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We consider dense subsets of Zc =
∏

α∈2ω

Zα, where Z = Zα is a separable not single 

point T1-space.
We construct in Zc, |Z| ≥ ω, (Theorem 4.1) a countable dense set Q ⊆ Z such that 
every countable subset of Q contains a countable subset, which can be project on 
“many” subsets of Z.
From this theorem follow some facts.
Theorem 4.2 states that in the product Zc of a not single point separable T1-space Z
there is a countable dense set which contains no non-trivial convergent in Zc

sequences.
The existence of such set in the product Ic, where I = [0, 1] was proved [13] by 
W. H. Priestley.
In [9] we proved that such set exists in a product of 2ω separable not single point 
T2-spaces.
Theorem 4.4 states that if Z is a separable not countably compact T1-space, then 
there is a countable dense subset Q ⊆ Zc, satisfying the following condition: if 
E ⊆ Q is a countable set and E converges to a set F ⊆ Zc, then |E \ F | < ω.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the most interesting problem in products of topological spaces is the problem of existence of dense 
subsets. It is not so hard to prove that in a countable product of separable spaces there is a countable dense 
subset. But in a case of continuum product the problem becomes much more difficult. The most well-known 
result is Hewitt–Marczewski–Pondiczery theorem (see [2,3]): the Tychonoff product 

∏
α∈2ω

Xα of 2ω many 

separable spaces is separable.
We consider the problem of the existence in the Tychonoff product of 2ω many separable spaces a dense 

countable subset with additional properties.
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In [13] W.H.Priestley proved that in I2ω there is a countable dense set, which contains no non-trivial 
convergent sequences in I2ω , where I is closed unit interval.

In [14] P.Simon proved that such countable dense set exists in D2ω , where D is a two-point discrete space. 
He proved that in D2ω there is a countable dense set such that the closure of every countable subset of it 
has a cardinality 22ω .

In [8] we also considered this problem. We proved that in a product of countable discrete spaces Z2ω

there is a dense set Q such that every sequence of Q has a subsequence, which is discrete and closed in Z2ω . 
Therefore no sequence from Q is convergent.

In [9] we proved that such countable dense sets, which contain no convergent sequences are not only in 

products of discrete spaces: we proved that such set exists in a product of 2ω separable not single point 
T2-spaces.

Now we consider a product Zc of separable T1-space Z.
We prove Theorem 4.1, which states the following.
Let Z be a separable space, |Z| ≥ ω, and η ⊆ ExpZ be a family of countable subsets of Z, |η| ≤ 2ω.
Then there is a countable dense subset Q ⊆ Zc =

∏
X∈exp ω

ZX, satisfying the following condition:

(*) every countable set E ⊆ Q contains a countable subset E′ ⊆ E such that for every G ∈ η there is 
X ∈ expω such that πX(E′) = G and πX|E′ : E′ → G is a finite-to-one mapping.

Using Theorem 4.1, we prove some theorems.
Theorem 4.2 states that in the Tychonoff product Zc, where Z is a not single point separable T1-space, 

there is a countable dense set Q which contains no non-trivial convergent in Zc sequences.
From this it follows, in particular, that in the Tychonoff product Zc

m, where Zm is an infinite space with 

minimal T1-topology, there is a countable dense set which contains no non-trivial convergent sequences.
Consider some other consequences from Theorem 4.1. Consider a countable product Zω =

∏
i∈ω

Zi, where 

Z = Zi (i ∈ ω) is an uncountable space.
Then for every countable dense subset Q ⊆ Zω there is a point z ∈ Z such that for a set Zz = Z \ {z}

the following holds: Zω
z ⊇ Q.

