ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On dense subsets of Tychonoff products of T_1 -spaces $\stackrel{\Rightarrow}{\sim}$

A.A. Gryzlov

Department of Algebra & Topology, Udmurt State University, Universitetskaya st., 1, Izhevsk, Udmurtiya, 426034, Russia

Article history:	We consider dense subsets of $Z^{\mathfrak{c}} = \prod Z\alpha$, where $Z = Z_{\alpha}$ is a separable not single
Received 12 March 2018	$\alpha \in 2^{\omega}$
Received in revised form 31 August	point T_1 -space.
2018 Accepted 3 September 2018 Available online 5 September 2018	We construct in $Z^{\mathfrak{c}}$, $ Z \geq \omega$, (Theorem 4.1) a countable dense set $Q \subseteq Z$ such that every countable subset of Q contains a countable subset, which can be project on "many" subsets of Z .
MSC:	From this theorem follow some facts.
54A25	Theorem 4.2 states that in the product $Z^{\mathfrak{c}}$ of a not single point separable T_1 -space Z
54B10	there is a countable dense set which contains no non-trivial convergent in $Z^{\mathfrak{c}}$ sequences.
Keywords:	The existence of such set in the product $I^{\mathfrak{c}}$, where $I = [0, 1]$ was proved [13] by
Product of spaces	W. H. Priestley.
Dense set	In [9] we proved that such set exists in a product of 2^{ω} separable not single point
Convergent sequence	T_2 -spaces.
Independent matrix	Theorem 4.4 states that if Z is a separable not countably compact T_1 -space, then
	there is a countable dense subset $Q \subseteq Z^{\mathfrak{c}}$, satisfying the following condition: if
	$E \subseteq Q$ is a countable set and E converges to a set $F \subseteq Z^c$, then $ E \setminus F < \omega$.
	© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the most interesting problem in products of topological spaces is the problem of existence of dense subsets. It is not so hard to prove that in a countable product of separable spaces there is a countable dense subset. But in a case of continuum product the problem becomes much more difficult. The most well-known result is Hewitt–Marczewski–Pondiczery theorem (see [2,3]): the Tychonoff product $\prod_{\alpha \in 2^{\omega}} X\alpha$ of 2^{ω} many

separable spaces is separable.

We consider the problem of the existence in the Tychonoff product of 2^{ω} many separable spaces a dense countable subset with additional properties.

^{*} Supported by Ministry of Education and Science of the Russian Federation, project number 1.5211.2017/8.9. E-mail address: gryzlov@udsu.ru.

In [13] W.H.Priestley proved that in $I^{2^{\omega}}$ there is a countable dense set, which contains no non-trivial convergent sequences in $I^{2^{\omega}}$, where I is closed unit interval.

In [14] P.Simon proved that such countable dense set exists in $D^{2^{\omega}}$, where D is a two-point discrete space. He proved that in $D^{2^{\omega}}$ there is a countable dense set such that the closure of every countable subset of it has a cardinality $2^{2^{\omega}}$.

In [8] we also considered this problem. We proved that in a product of countable discrete spaces $Z^{2^{\omega}}$ there is a dense set Q such that every sequence of Q has a subsequence, which is discrete and closed in $Z^{2^{\omega}}$. Therefore no sequence from Q is convergent.

In [9] we proved that such countable dense sets, which contain no convergent sequences are not only in products of discrete spaces: we proved that such set exists in a product of 2^{ω} separable not single point T_2 -spaces.

Now we consider a product $Z^{\mathfrak{c}}$ of separable T_1 -space Z.

We prove Theorem 4.1, which states the following.

Let Z be a separable space, $|Z| \ge \omega$, and $\eta \subseteq \operatorname{Exp} Z$ be a family of countable subsets of Z, $|\eta| \le 2^{\omega}$. Then there is a countable dense subset $Q \subseteq Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} ZX$, satisfying the following condition:

(*) every countable set $E \subseteq Q$ contains a countable subset $E' \subseteq E$ such that for every $G \in \eta$ there is $X \in \exp \omega$ such that $\pi_X(E') = G$ and $\pi_{X|_{E'}} \colon E' \to G$ is a finite-to-one mapping.

Using Theorem 4.1, we prove some theorems.

