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RADIAL BASIS FUNCTION FOR PARALLEL MESH-TO-MESH

INTERPOLATION IN SOLVING FLUID-STRUCTURE INTERACTION

PROBLEM
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In strongly oupled �uid-struture interation simulations, the �uid dynamis and solid dynamis problems are solved

independently on their own meshes. Therefore, it beomes neessary to interpolate the physial properties (pressure,

displaement) aross two meshes. In the present paper, we propose to aelerate the interpolation proess by the

method of radial basis funtions using the matrix-free solution of the system of equations on a GPU. Also, we redue

the number of equations in the system by using an adaptive algorithm for hoosing interpolation points. The adaptive

algorithm allows to redue the number of equations of the interpolation system while preserving the quality of the

interpolation. Estimation of the e�etiveness of reduing the omputational osts based on the matrix-free approah

to solving the system, as well as evaluating the quality of interpolation, was arried out using the simulation of the

problem of modeling the �ow of �uid with a supersoni deformable nozzle.
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Introdution

Several approahes are used to simplify algorithms for the numerial solving of the Fluid-

Struture Interation (FSI) problem suh as the dereasing of the problem size, algorithms a-

elerating the omputations, the analysis methods and the use of the properties of subtasks.

Let us onsider the variants of dereasing the omputational osts at the interpolation of data be-

tween non-mathing meshes: the derease of the interpolation data; the parallelization of algorithms

taking into aount the geometry of the extended boundaries of axisymmetri bodies.

The main methods for interpolation on non-mathing meshes for the FSI simulations are surveyed

in [1, 2℄. We onsider a method based on radial basis funtions (RBF) [3℄, where the oe�ients

of the interpolant are found from the system of equations, the matrix of whih is formed using a

radial basis funtion. The hoie of the funtion determines the ondition number and density of

the matrix, and, as a result, the omputational omplexity of solving the system of equations.

The RBF interpolation has the following advantages:

• it does not require any mesh onnetivity information;

• it requires solving a sparse system of equations, espeially with the ompat basis funtions;

• it an be e�iently parallelized.

This paper is strutured as follows. Setion 2 brie�y desribes the RBF interpolation sheme for

the FSI problem. The next setion presents a new approah based on layer-by-layer mesh partitioning

for reduing the problem size. The fourth setion desribes a matrix-free solution of the interpolation

problem on a GPU.

� 1. RBF interpolation for FSI problems

Let P d
Q−1

be the d-dimensional spae of the polynomials of a degree smaller than Q − 1 and

p1, . . . , pq be a basis in this spae. The main idea of the RBF method is to �nd the required

interpolation funtion as a linear ombination of the following funtions:

w(xi) =

n
∑

j=1

αjφ(‖xi − xj‖) +

q
∑

l=1

βlpl(xi), (1.1)
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where q is additional degrees of freedom and the oe�ients αi and the polynomials pl(xi) satisfy

n
∑

j=1

αjpl(xj) = 0, 1 6 l 6 q. (1.2)

The solution of the system exists and is unique if

p(xj) = 0, for all 1 6 j 6 n and p ∈ P d
Q−1 implies p = 0. (1.3)

The system of equations (1.1)�(1.3) is always solvable if φ is a positive-de�nite radial basis funtion.

Let Ω be the domain with the given pressure pΩ. The domain with the required pressure is

denoted by Φ. The pressure interpolation between the meshes an be expressed in the matrix form

as follows:

[

WΩΩ PΩ

P T
Ω

O

] [

α
β

]

=

[

pΩ
0

]

or Aγ = b, (1.4)

here WΩΩ is the nΩ × nΩ matrix onsisting of the elements φ( ‖xi
Ω
− xj

Ω
‖ ) and 1 6 i, j 6 nΩ; PΩ is

the olumn matrix onsisting of the elements

[

1 xi
Ω

]

; α, β are the oe�ients of the interpolant; nΩ

is the number of interpolation points of the domain. The target pressure vetor pΦ is obtained by

the matrix-vetor produt

pΦ = [WΦΩPΦ]

[

α
β

]

, (1.5)

where WΦΩ is the nΦ × nΩ matrix onsisting of the elements φ( ‖xi
Φ
− xj

Ω
‖ ), 1 6 i 6 nΦ and

1 6 j 6 nΩ; nΦ is the number of interpolation points on the domain Φ; PΦ is the olumn ma-

trix

[

1 xi
Φ

]

. The dimension of the matries PΩ and PΦ depends on the type of basis funtions. For

example, the dimension of the matries WΩΩ and WΦΩ for the global radial basis funtion Thin-Plate

Spline is 3× nΩ and 3× nΦ, respetively.