In the case of Zc we have the Theorem 4.3, which states:
let Z be a separable T1-space, ω ≤ |Z| ≤ c, then in Zc there is a countable dense subset Q, which satisfies 

the following condition:
for all z ∈ Z the following holds: |Zc

z ∩Q| < ω where Zz = Z \ {z}.
For a space Ic in every its dense subset, in particular in Q, which contains no convergent sequences, there 

is a sequence E ⊆ Q, which converges to a set F such that E ∩ F = ∅. For Rc we have the following.
Theorem 4.4 states:
let Z be a separable not countably compact T1-space, then there is a countable dense subset Q ⊆ Zc, 

which satisfies the following condition: if E ⊆ Q is a countable set and E converges to a set F ⊆ Zc, then 

|E \ F | < ω.
The proofs we will construct and use independent matrices.
In [11] K.Kunen defined a notion of an independent linked family on ω, which generalizes notion of the 

independent family of sets [10,5]. J. van Mill in [12] defined the notion of independent matrix of clopen 

subsets of ω∗. This notion naturally corresponds to the notion of independent matrix of ω, which is a 

subfamily of the independent linked family on ω.
R. Engelking and M. Karlowicz [4] used a notion of this type for their proof of Hewitt–Marczewski–

Pondiczery theorem.
Some independent matrices were constructed in [6–9].
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2. Preliminaries

Definitions and notions used in the paper can be found in [1–3].
d(X) denotes the density of a space X, by [A] we denote the closure of a set A, expA denotes the set of 

all subsets of A and by ExpA we denote the set of all non-empty subsets of a set A. By expω A we denote 
the set of all countable subsets of A, c = 2ω.

We say that a set A is countable if |A| = ω.
By Y X we denote the set of all mappings from X to Y . By πα we denote an α-projection of

∏
α∈A

Xα on 

Xα.
We say that a set A converges to a set B if |A \ U | < ω for every neighborhood U of B.
We say that the character of a set A in a space X is countable (χ(A, X) = ω) if there is a countable base 

for A in X.
A sequence {xn}∞n=1 is called trivial if there is n0 ∈ ω such that xn = xn0 for all n ≥ n0.
A subset A ⊆ X is called sequentially closed if A contains limits of all its convergent in X sequences.
By Zm we denote a T1-space with minimal topology, its topology consists of complements of finite subsets 

of Zm.
The proofs we will use the notion of the independent matrix of subsets of a countable set.

Definition 2.1 ([12]). For a countable set an indexed family {Aij : i ∈ I, j ∈ J} of its subsets is called the J

by I independent matrix if

– whenever j0, j1 ∈ J are distinct and i ∈ I, then |Aij0 ∩Aij1 | < ω;
– if i1, . . . , in ∈ I are distinct and j1, . . . , jn ∈ J , then

|
⋂

{Aikjk : k = 1, . . . , n}| = ω.

The following construction of the 2ω by 2ω independent matrix of subsets of a countable set can be found 
in [11], [12].

Consider a countable set

H ′ = {< k, u > : k ∈ ω, u ∈ (exp k)exp k}.

For X, Y ∈ expω let

AXY = {< k, u >∈ H ′ : u(X ∩ k) = Y ∩ k}.

The family M = {AXY : X, Y ∈ expω} is the 2ω by 2ω independent matrix.
We will use the following notation (see [6]).
Consider the set (Exp k)exp k for k ∈ ω. Elements of this set we will denote by u, v, ect.
For k ∈ ω denote

Hk = {u ∈ (Exp k)exp k : {n} ∈ u(exp k) for all n < k},

H =
⋃

{Hk : k ∈ ω}.

For X ∈ expω and Y ∈ Expω denote

Ak(X,Y ) = {u ∈ Hk : u(X ∩ k) = Y ∩ k}
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and

A(X,Y ) =
⋃

{Ak(X,Y ) : k ∈ ω}.

Define the matrix

M1 = {A(X,Y ) : X ∈ expω, Y ∈ Expω}.

M1 is an independent matrix and satisfies the following conditions:

(i) if Y1, Y2 ∈ Expω are distinct and X ∈ expω, then |A(X, Y1) ∩A(X, Y2)| < ω;
(ii) if X1, . . . , Xn ∈ expω are distinct and Y1, . . . , Yn ∈ Expω, then there is k0 ∈ ω such that 

(
⋂
{A(Xi, Yi) : i = 1, . . . , n}) ∩Hk 
= ∅ for all k > k0;

(iii)
⋃
{A(X, Y ) : Y ∈ Expω} = H for every X ∈ expω.

We will consider properties of the matrix M1 and some other matrices and will use them for a construction 
of dense sets of products.