Theorem 4.2 states that in the Tychonoff product $Z^{\mathfrak{c}}$, where Z is a not single point separable T_1 -space, there is a countable dense set Q which contains no non-trivial convergent in $Z^{\mathfrak{c}}$ sequences.

From this it follows, in particular, that in the Tychonoff product $Z_m^{\mathfrak{c}}$, where Z_m is an infinite space with minimal T_1 -topology, there is a countable dense set which contains no non-trivial convergent sequences.

Consider some other consequences from Theorem 4.1. Consider a countable product $Z^{\omega} = \prod_{i \in \omega} Z_i$, where

 $Z = Z_i \ (i \in \omega)$ is an uncountable space.

Then for every countable dense subset $Q \subseteq Z^{\omega}$ there is a point $z \in Z$ such that for a set $Z_z = Z \setminus \{z\}$ the following holds: $Z_z^{\omega} \supseteq Q$.

In the case of $Z^{\mathfrak{c}}$ we have the Theorem 4.3, which states:

let Z be a separable T_1 -space, $\omega \leq |Z| \leq \mathfrak{c}$, then in $Z^{\mathfrak{c}}$ there is a countable dense subset Q, which satisfies the following condition:

for all $z \in Z$ the following holds: $|Z_z^{\mathfrak{c}} \cap Q| < \omega$ where $Z_z = Z \setminus \{z\}$.

For a space $I^{\mathfrak{c}}$ in every its dense subset, in particular in Q, which contains no convergent sequences, there is a sequence $E \subseteq Q$, which converges to a set F such that $E \cap F = \emptyset$. For $R^{\mathfrak{c}}$ we have the following.

Theorem 4.4 states:

let Z be a separable not countably compact T_1 -space, then there is a countable dense subset $Q \subseteq Z^{\mathfrak{c}}$, which satisfies the following condition: if $E \subseteq Q$ is a countable set and E converges to a set $F \subseteq Z^{\mathfrak{c}}$, then $|E \setminus F| < \omega$.

The proofs we will construct and use independent matrices.

In [11] K.Kunen defined a notion of an independent linked family on ω , which generalizes notion of the independent family of sets [10,5]. J. van Mill in [12] defined the notion of independent matrix of clopen subsets of ω^* . This notion naturally corresponds to the notion of independent matrix of ω , which is a subfamily of the independent linked family on ω .

R. Engelking and M. Karlowicz [4] used a notion of this type for their proof of Hewitt–Marczewski– Pondiczery theorem.

Some independent matrices were constructed in [6-9].

2. Preliminaries

Definitions and notions used in the paper can be found in [1-3].

d(X) denotes the density of a space X, by [A] we denote the closure of a set A, exp A denotes the set of all subsets of A and by Exp A we denote the set of all non-empty subsets of a set A. By exp_{ω} A we denote the set of all countable subsets of A, $\mathfrak{c} = 2^{\omega}$.

We say that a set A is countable if $|A| = \omega$.

By Y^X we denote the set of all mappings from X to Y. By π_{α} we denote an α -projection of $\prod_{\alpha \in A} X_{\alpha}$ on

 X_{α} .

We say that a set A converges to a set B if $|A \setminus U| < \omega$ for every neighborhood U of B.

We say that the character of a set A in a space X is countable $(\chi(A, X) = \omega)$ if there is a countable base for A in X.

A sequence $\{x_n\}_{n=1}^{\infty}$ is called trivial if there is $n_0 \in \omega$ such that $x_n = x_{n_0}$ for all $n \ge n_0$.

A subset $A \subseteq X$ is called sequentially closed if A contains limits of all its convergent in X sequences.

By Z_m we denote a T_1 -space with minimal topology, its topology consists of complements of finite subsets of Z_m .

The proofs we will use the notion of the independent matrix of subsets of a countable set.

Definition 2.1 ([12]). For a countable set an indexed family $\{A_{ij} : i \in I, j \in J\}$ of its subsets is called the J by I independent matrix if

- whenever $j_0, j_1 \in J$ are distinct and $i \in I$, then $|A_{ij_0} \cap A_{ij_1}| < \omega$;
- if $i_1, \ldots, i_n \in I$ are distinct and $j_1, \ldots, j_n \in J$, then

$$\left|\bigcap\{A_{i_kj_k}: k=1,\ldots,n\}\right| = \omega.$$

The following construction of the 2^{ω} by 2^{ω} independent matrix of subsets of a countable set can be found in [11], [12].