Solving the system of equations (1.4) is the most omputationally expensive part of the in-

terpolation. In [4℄, it was shown that the hoie of basis funtions a�eted both the quality of

the interpolation and the solution time. The funtions providing more aurate interpolation may

require a large amount of time for the solution. The omputational ost an be optimized by (i) re-

duing the system and (ii) parallelizing the steps of the preonditioning and solution of sparse/dense

systems of equations.

� 2. Reduing the size of the system of equations

In this setion, we demonstrate reduing the size of the system of equations for the �uid-struture

interation of a supersoni �ow with a nozzle wall that has a high geometri expansion ratio [5℄.

The boundary along whih the omputational data are interpolated is quite long and the pressure is

irregularly distributed along the boundary Ω (the nozzle wall). The solution of the above problems

is onsidered within the framework of the layer-by-layer mesh partitioning method proposed in our

previous work [6℄. The method provides a on�it-free data aess during the parallel summation

of the omponents of the �nite element vetors in the shared memory of the multi-ore omputing

systems.

Let us divide the interfae part ΓΩh = ∂Ωh
of the mesh Ωh

into layers. To do this, we use the

neighborhood riterion where any two mesh ells are onsidered adjaent if they have at least one

ommon node.

The onsidered physial area and the omputational mesh are symmetrial. Therefore, the hoie

of the initial set of interpolation points is arried out in aordane with the distribution of the layers.

Here, there are two possibilities for seleting layers: along the generatrix and along the diretrix.
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(a)

(b) ()

Fig. 1. The interfae boundary partitioned into 150 layers (a); the partition into 15 layers parallel

to the diretrix (b) and the partition into 15 layers by the surfae generatrix ()

(a)
(b) ()

Fig. 2. The given pressure distribution at the boundary of the domain Ω (a); the pressure distribu-

tion obtained at the use of 15 out of 150 layers at the radial partition (b) and at the partition along

the generatrix ()

The mesh ΓΩh is the disrete desription of the rotation surfae ΓΩ with the losed diretrix. To

form layers in parallel to the diretrix ΓΩ (see Fig. 1, b) or along the surfae generatrix (see Fig. 1, ),

we use the algorithm proposed in [6℄.

The layer-by-layer partitioning is used to redue the number of interpolation points. To onstrut

the interpolant, we hoose those layers of the interfae surfae whih most aurately represent the

distribution of the interpolated data (pressure). Figure 1 shows the partitioning of the surfae

mesh into 150 layers. The dark layers orrespond to 15 layers involved in the pressure interpolation

(Fig. 1, b, ).

The quality of interpolation is ompared for the loal φ(‖x‖) = 1 − ‖x‖, φ(‖x‖) = (1 − ‖x‖)2,
the global φ(‖x‖) = e−‖x‖2

, φ(‖x‖) = ‖x‖2 log ‖x‖ basis funtions and Inverse Distane Weighting

(IDW) [7℄, using di�erent partitions and numbers of layers. The quality of the pressure interpolation

an be estimated as the relative error omputed by the ratio of the norms of the resultant fores of

the pressure on the interfae boundary.

Table 1 shows the results for the pressure interpolation in parallel to the diretrix (Radial par-

titioning) and along the surfae generatrix (Longitudinal partitioning). In the seond olumn, the

evaluation of the interpolation quality is given for all possible interpolation points of ΓΩh .