3. Construction of the matrix M2

Consider the matrix M1 = {A(X, Y ) : X ∈ expω, Y ∈ Expω} and its properties.

Lemma 3.1 ([6]). Let u ∈ Hk0 ⊆ H for some k0 ∈ ω and a set F ⊆ H be such that

– |F ∩Hk| ≤ 1 for all k ∈ ω;
– |F ∩Hk| = ∅ for k ≤ k0.

Then for every set X ∈ expω there is a set Y ∈ Expω such that u ∈ A(X, Y ) and A(X, Y ) ∩ F = ∅.

Lemma 3.2 ([6]). Let u, v ∈ H, u 
= v. For every B ⊆ expω, |B| < 2ω, there is X ∈ expω\B and Y ∈ Expω

such that u ∈ A(X, Y ) and v /∈ A(X, Y ).

Lemma 3.3 ([8]). Let X ∈ expω and F ⊆ H be such that |F ∩ Hk| ≤ 1 for all k ∈ ω. Then there is a 
family T ′(X, F ) ⊆ Expω such that

(1) |T ′(X, F )| = ω;
(2) |A(X, Y ) ∩ F | < ω for all Y ∈ T ′(X, F );
(3)

⋃
{A(X, Y ) : Y ∈ T ′(X, F )} = H.

Let F̃ be the family of countable subsets of H such that for every F ∈ F̃ the following holds:
1) |F ∩Hi| ≤ 1 for all i ∈ ω;
2) |{Y ∈ Expω : A(X, Y ) ∩ F = ∅}| ≥ ω for every X ∈ expω.
Let us prove for the set F̃ the following.

Lemma 3.4. For every countable set E ⊆ H there are 2ω many F ∈ F̃ such that F ⊆ E.

Proof. Let E′ ⊆ E be a countable set such that |E′ ∩Hk| = 1 for all k ∈ D for a countable set D ⊆ ω.
Let λ be a family of countable subsets of D, |λ| = 2ω, such that every set B = {ki : i ∈ ω} ∈ λ satisfies 

the following:
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– k0 ≥ 2;
– ki+1 ≥ ki + 4 for all i ∈ ω.
For every B ∈ λ define F (B) = E′ ∩ (

⋃
{Hki

: ki ∈ B} =
⋃
{E′ ∩Hki

: ki ∈ B}. Since |λ| = 2ω, we have 
|{F (B) : B ∈ λ}| = 2ω.

Let B ∈ λ. We will prove that F (B) ∈ F̃.
Indeed, F (B) satisfies condition 1). Let us prove that F (B) satisfies condition 2).
Let X ∈ expω. We will construct 2ω many sets Y ∈ Expω such that A(X, Y ) ∩ F (B) = ∅.
Let vki

be such that {vki
} = E′ ∩Hki

for ki ∈ B.
Construct a family {Yki

: i ∈ ω} of subsets of Expω such that for every ki ∈ B the following holds:

– Yki
⊆ ki;

– vki
(X ∩ ki) 
= Yki

;
– Yki

⊆ Yki+1 ;
– Yki

∩ ki′ = Yki′ if i′ < i.

Let Yk0 ⊆ k0 be such that Yk0 
= vk0 (X ∩ k0) (it is possible because k0 ≥ 2).
Assume {Yki′ : i′ < i} has been chosen. Let Y ′

ki
=

⋃
{Yki′ : i′ < i}.

Consider {k ∈ ω : ki−1 < k < ki} = (ki−1, ki).
Let (ki−1, ki)∗ be a set of k ∈ (ki−1, ki) such that vki

(X ∩ ki) 
= Y ′
ki
∪ {k}. Since |(ki−1, ki)| ≥ 3, we have 

|(ki−1, ki)∗| ≥ 2.
Let k∗ ∈ (ki−1, ki)∗. We define a set Yki

= Y ′
ki

∪ {k∗}.
Let Y = ∪{Yki

: ki ∈ A}.
Note that the set Y is countable.
We have A(X, Y ) ∩ F (B) = ∅.
Since |(ki−1, ki)∗| ≥ 2 for all ki ∈ B, there are 2ω sets Y ∈ Expω such that A(X, Y ) ∩ F (B) = ∅. So 