Consider a countable set

$$H' = \{ < k, u > : k \in \omega, u \in (\exp k)^{\exp k} \}.$$

For $X, Y \in \exp \omega$ let

$$A_{XY} = \{ < k, u > \in H' : u(X \cap k) = Y \cap k \}.$$

The family $\mathfrak{M} = \{A_{XY} : X, Y \in \exp \omega\}$ is the 2^{ω} by 2^{ω} independent matrix.

We will use the following notation (see [6]).

Consider the set $(\operatorname{Exp} k)^{\exp k}$ for $k \in \omega$. Elements of this set we will denote by u, v, ect. For $k \in \omega$ denote

$$H_k = \{ u \in (\operatorname{Exp} k)^{\operatorname{exp} k} \colon \{n\} \in u(\operatorname{exp} k) \text{ for all } n < k \},$$
$$H = \bigcup \{ H_k \colon k \in \omega \}.$$

For $X \in \exp \omega$ and $Y \in \operatorname{Exp} \omega$ denote

and

$$A(X,Y) = \bigcup \{A_k(X,Y) \colon k \in \omega\}.$$

Define the matrix

$$\mathfrak{M}_1 = \{ A(X, Y) : X \in \exp \omega, Y \in \operatorname{Exp} \omega \}.$$

 \mathfrak{M}_1 is an independent matrix and satisfies the following conditions:

- (i) if $Y_1, Y_2 \in \text{Exp } \omega$ are distinct and $X \in \exp \omega$, then $|A(X, Y_1) \cap A(X, Y_2)| < \omega$;
- (ii) if $X_1, \ldots, X_n \in \exp \omega$ are distinct and $Y_1, \ldots, Y_n \in \operatorname{Exp} \omega$, then there is $k_0 \in \omega$ such that $(\bigcap \{A(X_i, Y_i) : i = 1, \ldots, n\}) \cap H_k \neq \emptyset$ for all $k > k_0$;
- (iii) $\bigcup \{A(X,Y) \colon Y \in \operatorname{Exp} \omega\} = H \text{ for every } X \in \exp \omega.$

We will consider properties of the matrix \mathfrak{M}_1 and some other matrices and will use them for a construction of dense sets of products.

3. Construction of the matrix \mathfrak{M}_2

Consider the matrix $\mathfrak{M}_1 = \{A(X, Y) : X \in \exp \omega, Y \in \operatorname{Exp} \omega\}$ and its properties.

Lemma 3.1 ([6]). Let $u \in H_{k_0} \subseteq H$ for some $k_0 \in \omega$ and a set $F \subseteq H$ be such that

 $-|F \cap H_k| \le 1 \text{ for all } k \in \omega;$ $-|F \cap H_k| = \emptyset \text{ for } k \le k_0.$

Then for every set $X \in \exp \omega$ there is a set $Y \in \exp \omega$ such that $u \in A(X, Y)$ and $A(X, Y) \cap F = \emptyset$.

Lemma 3.2 ([6]). Let $u, v \in H$, $u \neq v$. For every $B \subseteq \exp \omega$, $|B| < 2^{\omega}$, there is $X \in \exp \omega \setminus B$ and $Y \in \exp \omega$ such that $u \in A(X, Y)$ and $v \notin A(X, Y)$.

Lemma 3.3 ([8]). Let $X \in \exp \omega$ and $F \subseteq H$ be such that $|F \cap H_k| \leq 1$ for all $k \in \omega$. Then there is a family $T'(X, F) \subseteq \operatorname{Exp} \omega$ such that

 $\begin{array}{ll} (1) & |T'(X,F)| = \omega; \\ (2) & |A(X,Y) \cap F| < \omega \mbox{ for all } Y \in T'(X,F); \end{array}$

(3) $\bigcup \{A(X,Y): Y \in T'(X,F)\} = H.$

Let $\widetilde{\mathcal{F}}$ be the family of countable subsets of H such that for every $F \in \widetilde{\mathcal{F}}$ the following holds: 1) $|F \cap H_i| \leq 1$ for all $i \in \omega$; 2) $|\{Y \in \operatorname{Exp} \omega : A(X, Y) \cap F = \emptyset\}| \geq \omega$ for every $X \in \operatorname{exp} \omega$. Let us prove for the set $\widetilde{\mathcal{F}}$ the following.