The quality of the interpolation with the data redution depends not only on the number of

interpolation points but also on the hoie of the points (Fig. 2). When ompat basis funtions

in the form (1 − ‖x‖)2 are used, the orientation of the pressure distribution after the interpolation

depends on the partitioning. The best interpolation is ahieved for the radial partitioning of the

domain. The RBF method using the global basis funtion φ(x) = ‖x‖2 log ‖x‖ gives the best results.

44



It allows to redue the number of equations in system (1.4) by a fator of 15 with the aeptable

quality of the interpolation. The IDW interpolation gives the greatest error, even in the ase of the

full data.

Table 1. Relative error of the pressure interpolation, %

nΩ 28800 9600 5760 2880 960

Longitudinal distribution

1− ‖x‖ 0.24 3.79 10.4 15.2 349.6

(1− ‖x‖)2 0.78 7.79 69.3 74.3 365.4

IDWp=3 14.2 50.6 105 189 407.0

e−‖x‖2
0.54 1.18 2.68 8.04 147.6

‖x‖2 log ‖x‖ 0.01 0.23 1.07 5.95 28.61

Radial distribution

1− ‖x‖ 0.24 0.34 0.92 10.8 214.3

(1− ‖x‖)2 0.78 1.58 9.34 15.9 36.5

IDWp=3 14.2 53.9 111 205 534.2

e−‖x‖2
0.54 1.07 3.99 5.41 101.6

‖x‖2 log ‖x‖ 0.01 0.01 0.21 1.13 21.6

Adaptive distribution

1− ‖x‖ 0.24 1.23 1.14 0.93 4.89

(1− ‖x‖)2 0.78 0.67 1.75 2.41 1360

IDWp=3 14.2 26.1 27.3 30.8 85.1

e−‖x‖2
0.54 0.94 1.12 0.82 9.61

‖x‖2 log ‖x‖ 0.01 0.37 1.25 1.31 3.65

The obtained matrix A is ill-onditioned. When using global basis funtions, the ondition

number depends on the number and loation of the interpolation points, as well as on the type of

the basis funtions. The distane between the interpolation points in�uenes the ondition number.

As the number of interpolation points inreases, the distane between them dereases, and the

ondition number inreases.

For interpolation it is pratial to use an adaptive algorithm. It should be noted that the

interpolation error is not the only reason for its use. In [8℄, it was shown that in the RBF-based in-

terpolation, the optimal distribution for the ase of a two-dimensional spae was the asymptotially

uniform distribution of points. In the onsidered ase, at the initial non-uniform distribution of the

data, the adaptive hoie of the interpolation points is preferable sine it allows obtaining the inter-

polation point distribution providing a minimum error. Note that in the ase of the asymptotially

uniformly distributed interpolation points, theoretially, an arbitrarily high error an be obtained

for some funtions; however, for others it is unattainable. Even the use of greedy algorithms [9℄ does

not provide an optimal interpolation by the RBF method for an arbitrary funtion.

The aim of the adaptive algorithm is to ahieve a su�iently small error for the interpolation

with the use of na ≪ nΩ points only, where nΩ is the initial number of interpolation points.

The adaptive algorithm starts with a very small number of points and then re�nes the data set

by adding new points of the interpolation where the observed interpolation error is largest. The

algorithm onstruts an interpolant for the redued set of points, whih reprodues the interpolation

funtion in ertain tolerane limits. Furthermore, limits an be imposed on the number of iterations

and the total number of interpolation points (na).

In the �uid dynamis problem on a �ow in a supersoni overexpanded nozzle, the line ℓ =
= {(argminx p(x, ϕ∗), ϕ∗) ∈ Γ: 0 6 ϕ∗ < 2π} divides the set of interpolation points Ω into Γ1, where

p = p(x) is the axial symmetry region, and Γ2, where p = p(x, ϕ) (Fig. 3�5, a).

Let us apply the adaptive algorithm to the pressure interpolation for the onsidered �uid-

struture interation problem. At the �rst step, we apply it to the layers to whih the set of
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(a)
(b) ()

Fig. 3. Pressure distribution: (a) adaptive distribution with nΩ = 9600; (b) e−‖x‖2
; () 1− ‖x‖

interpolation points is divided, i.e. we redue the set of interpolation points along the oordinate x.
Thus, from all the layers we leave the minimum number of layers satisfying the error of interpolation.