F (B) ∈ F̃.
Since |λ| = 2ω, we have |{F (B) : B ∈ λ}| = 2ω.
Note, that from Lemma 3.4 we have |F̃| = 2ω. �

Lemma 3.5. Let F ∈ F̃ and X ∈ expω. Then there is a family T (X, F ) ⊆ Expω such that:

– |T (X, F )| = ω;
–

⋃
{A(X, Y ) : Y ∈ T (X, F )} = H;

– |A(X, Y ) ∩ F | < ω for all Y ∈ T (X, F );
– |{Y ∈ T (X, F ) : A(X, Y ) ∩ F} = ∅| ≥ ω.

Proof. Let F ∈ F̃ and X ∈ expω. By Lemma 3.3 there is a family T ′(X, F ) ⊆ Expω such that

– |T ′(X, F )| = ω;
– |A(X, Y ) ∩ F | < ω for all Y ∈ T ′(X, F );
–

⋃
{A(X, Y ) : Y ∈ T ′(X, F )} = H.

Since F ∈ F̃, there is T ′′ ⊆ Expω, |T ′′| = ω, such that A(X, Y ) ∩ F = ∅ for Y ∈ T ′′. Denote T (X, F ) =
T ′ ∪ T ′′. �

Now we will define a matrix M2.

I Let P be the set of all ordered pairs (u, v) of elements u, v ∈ H.
By Lemma 3.2 there is a countable family

L = {X(u,v) : (u, v) ∈ P}
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of sets X(u,v) ∈ expω such that for every X(u,v) ∈ L there is Y(u,v) ∈ Expω such that u ∈ A(X(u,v), Y(u,v)), 
v /∈ A(X(u,v), Y(u,v)) and X(u,v) 
= X(u′,v′) if (u, v) 
= (u′, v′).

Denote

R = expω \ L.

Let η be a family of countable subsets of H such that |η| ≤ c.
Consider the family F̃ of subsets of H.

II Let Θ: R → F̃ be a mapping such that |Θ−1(F )| = |η| for every F ∈ F̃.
Consider F ∈ F̃. Let X ∈ Θ−1(F ). Let

T (X,F ) ⊆ Expω

be a countable set from Lemma 3.5 for F and X.

III Let X(u,v) ∈ L and Y(u,v) ∈ Expω be such that u ∈ A(X(u,v), Y(u,v)) and v /∈ A(X(u,v), Y(u,v)).
Let

T(u,v) ⊆ Expω

be a countable family such that Y(u,v) ∈ T(u,v) and
⋃
{A(X(u,v), Y ) : Y ∈ T(u,v)} = H.

IV Define

TX =
{

T(u,v) for X = X(u,v) ∈ L;
T (X,F ) for F ∈ F̃ and X ∈ Θ−1(F ).

By the similar way as in [8] we define a matrix

M2 = {Ã(X,Y ) : X ∈ expω, Y ∈ TX},

which satisfies the following.

Lemma 3.6. The matrix M2 satisfies the following conditions:

(1) for every (u, v) ∈ P there is X = X(u,v) ∈ L and Y ∈ T(u,v) such that u ∈ Ã(X(u,v), Y(u,v)) and v /∈
Ã(X(u,v)Y(u,v));

(2) if F ∈ F̃ and X ∈ Θ−1(F ) then |Ã(X, Y ) ∩ F | < ω for all Y ∈ T (X, F );
(3) if F ∈ F̃ and X ∈ Θ−1(F ) then |{Y ∈ T (X, F ) : Ã(X, Y ) ∩ F = ∅}| = ω;
(4) Ã(X, Y ) ∩ Ã(X, Y ′) = ∅ for all X ∈ expω and Y, Y ′ ∈ TX , Y 
= Y ′;
(5)

⋃
{Ã(X, Y ) : Y ∈ TX} = H for all X ∈ expω;

(6) if X1, . . . , Xn ∈ expω are distinct and Yi ∈ TXi
(i = 1, . . . , n) then there is k0 ∈ ω such 

that (
⋂
{Ã(Xi, Yi) : i = 1, . . . , n}) ∩Hk 
= ∅ for all k > k0.