Lemma 3.4. For every countable set $E \subseteq H$ there are 2^{ω} many $F \in \widetilde{\mathcal{F}}$ such that $F \subseteq E$.

Proof. Let $E' \subseteq E$ be a countable set such that $|E' \cap H_k| = 1$ for all $k \in D$ for a countable set $D \subseteq \omega$.

Let λ be a family of countable subsets of D, $|\lambda| = 2^{\omega}$, such that every set $B = \{k_i : i \in \omega\} \in \lambda$ satisfies the following:

168

 $-k_0 \ge 2;$

 $-k_{i+1} \ge k_i + 4$ for all $i \in \omega$.

For every $B \in \lambda$ define $F(B) = E' \cap (\bigcup \{H_{k_i} : k_i \in B\}) = \bigcup \{E' \cap H_{k_i} : k_i \in B\}$. Since $|\lambda| = 2^{\omega}$, we have $|\{F(B) : B \in \lambda\}| = 2^{\omega}$.

Let $B \in \lambda$. We will prove that $F(B) \in \widetilde{\mathcal{F}}$.

Indeed, F(B) satisfies condition 1). Let us prove that F(B) satisfies condition 2).

Let $X \in \exp \omega$. We will construct 2^{ω} many sets $Y \in \operatorname{Exp} \omega$ such that $A(X, Y) \cap F(B) = \emptyset$. Let v_{k_i} be such that $\{v_{k_i}\} = E' \cap H_{k_i}$ for $k_i \in B$.

Construct a family $\{Y_{k_i}: i \in \omega\}$ of subsets of $\operatorname{Exp} \omega$ such that for every $k_i \in B$ the following holds:

- $-Y_{k_i} \subseteq k_i;$
- $v_{k_i}(X \cap k_i) \neq Y_{k_i};$
- $-Y_{k_i} \subseteq Y_{k_{i+1}};$
- $-Y_{k_i} \cap k_{i'} = Y_{k_{i'}}$ if i' < i.

Let $Y_{k_0} \subseteq k_0$ be such that $Y_{k_0} \neq v_{k_0}$ $(X \cap k_0)$ (it is possible because $k_0 \geq 2$).

Assume $\{Y_{k_{i'}}: i' < i\}$ has been chosen. Let $Y'_{k_i} = \bigcup \{Y_{k_{i'}}: i' < i\}$. Consider $\{k \in \omega: k_{i-1} < k < k_i\} = (k_{i-1}, k_i)$.

Let $(k_{i-1}, k_i)^*$ be a set of $k \in (k_{i-1}, k_i)$ such that $v_{k_i}(X \cap k_i) \neq Y'_{k_i} \cup \{k\}$. Since $|(k_{i-1}, k_i)| \geq 3$, we have

$$|(k_{i-1}, k_i)^*| \ge 2.$$

Let $k^* \in (k_{i-1}, k_i)^*$. We define a set $Y_{k_i} = Y'_{k_i} \cup \{k^*\}$.

Let $Y = \bigcup \{ Y_{k_i} : k_i \in A \}.$

Note that the set Y is countable.

We have $A(X, Y) \cap F(B) = \emptyset$.

Since $|(k_{i-1}, k_i)^*| \ge 2$ for all $k_i \in B$, there are 2^{ω} sets $Y \in \operatorname{Exp} \omega$ such that $A(X, Y) \cap F(B) = \emptyset$. So $F(B) \in \widetilde{\mathcal{F}}$.

Since $|\lambda| = 2^{\omega}$, we have $|\{F(B) : B \in \lambda\}| = 2^{\omega}$. Note, that from Lemma 3.4 we have $|\widetilde{\mathcal{F}}| = 2^{\omega}$. \Box

Lemma 3.5. Let $F \in \widetilde{\mathcal{F}}$ and $X \in \exp \omega$. Then there is a family $T(X, F) \subseteq \operatorname{Exp} \omega$ such that:

 $-|T(X,F)| = \omega;$ $-\bigcup\{A(X,Y): Y \in T(X,F)\} = H;$ $-|A(X,Y) \cap F| < \omega \text{ for all } Y \in T(X,F);$ $-|\{Y \in T(X,F): A(X,Y) \cap F\} = \emptyset| \ge \omega.$