At the seond step, we apply this algorithm to eah remaining layer to selet the interpolation points

with the largest error in the oordinate ϕ. Thus, we redue the number of the interpolation points

preserving the interpolation error.

Adaptive algorithm for seleting interpolation points

Let us

1) selet an initial set of layers and solve Aγ = b for na init points;

2) form and solve the linear system of the interpolation oe�ients for the initial layers Aγ = b;

3) evaluate the interpolant at all nΩ data points pΦ = Aγ;

4) ompute the residual vetor or �nd errors E(x) = p(x)− pΩ(x);

5) hek the stopping riteria, and if they are not satis�ed, inrease the iteration ount and add

new points with the largest error E(x).

The adaptation is suessfully ompleted if the residual is smaller than the given tolerane.

In addition to the pressure p = p(x, ϕ) determined on Ω, the gradient grad p is also known. It

is used as an indiator of the addition of interpolation points. Layers and interpolation points are

added to the minimal set of points when they are loated in regions of the largest gradient.

In the absene of any additional information on the distribution of the interpolated data (e.g.,

in the ase of the pressure interpolation it is a gradient), the indiator of the interpolation error is

formed on the basis of loal basis funtions or by the IDW method.

Table 1 shows the error of the pressure interpolation using the adaptive distribution of interpo-

lation points. It should be noted that the adaptive hoie of interpolation points inreases of the

ondition number of the matrix of the system of equations (1.4), and, thus, the iterative solution

proess onverges slowly.

The adaptive distribution of the interpolation points using the loal basis funtion 1− ‖x‖ sub-

stantially redues the error for any number of interpolation points, and another loal basis funtion

(1 − ‖x‖)2 has a large error for a small number of points. The Gaussian global funtion (Fig. 5, b)

shows good results for a small number of the adaptively hosen points nΩ = 960.

� 3. Matrix-free solution of interpolation problem on GPU

One of the spei� features of the system (1.4) is a dense matrix, whih imposes some restritions

on the GPU use due to the small apaity of the available GPU memory. The problem an be resolved

by (i) using several GPUs, thereby inreasing the total memory available for the system solution;

(ii) solving the system of equations without the formation of a matrix (Matrix-Free Algorithm or

MFA). In this ase, the matrix elements are omputed as they are required in the algorithm of the

system solution. The solution of the system by the RBF method is possible without the formation of
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(a)
(b) ()

Fig. 4. Pressure distribution: (a) adaptive distribution with nΩ = 5760; (b) e−‖x‖2
; () 1− ‖x‖

(a)
(b) ()

Fig. 5. Pressure distribution: (a) adaptive distribution with nΩ = 960; (b) e−‖x‖2
; () 1− ‖x‖

a matrix. sine the matrix elements are omputed by the hosen basis funtion. This improves the

data loality and arithmeti intensity for matries and vetors. The memory requirements and CPU-

GPU ommuniations are redued. The e�ieny of the algorithm an be improved if multi-GPUs

are used in the similar way to that in [10℄.

Let us onsider in more detail the MFA omputing expenses. Table 2 shows the time of the

sequential and parallel formation of the matrix A of the system (1.4). In the MFA, the formation

time is exluded. For omparison, the time of the solution of the system with an assembled matrix is

given. The time of opying the matrix A of the system (1.4) to the GPU memory is also presented.

In addition, the time is given for solving the system with the use of both the algorithm with an

assembled matrix and the matrix-free solution algorithm.

The CPU parallelization is arried out with OpenMP. The solution of the system of equations

on several GPUs is arried out by CUDA in onjuntion with OpenMP. The system of equations is

solved by the onjugate gradient method with the diagonal preonditioner [10℄. The preision is equal

to 10−6
. In the omputations, double-preision arithmeti is used. The analysis and performane

estimations are performed on a omputing node onsisting of 2×quad-ore Intel Xeon proessor

E5-2609, 2×GeForce GTX 980 with 4Gb GDDR.