The matrix M2 generates a space

Σ =
∏

TX.

X∈exp ω
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For ξ ∈ Σ let ξX be a X-coordinate of ξ.
The following Lemma 3.7 is similar to Lemma 3.5 [8].

Lemma 3.7. The set Σ satisfies the following conditions:

(1) if ξ1, ξ2 ∈ Σ, ξ1 
= ξ2, then there is X ∈ expω such that Ã(X, ξ1X
) ∩ Ã(X, ξ2X

) = ∅;
(2) | 

⋂
{Ã(X, ξX) : X ∈ expω}| ≤ 1 for all ξ ∈ Σ;

(3) for every u ∈ H there is the only

ξu ∈ Σ

such that ∩{Ã(X, ξuX) : X ∈ expω} = {u};
(4) if u1, u2 ∈ H, u1 
= u2, then ξu1 
= ξu2 .

Denote

μ : H → Σ

a mapping from H into Σ defined by the rule: μ(u) = ξu for every u ∈ H.

Lemma 3.8. The set μ(H) is dense in the space Σ.

Proof. For the set H the set μ(H) is dense in Σ.
Indeed, let O(X, . . . , Xn, Y1, . . . , Yn) be a standard basic open set of the base of Σ, where Yi ∈ TXi

(i =
1, . . . , n).

By (6) of Lemma 3.6 we have

(
⋂

{Ã(Xi, Yi) : i = 1, . . . , n}) ∩H 
= ∅

For u ∈ ∩{Ã(Xi, Yi) : i = 1, . . . , n} we have ξuXi
= Yi (i = 1, . . . , n) and therefore ξu ∈

O(X, . . . , Xn, Y1, . . . , Yn), so O(X, . . . , Xn, Y1, . . . , Yn) ∩ μ(H) 
= ∅. �
4. The main theorems

Consider a separable space Z and

let Zc =
∏

X∈exp ω

ZX, ZX = Z.

Theorem 4.1. Let Z be a separable space, |Z| ≥ ω, and η ⊆ ExpZ be a family of countable subsets of Z, 
|η| ≤ 2ω.

Then there is a countable dense subset Q ⊆ Zc =
∏

X∈exp ω

ZX, satisfying the following condition:

(*) every countable set E ⊆ Q contains a countable subset E′ ⊆ E such that for every G ∈ η there is 
X ∈ expω such that πX(E′) = G and πX|E′ : E′ → G is a finite-to-one mapping.

Proof. Consider two cases.

(I) At first we will consider the case |Z| > ω.
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(A) We will construct a mapping Ψ: Σ →
∏

X∈exp ω

ZX as follows.

The construction of Ψ consists of parts (A1)–(A4).
(A1) Consider Zc =

∏
X∈exp ω

ZX and the set R ⊆ expω.

Let η be the family from the formulation of the theorem, and Θ: R → F̃ be a mapping such 
that |Θ−1(F )| = |η| for every F ∈ F̃ (see II of the construction of the matrix M2).

For every X ∈ Θ−1(F ) fix countable subsets G(X), D(X) of the space ZX = Z such that:

– G(X) ∈ η;
– G(X) 
= G(X ′) if X 
= X ′;
– {G(X) : X ∈ Θ−1(F )} = η for every F ∈ F̃;
– G(X) ⊆ D(X);
– D(X) is dense in ZX = Z;
– |D(X) \G(X)| = ω.

We can do this since |Z| > ω.

(A2) For every X ∈ expω we will define a mapping ψX : TX → ZX .
Let X ∈ R. We will define a mapping

ψX : TX → ZX

as follows. Since X ∈ R, we have X ∈ Θ−1(F ) for some F ∈ F̃. Consider TX = T (X, F ) for this X and F

(see IV of the construction of M2).
Let T ′

X = {Y ∈ TX : Ã(X, Y ) ∩ F 
= ∅} and T ′′
X = TX \ T ′

X .
By (2), (3) and (5) of Lemma 3.6 sets T ′

X and T ′′
X are countable.

We will define ψX : TX → ZX as some one-to-one mapping TX into ZX such that:

ψX(T ′
X) = G(X),

ψX(TX) = D(X).