Proof. Let $F \in \widetilde{\mathcal{F}}$ and $X \in \exp \omega$. By Lemma 3.3 there is a family $T'(X, F) \subseteq \operatorname{Exp} \omega$ such that

 $-|T'(X,F)| = \omega;$

- $|A(X,Y) \cap F| < \omega \text{ for all } Y \in T'(X,F);$
- $-\bigcup\{A(X,Y)\colon Y\in T'(X,F)\}=H.$

Since $F \in \widetilde{\mathcal{F}}$, there is $T'' \subseteq \operatorname{Exp} \omega$, $|T''| = \omega$, such that $A(X, Y) \cap F = \emptyset$ for $Y \in T''$. Denote $T(X, F) = T' \cup T''$. \Box

Now we will define a matrix \mathfrak{M}_2 .

I Let P be the set of all ordered pairs (u, v) of elements $u, v \in H$. By Lemma 3.2 there is a countable family

$$\mathcal{L} = \{X_{(u,v)} \colon (u,v) \in P\}$$

of sets $X_{(u,v)} \in \exp \omega$ such that for every $X_{(u,v)} \in \mathcal{L}$ there is $Y_{(u,v)} \in \exp \omega$ such that $u \in A(X_{(u,v)}, Y_{(u,v)})$, $v \notin A(X_{(u,v)}, Y_{(u,v)})$ and $X_{(u,v)} \neq X_{(u',v')}$ if $(u, v) \neq (u', v')$. Denote

$$\mathcal{R} = \exp\omega \setminus \mathcal{L}.$$

Let η be a family of countable subsets of H such that $|\eta| \leq \mathfrak{c}$. Consider the family $\widetilde{\mathcal{F}}$ of subsets of H.

II Let $\Theta: \mathfrak{R} \to \widetilde{\mathfrak{F}}$ be a mapping such that $|\Theta^{-1}(F)| = |\eta|$ for every $F \in \widetilde{\mathfrak{F}}$. Consider $F \in \widetilde{\mathfrak{F}}$. Let $X \in \Theta^{-1}(F)$. Let

$$T(X, F) \subseteq \operatorname{Exp} \omega$$

be a countable set from Lemma 3.5 for F and X.

 $\begin{array}{ll} III & \text{Let } X_{(u,v)} \in \mathcal{L} \text{ and } Y_{(u,v)} \in \operatorname{Exp} \omega \text{ be such that } u \in A(X_{(u,v)},Y_{(u,v)}) \text{ and } v \notin A(X_{(u,v)},Y_{(u,v)}). \\ & \text{Let} \end{array}$

$$T_{(u,v)} \subseteq \operatorname{Exp} \omega$$

be a countable family such that $Y_{(u,v)} \in T_{(u,v)}$ and $\bigcup \{A(X_{(u,v)}, Y) \colon Y \in T_{(u,v)}\} = H$.

IV Define

$$T_X = \begin{cases} T_{(u,v)} & \text{for } X = X_{(u,v)} \in \mathcal{L}; \\ T(X,F) & \text{for } F \in \widetilde{\mathcal{F}} \text{ and } X \in \Theta^{-1}(F). \end{cases}$$

By the similar way as in [8] we define a matrix

$$\mathfrak{M}_2 = \{ A(X, Y) \colon X \in \exp \omega, Y \in T_X \},\$$

which satisfies the following.

Lemma 3.6. The matrix \mathfrak{M}_2 satisfies the following conditions:

- (1) for every $(u,v) \in P$ there is $X = X_{(u,v)} \in \mathcal{L}$ and $Y \in T_{(u,v)}$ such that $u \in \widetilde{A}(X_{(u,v)}, Y_{(u,v)})$ and $v \notin \widetilde{A}(X_{(u,v)}Y_{(u,v)});$
- (2) if $F \in \widetilde{\mathcal{F}}$ and $X \in \Theta^{-1}(F)$ then $|\widetilde{A}(X,Y) \cap F| < \omega$ for all $Y \in T(X,F)$;
- (3) if $F \in \widetilde{\mathcal{F}}$ and $X \in \Theta^{-1}(F)$ then $|\{Y \in T(X,F) : \widetilde{A}(X,Y) \cap F = \emptyset\}| = \omega;$
- (4) $\widetilde{A}(X,Y) \cap \widetilde{A}(X,Y') = \emptyset$ for all $X \in \exp \omega$ and $Y, Y' \in T_X, Y \neq Y'$;
- (5) $\bigcup \{ \widetilde{A}(X, Y) \colon Y \in T_X \} = H \text{ for all } X \in \exp \omega;$
- (6) if $X_1, \ldots, X_n \in \exp \omega$ are distinct and $Y_i \in T_{X_i}$ $(i = 1, \ldots, n)$ then there is $k_0 \in \omega$ such that $(\bigcap \{\widetilde{A}(X_i, Y_i) : i = 1, \ldots, n\}) \cap H_k \neq \emptyset$ for all $k > k_0$.

The matrix \mathfrak{M}_2 generates a space

$$\Sigma = \prod_{X \in \exp \omega} TX.$$

For $\xi \in \Sigma$ let ξ_X be a X-coordinate of ξ . The following Lemma 3.7 is similar to Lemma 3.5 [8].

Lemma 3.7. The set Σ satisfies the following conditions:

- (1) if $\xi_1, \xi_2 \in \Sigma, \ \xi_1 \neq \xi_2$, then there is $X \in \exp \omega$ such that $\widetilde{A}(X, \xi_{1_X}) \cap \widetilde{A}(X, \xi_{2_X}) = \emptyset$;
- (2) $|\bigcap \{A(X,\xi_X): X \in \exp \omega\}| \leq 1 \text{ for all } \xi \in \Sigma;$
- (3) for every $u \in H$ there is the only

 $\xi^u \in \Sigma$

such that $\cap \{\widetilde{A}(X,\xi_X^u) \colon X \in \exp \omega\} = \{u\};$ (4) if $u_1, u_2 \in H$, $u_1 \neq u_2$, then $\xi^{u_1} \neq \xi^{u_2}$.

Denote

$$\mu \colon H \to \Sigma$$

a mapping from H into Σ defined by the rule: $\mu(u) = \xi^u$ for every $u \in H$.

Lemma 3.8. The set $\mu(H)$ is dense in the space Σ .

Proof. For the set H the set $\mu(H)$ is dense in Σ .

Indeed, let $O(X, \ldots, X_n, Y_1, \ldots, Y_n)$ be a standard basic open set of the base of Σ , where $Y_i \in T_{X_i}$ $(i = 1, \ldots, n)$.

By (6) of Lemma 3.6 we have

$$(\bigcap \{\widetilde{A}(X_i, Y_i) \colon i = 1, \dots, n\}) \cap H \neq \emptyset$$

For $u \in \cap\{\widetilde{A}(X_i, Y_i): i = 1, \dots, n\}$ we have $\xi_{X_i}^u = Y_i \ (i = 1, \dots, n)$ and therefore $\xi^u \in O(X, \dots, X_n, Y_1, \dots, Y_n)$, so $O(X, \dots, X_n, Y_1, \dots, Y_n) \cap \mu(H) \neq \emptyset$. \Box

4. The main theorems

Consider a separable space Z and

let
$$Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} ZX, \ Z_X = Z.$$

Theorem 4.1. Let Z be a separable space, $|Z| \ge \omega$, and $\eta \subseteq \operatorname{Exp} Z$ be a family of countable subsets of Z, $|\eta| \le 2^{\omega}$.

Then there is a countable dense subset $Q \subseteq Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} ZX$, satisfying the following condition:

(*) every countable set $E \subseteq Q$ contains a countable subset $E' \subseteq E$ such that for every $G \in \eta$ there is $X \in \exp \omega$ such that $\pi_X(E') = G$ and $\pi_{X|_{E'}} \colon E' \to G$ is a finite-to-one mapping.

Proof. Consider two cases.

(I) At first we will consider the case $|Z| > \omega$.

(A) We will construct a mapping $\Psi \colon \Sigma \to \prod ZX$ as follows. $X \in \exp \omega$ The construction of Ψ consists of parts (A1)–(A4). (A1) Consider $Z^{\mathfrak{c}} = \prod ZX$ and the set $\mathcal{R} \subseteq \exp \omega$. $X \in \exp \omega$

Let η be the family from the formulation of the theorem, and $\Theta: \mathcal{R} \to \widetilde{\mathcal{F}}$ be a mapping such that $|\Theta^{-1}(F)| = |\eta|$ for every $F \in \widetilde{\mathcal{F}}$ (see *II* of the construction of the matrix \mathfrak{M}_2).