When the system of equations is solved using the assembled matrix on the CPU, the step of the

matrix formation is added. The use of GPU inreases the ost due to the neessity of opying the

data to the GPU. When the system is solved using the MFA the ost is not inreased beause there

in no need to opy the data. In the last line of Table 2, the total time is given for eah of the above

approahes.

The numerial omputations show that the use of eight CPU threads within one omputing node

redues the solution time almost by a fator of seven. One GPU allows to speed up solving the

system by a fator of 250 ompared with one CPU thead and by a fator of 50 ompared with

8 × CPU. The GPU e�ieny inreases with the inrease of the system size. Using two GPUs

redues the time by a fator of 1.5 ompared with one GPU and by a fator of 350 ompared with

the CPU. With an inrease in the number of GPUs, the strong salability an be provided only when
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Table 2. The exeution time of the interpolation for e−‖x‖2
, s

Number of equation

960 9600 19200 28800

Forming A
1× CPU 0.098 5.655 33.91 60.85

8× CPU 0.018 0.907 6.166 12.16

MFA 0.0 0.0 0.0 0.0

Copy of A to GPU

1×GPU 0.009 0.312 0.842 �

2×GPU 0.006 0.125 0.433 1.393

MFA 0.0 0.0 0.0 0.0

System solution Aγ = b

1× CPU 3.343 592.8 4732 10359

8× CPU 0.271 86.82 946.6 2273

1×GPU 0.288 2.282 12.11 �

2×GPU 1.262 2.354 8.643 16.19

Matrix-free algorithm

8× CPU 1.712 249.5 1489 4492

1×GPU 0.471 14.01 91.59 191.1

2×GPU 1.226 8.664 47.03 95.58

Total time

1× CPU 3.438 598.5 4765 10419

8× CPU 0.288 86.82 952.7 2285

1×GPU 0.317 3.53 19.12 �

2×GPU 1.283 3.38 15.24 29.74

Matrix-free algorithm

8× CPU 1.712 249.6 1489 4492

1×GPU 0.472 14.01 91.59 191.1

2×GPU 1.226 8.664 47.03 95.58

the sizes of the submatries on eah GPU are preserved.

The matrix-free solution of the system using 8 × CPU redues the solution time by a fator of

2.5. However, the solution with the assembled matrix is twie as fast as the matrix-free solution.

When one GPU is used, the time for the matrix-free solution of the system of equations is 5 times

larger than that for the solution with the assembled matrix, and in the ase of using two GPUs,

the matrix-free solution is 3 times longer. The speedup obtained at the use of one CPU thread is

55 times smaller than that when using one GPU and 110 times smaller than that when using two

GPUs. It should be noted that the use of loal basis funtions with an introdued radius of in�uene

inreases the MFA e�ieny.

Let us estimate the maximum size of the system, whih an be solved using the MFA on a one

GPU. For the matrix A formation, the oordinates of the interpolation points are used. Then

for interpolation in a three-dimensional spae, it is neessary to alloate memory for the vetor

of oordinates of length equal to nΩ × 3. The required memory size for solving the system with

the assembled matrix is nΩ × nΩ. The remaining vetors partiipating in the onjugate gradient

method oinide for both algorithms. Thus, the memory size for interpolating the mesh data in the

three-dimensional spae is dereased by a fator of nΩ/3. The maximum system size solved by the

MFA inreases by the same fator. The algorithm of the onjugate gradient method with a diagonal

preonditioner involves the use of memory to store a matrix of size nΩ×3 (the MFA) and six vetors

nΩ×1. Thus, for solving the system using the MFA and double preision arithmeti, nΩ×(3+6)×8
bytes are required. Consequently, the maximum size of a system for the GPU with a 4Gb GDDR

is about 6× 108 equations. Using two graphis ards, the possible size of the system is inreased to

1.2 × 109 equations. Thus, for the dense matries obtained on the basis of global basis funtions,

a parallel method of onjugate gradients is onstruted. The omputations are distributed among

several GPUs. The use of the matrix-free approah makes it possible to remove any limitations on

the amount of memory.
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� 4. Conlusion