(A3) Let X ∈ L, i.e. X = X(u,v) for some ordered pair (u, v). In this case we have TX = T(u,v) (see IV
of the construction of M2). Let D(X) = D(X(u,v)) be some countable dense subset of ZX(u,v) .

We will define

ψX : TX → DX

as some one-to-one mapping ψX from TX = TX(u,v) onto DX = DX(u,v) .

(A4) We define the mapping

Ψ: Σ →
∏

X∈exp ω

ZX

as follows.
For ξ ∈ Σ let Ψ(ξ) = z ∈

∏
X∈exp ω

ZX be such that πX(z) = πX(Ψ(ξ)) = ψX(ξX) (recall that ξX is 

a X-coordinate of ξ ∈ Σ and ξX ∈ TX).
The mapping Ψ is one-to-one mapping from Σ onto 

∏
X∈exp ω

D(X) ⊆
∏

ZX.

X∈exp ω
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The mapping μ is a one-to-one mapping from H into Σ. Then

μ ◦ Ψ: H →
∏

X∈exp ω

D(X)

is a one-to-one mapping from H into
∏

X∈exp ω

D(X) ⊆ Zc.

For every u ∈ H we denote zu = Ψ(μ(u)) = Ψ(ξu). By the definition of Ψ we have πX(zu) = πX(Ψ(ξu)) =
ψX(ξuX).

(B) Define

Q = Ψ(μ(H)) and Qk = Ψ(μ(Hk)).

The set Q is dense in Zc.
Consider spaces Σ =

∏
X∈exp ω

TX and 
∏

X∈exp ω

D(X). The mapping Ψ : Σ →
∏

X∈exp ω

D(X) is continuous.

By Lemma 3.7 the set μ(H) is a dense subset of Σ. Then Q = Ψ(μ(H)) is dense in 
∏

X∈exp ω

D(X). Since 

D(X) is dense subset of ZX for all X ∈ expω, Q is dense in Zc.

(C) Consider F ∈ F̃ and let X ∈ Θ−1(F ). We will prove the following:

– πX(Ψ(μ(F ))) = G(X);
– πX |Ψ(μ(F )) is a finite-to-one mapping from Ψ(μ(F )) onto G(X).

We have Ψ(μ(F )) = Ψ({ξu : u ∈ F}), πX(Ψ(μ(F ))) = ψX({ξuX : u ∈ F}), and {ξuX : u ∈ F} ⊆ TX =
T (X, F ).

Prove that {ξuX : u ∈ F} = T ′
X for F ∈ F̃.

Indeed, since ξuX  u for every u ∈ F , we have {ξuX : u ∈ F} ⊆ T ′
X and F ⊆

⋃
{Ã(X, ξuX) : u ∈ F}.

From (4) of Lemma 3.6 we have {ξuX : u ∈ F} = T ′
X .

Therefore πX(Ψ(μ(F ))) = ψX({ξuX : u ∈ F}) = ψX(T ′
X).

By the definition of the mapping ψX we have ψX(T ′
X) = G(X), so

πX(Ψ(μ(F ))) = G(X).

Let us prove that

πX |Ψ(μ(F )) : Ψ(μ(F )) → G(X)

is a finite-to-one mapping from Ψ(μ(F )) onto G(X).
Let Y ∈ TX . Consider ψX(Y ).
If for some zu ∈ ΨX(μ(F )) we have ψX(Y ) = ψX(ξuX) = πX(zu), then, since ψX : TX → ZX is a 

one-to-one mapping, we have ξuX = Y . Therefore u ∈ Y .
Since |F ∩ Y | < ω for every Y ∈ TX , we |{u ∈ F : πX(zu) = ψX(Y )}| < ω. Therefore

πX |Ψ(μ(F )) : Ψ(μ(F )) → G(X)

is a finite-to-one mapping.

(D) Let us prove the property (*) of Q, declared in the theorem. Use (C).
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Let E ⊆ Q be a countable subset. Let Ẽ ⊆ H be such that

Ψ(μ(Ẽ)) = E.

