

производным 8 приводило к образованию полностью защищенного тиминсодержащего мономера 9. Удаление метильной защиты действием

2M NaOH давало Вос-защищенный тиминовый дейтерированный аед-мономер 10.

Список литературы

- 1. Nielsen P.E.; Egholm Berg M.R.H. and Buchardt O. Science, 1991. 254. 1497.
- 2. Corradini R.; Sforza S.; Tedeschi, Totsingan T.F.; Manicardi A. and Marchelli R. Current
- Topics in Medicinal Chemistry, 2011.— 11.— 1535—1554.
- 3. Nielsen P.E. Letters in Peptide Science, 2003.–10.–135.

ТЕРМОДЕСТРУКЦИЯ МОНОСАХАРИДОВ В ПРИСУТСТВИИ АРОМАТИЧЕСКИХ АМИНОВ

Г.М. Абдуллина

Научный руководитель - к.х.н., доцент И.С. Черепанов

Удмуртский государственный университет 426034, Россия, г. Ижевск, ул. Университетская 1, cherchem@mail.ru

Одним из основных методов конверсии углеводов является их термодеструкция, которая существенно ускоряется в присутствии аминокомпонентов, при этом большинство работ по данной проблеме относится к классическим условиям реакции Майяра, в то время как реализация процессов в неводных и смешанных системах с применением ариламинов позволяет в ряде случаев оптимизировать условия син-

теза и получать ряд новых продуктов [1, 2]. В настоящей работе представлены результаты по изучению процессов взаимодействия D-глюкозы с п-толуидином в среде осушенного этанола (98,5%) в присутствии уксусной кислоты с целью оценки соотношения различных путей протекания углевод-аминной термодеструкции.

Процессы проводились термостатированием (80°C) реакционной системы D-глюкоза

(0,002 моль) — п-толуидин (0,002 моль) в 20 мл этанола в присутствии каталитических количеств уксусной кислоты в колбах с обратным холодильником в течение 1,5 часа. Контроль за ходом реакций осуществлялся методом спектрофотометрии (спектрофотометр СФ-2000) и тонкослойной хроматографии (пластинки «Silufol»), для выделенных твердых продуктов снимались ИК-спектры (ИК-Фурье спектрометр ФСМ-2201) и проводился элементный анализ (элементный анализатор Vario MICRO Cube»).

В отличие от дисахаридов [3], амино-карбонильные реакции моносахаридов протекают с образованием значительно меньшего количества полимерных циклических азотсодержащих продуктов, что подтверждается данными элементного анализа. Можно считать, что процесс протекает через образование на начальных стадиях аминоконъюгатов, которые были выделены и идентифицированы на основании анализа ИК-спектров, дальнейшие превращения протекают через ряд равновесий и необратимых процессов, включающих енольные формы, которые в итоге трансформируются в замещенные полимерные гетероциклические производные.

Ключевой стадией первичных процессов предполагается перегруппировка Амадори, образующийся продукт претерпевает последующие превращения с элиминированием ариламина [2] и образованием дезоксозонов, формирующих впоследствии структуру «браун»-продуктов.

Оценка интенсивности нарастания оптической плотности в области длин волн 400—420 нм показывает, что в исследуемой системе наблюдается достаточно высокая скорость меланоиди-

Список литературы

- 1. Jackson M., Appell M., Blackborn J. // Ind. Eng. Chem. Res., 2015.– Vol.54.– P.7059–7066.
- 2. Tawara J., Johnston J., Goodall M. // J. Agric. Food Chem., 1996.— Vol.44.— P.3983—3988.
- 3. Шульцев А.Л. N-гликозиды 4-аминостирола

нообразования. Повышенная активность может быть объяснена особым механизмом образования аминоконъюгатов на начальных стадиях: в процессе термостатирования исследуемой реакционной системы в отсутствие кислотного катализатора в течение первых 30 минут наблюдалось кипение раствора над твердой фазой, впоследствии происходило растворение последней и к моменту окончания измерений снова выпадал осадок, идентифицированный на основании температуры плавления и ИК-спектра как N-п-толилглюкопиранозиламин. В присутствии катализатора продолжительность начального периода оказывается меньше, но все же устойчиво наблюдается, вследствие чего нами был сделан вывод о гетерогенном гликозилировании [3] в принятых экспериментальных условиях, главной особенностью которого является зависимость скорости амино-карбонильных взаимодействий в первую очередь от конфигурации углевода; основность и, как следствие, нуклеофильность амина в данных условиях играет подчиненную роль и слабо влияет на скорость реакции [3]. Очевидно, что возможность протекания гетерогенного процесса дополнительно обеспечивается пониженной растворимостью реагентов (в первую очередь глюкозы) в этаноле.

Образующийся гликозиламин в дальнейшем претерпевает трансформацию в дикарбонильные редуктоны, среди которых, вероятно, преобладает 3-дезоксозон [4]. Можно считать, что последующие стадии протекают в соответствии с общепринятыми механизмами [4], при этом очевидно влияние растворителя и на заключительных этапах процессов, что будет детально изучено нами в дальнейшем.

- // Ж. общей химии, 2014.— Т.84.— С.242—248.
- 4. Staempfli A., Blank I., Fumeaux R., Fay B. // Biol. Mass Spectrom, 1994.— Vol.23.— P.642—646.