We propose an algorithm for onstruting a uniform distribution of interpolation points on an

unstrutured mesh in the interpolation based on RBF. For solving the problems on unstrutured

meshes, the adaptive algorithm is proposed for sampling the data for the interpolation based on the

RBF method. The obtained results show that the interpolation on the uniformly distributed data

is of high quality and appliable for meshes of super-large dimensions. The use of the adaptive data

redution based on the layer-by-layer partition of the mesh makes it possible to redue the number

of interpolation points, but requires additional information about the data. At the same time, the

quality of the interpolation for the irregularly-spaed data is preserved both for global and for loal

basis funtions. Using a matrix-free algorithm on large meshes signi�antly redues the memory

osts assoiated with the formation of the interpolation matrix. At the same time, the omputation

loality of the matrix-vetor produt omputations inreases when solving the system of equations

by iterative methods. The solution of systems with dense matries by the MFA on the CPU does

not lead to any signi�ant time redutions. Sine the time of the matrix formation is less than 1%

of the solution time, the use of the MFA in onjuntion with the CPU is ine�ient. The matrix-free

approah is most e�etive when using a GPU, espeially when it is not possible to ahieve a large

redution of points without the interpolation quality loss. Using a GPU for solving larger systems

of equations allows minimizing the ost of additional omputations assoiated with the formation of

the matrix elements.

A further inrease in the e�ieny of the MFA is assoiated with a derease in the number

of iterations of the algorithm for solving the system of equation by onstruting e�etive parallel

preonditioners and by using loal basis funtions with the radius of in�uene.
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Ïðè ìîäåëèðîâàíèè ñîïðÿæåííîé çàäà÷è âçàèìîäåéñòâèÿ æèäêîñòè/ãàçà è äå�îðìèðóåìîãî òâåðäîãî òåëà â ðàç-

äåëåííîé ïîñòàíîâêå êàæäàÿ èç çàäà÷ ðåøàåòñÿ íåçàâèñèìî, ñ èñïîëüçîâàíèåì ñîáñòâåííîé ðàñ÷åòíîé ñåòêè.

Îáû÷íî ðàñ÷åòíûå ñåòêè �èçè÷åñêèõ çàäà÷ ÿâëÿåòñÿ íåñîãëàñîâàííûìè, ïîýòîìó âîçíèêàåò íåîáõîäèìîñòü èí-

òåðïîëèðîâàíèÿ �èçè÷åñêèõ äàííûõ (äàâëåíèÿ, ïåðåìåùåíèÿ) íà ãðàíèöå ñîïðÿæåíèÿ ìåæäó äâóìÿ ðàñ÷åò-

íûìè ñåòêàìè. Â ïðåäñòàâëåííîé ñòàòüå ðàññìàòðèâàåòñÿ ñîêðàùåíèå çàòðàò èíòåðïîëÿöèè íà îñíîâå ìåòîäà

ðàäèàëüíûõ áàçèñíûõ �óíêöèé ñ èñïîëüçîâàíèåì áåçìàòðè÷íîãî ðåøåíèÿ ñèñòåìû óðàâíåíèé íà ãðà�è÷åñêèõ

ïðîöåññîðàõ. Êðîìå òîãî, ïðåäñòàâëåí àäàïòèâíûé àëãîðèòì âûáîðà òî÷åê èíòåðïîëÿöèè, ïîçâîëÿþùèé ñîêðà-

òèòü ðàçìåð ñèñòåìû óðàâíåíèé ñ ñîõðàíåíèåì êà÷åñòâà èíòåðïîëÿöèè. Îöåíêà ý��åêòèâíîñòè ñîêðàùåíèÿ

âû÷èñëèòåëüíûõ çàòðàò íà îñíîâå áåçìàòðè÷íîãî ïîäõîäà ðåøåíèÿ ñèñòåìû, à òàêæå îöåíêà êà÷åñòâà èíòåðïî-

ëÿöèè îñóùåñòâëÿëèñü íà ïðèìåðå çàäà÷è ìîäåëèðîâàíèÿ èñòå÷åíèÿ ïîòîêà ãàçà èç ñâåðõçâóêîâîãî äå�îðìè-

ðóåìîãî ñîïëà.
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