There is F ∈ F̃ such that F ⊆ Ẽ (see Lemma 3.4).
Let G ∈ η. Consider X ∈ Θ−1(F ) such that G(X) = G. Then for Ψ(μ(F )) ⊆ E we have

πX(Ψ(μ(F ))) = G(X) = G

and πX |Ψ(μ(F )) : Ψ(μ(F )) → G(X) is a finite-to-one mapping (see (C)).
Define

E′ = Ψ(μ(F ).

II. Consider the case |Z| = ω.
Let A be a countable set.
Denote Y =

∏
α∈A

Zα, where Zα = Z for all α ∈ A.

Y is an uncountable separable space.
Consider 

∏
X∈exp ω

Y X, where YX = Y and YX =
∏

α∈A

Zα,X , Zα,X = Zα = Z for all X ∈ expω.

We have Zc =
∏

X∈exp ω

Y X. Fix a point y0 ∈ Y and α̃ ∈ A.

Let η ⊆ ExpZ be a family of countable subsets of Z, |η| ≤ 2ω.
For every element G ⊆ Z of family η we define a set G′ ∈ Y :

G′ = {y ∈ Y : πα̃(y) ∈ G and πα(y) = πα(y0) for α 
= α̃}.

Let η′ = {G′ : G ∈ η}.
Consider Zc =

∏
X∈exp ω

Y X =
∏

X∈exp ω

( 
∏
α∈A

Zα,X ).

In Zc =
∏

X∈exp ω

Y X there is a countable set Q ⊆ Zc, satisfying (*).

Let E ⊆ Q ⊆ Zc =
∏

X∈exp ω

Y X be a countable set.

By (*) there is a countable subset E′ ⊆ E such that for every G′ ∈ η′ there is X ∈ expω such that 
πX(E′) = G′ and πX(E′) : E′ → G′ is a finite-to-one mapping.

Let G ∈ η and consider corresponding G′ ∈ η′. Then there is X̃ ∈ expω such that

π
X̃

(E′) = G′

where π
X̃

:
∏

X∈exp ω

Y X → Y
X̃

is a X̃-projection from 
∏

X∈exp ω

Y X on Y
X̃

=
∏

α∈A

Z
α,X̃

and π
X̃
|E′ : E′ → G′

is a finite-to-one mapping.
Consider π

α̃,X̃
:

∏
α∈A

Z
α,X̃

→ Z
α̃,X̃

.

Then π
α̃,X̃

(π
X̃

(E′)) = π
α̃,X̃

(G′)) = G.
The mapping π

α̃,X̃
◦ π

X̃
is a projection of Zc =

∏
X∈exp ω

Y X =
∏

X∈exp ω

( 
∏
α∈A

Zα,X ) on Z
α̃,X̃

.

And π ˜ ◦ π˜|E′ is a finite-to-one mapping. �

α̃,X X
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Consider some facts, which follow from Theorem 4.1.

Theorem 4.2. Let Z be a not single point separable T1-space. Then there is a countable dense subset Q ⊆ Zc

which contains no convergent in Zc nontrivial sequences.

Proof. Let Z be a separable not single point T1-space.
Consider Zω.
There are two countable subsets of Zω with disjoint closures.
Indeed, Z is not single point T1-space, and let x, y ∈ Z, x 
= y. Consider π−1(x) and π−1(y) where 

π : Zω → Z is a projection on Z. Then π−1(x) and π−1(y) are closed infinite sets, π−1(x) ∩ π−1(y) = ∅.
Let Φx ⊆ π−1(x) and Φy ⊆ π−1(y) be countable subsets of Zω, then [Φx] ∩ [Φy] 
= ∅.
Consider a subset G = Φx ∪ Φy of the space Zω and let η = {G} be a family consisting of the only one 

element G.
Consider 

∏
X∈exp ω

Y X, where YX = Zω for all X ∈ expω.∏
X∈exp ω

Y X is naturally homeomorphic to Zc.