For every $X \in \Theta^{-1}(F)$ fix countable subsets G(X), D(X) of the space $Z_X = Z$ such that:

 $-G(X) \in \eta;$

- $G(X) \neq G(X') \text{ if } X \neq X';$
- $\{G(X) \colon X \in \Theta^{-1}(F)\} = \eta \text{ for every } F \in \widetilde{\mathcal{F}};$
- $-G(X) \subseteq D(X);$
- D(X) is dense in $Z_X = Z;$

$$- |D(X) \setminus G(X)| = \omega.$$

We can do this since $|Z| > \omega$.

(A2) For every $X \in \exp \omega$ we will define a mapping $\psi_X \colon T_X \to Z_X$. Let $X \in \mathcal{R}$. We will define a mapping

$$\psi_X \colon T_X \to Z_X$$

as follows. Since $X \in \mathcal{R}$, we have $X \in \Theta^{-1}(F)$ for some $F \in \widetilde{\mathcal{F}}$. Consider $T_X = T(X, F)$ for this X and F (see IV of the construction of \mathfrak{M}_2).

Let $T'_X = \{Y \in T_X \colon \widetilde{A}(X,Y) \cap F \neq \emptyset\}$ and $T''_X = T_X \setminus T'_X$.

By (2), (3) and (5) of Lemma 3.6 sets T'_X and T''_X are countable.

We will define $\psi_X \colon T_X \to Z_X$ as some one-to-one mapping T_X into Z_X such that:

$$\psi_X(T'_X) = G(X),$$

$$\psi_X(T_X) = D(X).$$

(A3) Let $X \in \mathcal{L}$, i.e. $X = X_{(u,v)}$ for some ordered pair (u,v). In this case we have $T_X = T_{(u,v)}$ (see IV of the construction of \mathfrak{M}_2). Let $D(X) = D(X_{(u,v)})$ be some countable dense subset of $Z_{X_{(u,v)}}$.

We will define

$$\psi_X \colon T_X \to D_X$$

as some one-to-one mapping ψ_X from $T_X = T_{X_{(u,v)}}$ onto $D_X = D_{X_{(u,v)}}$.

(A4) We define the mapping

$$\Psi\colon \Sigma \to \prod_{X \in \exp \omega} ZX$$

as follows.

For $\xi \in \Sigma$ let $\Psi(\xi) = z \in \prod_{X \in U} ZX$ be such that $\pi_X(z) = \pi_X(\Psi(\xi)) = \psi_X(\xi_X)$ (recall that ξ_X is $X \in \exp \omega$ a X-coordinate of $\xi \in \Sigma$ and $\xi_X \in T_X$).

The mapping Ψ is one-to-one mapping from Σ onto $\prod_{X \in \exp \omega} D(X) \subseteq \prod_{X \in \exp \omega} ZX$.

The mapping μ is a one-to-one mapping from H into Σ . Then

$$\mu \circ \Psi \colon H \to \prod_{X \in \exp \omega} D(X)$$

is a one-to-one mapping from H into $\prod_{X\in \exp\omega} D(X)\subseteq Z^{\mathfrak{c}}.$

For every $u \in H$ we denote $z^u = \Psi(\mu(u)) = \Psi(\xi^u)$. By the definition of Ψ we have $\pi_X(z^u) = \pi_X(\Psi(\xi^u)) = \psi_X(\xi^u_X)$.

(B) Define

$$Q = \Psi(\mu(H))$$
 and $Q_k = \Psi(\mu(H_k))$.

The set Q is dense in $Z^{\mathfrak{c}}$.

Consider spaces $\Sigma = \prod_{X \in \exp \omega} TX$ and $\prod_{X \in \exp \omega} D(X)$. The mapping $\Psi : \Sigma \to \prod_{X \in \exp \omega} D(X)$ is continuous. By Lemma 3.7 the set $\mu(H)$ is a dense subset of Σ . Then $Q = \Psi(\mu(H))$ is dense in $\prod_{X \in \exp \omega} D(X)$. Since D(X) is dense subset of Z_X for all $X \in \exp \omega$, Q is dense in $Z^{\mathfrak{c}}$.