By Theorem 4.1 in 
∏

X∈exp ω

Y X there is a countable dense set Q ⊆
∏

X∈exp ω

Y X, satisfying (*) of the 

Theorem 4.1 for η.
Suppose, there is a non-trivial convergent sequence ξ = {xn : n ∈ ω} ⊆ Q.
Then there is a countable subset E′ of {xn : n ∈ ω} and X such that for πX :

∏
X∈exp ω

Y X → YX

we have πX(E′) = Φx ∪ Φy = G and πX|E′ : E′ → Φx ∪ Φy is an “on” and finite-to-one mapping. Since 
[Φx] ∩ [Φy] = ∅, we get that ξ contains two subsequences with disjoint closures. This contradicts the fact 
that ξ is a convergent sequence. �

From this it follows, in particular, that in the Tychonoff product Zc
m, where Zm is an infinite space with 

minimal T1-topology, there is a countable dense set which contains no non-trivial convergent sequences.
Consider a countable product Zω =

∏
i∈ω

Zi, where Z = Zi (i ∈ ω) is an uncountable space.

Then for every countable dense subset Q ⊆ Zω there is a point z ∈ Z such that for a set Zz = Z \ {z}
the following holds: Zω

z ⊇ Q.
In the case of Zc we have the following.

Theorem 4.3. Let Z be a separable space, ω ≤ |Z| ≤ c. Then in Zc there is a countable dense subset Q, 
which satisfies the following condition:

for all z ∈ Z the following holds: |Zc
z ∩Q| < ω where Zz = Z \ {z}.

Proof. For a space Z let η be the family of all countable subsets of Z. Let Q be a countable dense set of 
Zc, which satisfies (*) of Theorem 4.1 for η.

Suppose that for some z ∈ Z we have that a set E = Zc
z ∩Q is countable. Let z ∈ G for some G ∈ η. By 

(*) of Theorem 4.1, there is E′ ⊆ E and X ∈ expω such that πX(E′) = G. Then πX(E′)  z. But since 
E′ ⊆ Zc

z ∩Q we have that πX(E′) ⊆ Zz and therefore z /∈ πX(E′). Contradiction. �
For a space Ic in every dense subset, in particular in Q, which has no convergent sequences, there is a 

sequence E ⊆ Q, which converges to a set F such that E ∩ F = ∅. For Rc we have the following.

Theorem 4.4. Let Z be a separable not countably compact T1-space. Then there is a countable dense subset 
Q ⊆ Zc satisfying the following condition: if E ⊆ Q is a countable set and E converges to a set F ⊆ Zc, 
then |E \ F | < ω.
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Proof. Let G ⊆ Z be a countable discrete closed set and the family η = {G} consists of the only set G.
Then for η there is a countable dense set of Q ⊆ Zc satisfying (*) of the Theorem 4.1.
Let us prove the that for every countable subset E ⊆ Q there is a countable discrete and closed subset 

E′ ⊆ E.
Let E ⊆ Q.
By (*) of Theorem 4.1 for E there is a countable E′ such that for some X ∈ expω we have πX(E′) = G

and πX on E′ is a finite-to-one mapping of E′.
Let us prove that E′ is discrete and closed.
Let us prove that E′ discrete.
Let z ∈ E′. Consider πX(z). Since G is discrete, there is an open set U ⊆ Z such that U ∩ G = πX(z). 

Then E′ ∩ π−1
X (U) = π−1

X (πX(z)).
Since πX on E′ is a finite-to-one mapping of E′, a set E′ ∩ π−1

X (U) = π−1
X (πX(z)) is finite.

Therefore there is an open in Zc neighborhood Oz of z such that Oz ∩ E′ = {z}.
Let us prove that E′ is closed. Let z ∈ Zc \ E′.
Let πX(z) ∈ G. By the same arguments as before, we can prove that there is a neighborhood Oz such 

that Oz ∩ E′ = ∅.
If πX(z) /∈ G then, since G is closed, there is a neighborhood U of πX(z) such that U ∩G(X) = ∅. Then 

π−1(U) is a neighborhood of z and π−1(U) ∩ E′ = ∅.
Now let E be a countable subset of Q and F ⊆ Zc be such that E converges to F . Suppose |E \ F | = ω. 

Then there is a countable E′ ⊆ E \ F which is discrete and closed in Zc.
Then U = Zc \ E′ is a neighborhood of F and |E \ U | = ω. Contradiction. �
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