(C) Consider $F \in \widetilde{\mathcal{F}}$ and let $X \in \Theta^{-1}(F)$. We will prove the following:

 $-\pi_X(\Psi(\mu(F))) = G(X);$ - $\pi_X|_{\Psi(\mu(F))}$ is a finite-to-one mapping from $\Psi(\mu(F))$ onto G(X).

We have $\Psi(\mu(F)) = \Psi(\{\xi^u : u \in F\}), \ \pi_X(\Psi(\mu(F))) = \psi_X(\{\xi^u_X : u \in F\}), \ \text{and} \ \{\xi^u_X : u \in F\} \subseteq T_X = T(X,F).$

Prove that $\{\xi_X^u : u \in F\} = T'_X$ for $F \in \widetilde{\mathcal{F}}$. Indeed, since $\xi_X^u \ni u$ for every $u \in F$, we have $\{\xi_X^u : u \in F\} \subseteq T'_X$ and $F \subseteq \bigcup \{\widetilde{A}(X, \xi_X^u) : u \in F\}$. From (4) of Lemma 3.6 we have $\{\xi_X^u : u \in F\} = T'_X$. Therefore $\pi_X(\Psi(\mu(F))) = \psi_X(\{\xi_X^u : u \in F\}) = \psi_X(T'_X)$. By the definition of the mapping ψ_X we have $\psi_X(T'_X) = G(X)$, so

$$\pi_X(\Psi(\mu(F))) = G(X).$$

Let us prove that

$$\pi_X|_{\Psi(\mu(F))} \colon \Psi(\mu(F)) \to G(X)$$

is a finite-to-one mapping from $\Psi(\mu(F))$ onto G(X).

Let $Y \in T_X$. Consider $\psi_X(Y)$.

If for some $z^u \in \Psi_X(\mu(F))$ we have $\psi_X(Y) = \psi_X(\xi^u_X) = \pi_X(z^u)$, then, since $\psi_X : T_X \to Z_X$ is a one-to-one mapping, we have $\xi^u_X = Y$. Therefore $u \in Y$.

Since $|F \cap Y| < \omega$ for every $Y \in T_X$, we $|\{u \in F : \pi_X(z^u) = \psi_X(Y)\}| < \omega$. Therefore

$$\pi_X|_{\Psi(\mu(F))} \colon \Psi(\mu(F)) \to G(X)$$

is a finite-to-one mapping.

(D) Let us prove the property (*) of Q, declared in the theorem. Use (C).

Let $E \subseteq Q$ be a countable subset. Let $\widetilde{E} \subseteq H$ be such that

$$\Psi(\mu(\widetilde{E})) = E$$

There is $F \in \widetilde{\mathcal{F}}$ such that $F \subseteq \widetilde{E}$ (see Lemma 3.4). Let $G \in \eta$. Consider $X \in \Theta^{-1}(F)$ such that G(X) = G. Then for $\Psi(\mu(F)) \subseteq E$ we have

$$\pi_X(\Psi(\mu(F))) = G(X) = G$$

and $\pi_X|_{\Psi(\mu(F))} \colon \Psi(\mu(F)) \to G(X)$ is a finite-to-one mapping (see (C)). Define

$$E' = \Psi(\mu(F)).$$

II. Consider the case $|Z| = \omega$.

Let A be a countable set.

Denote $Y = \prod Z\alpha$, where $Z_{\alpha} = Z$ for all $\alpha \in A$.

Y is an uncountable separable space.

Consider $\prod_{X \in \exp \omega} YX$, where $Y_X = Y$ and $Y_X = \prod_{\alpha \in A} Z_{\alpha,X}$, $Z_{\alpha,X} = Z_{\alpha} = Z$ for all $X \in \exp \omega$. We have $Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} YX$. Fix a point $y_0 \in Y$ and $\widetilde{\alpha} \in A$.

Let $\eta \subseteq \operatorname{Exp} Z$ be a family of countable subsets of Z, $|\eta| \leq 2^{\omega}$. For every element $G \subseteq Z$ of family η we define a set $G' \in Y$:

$$G' = \{ y \in Y \colon \pi_{\widetilde{\alpha}}(y) \in G \text{ and } \pi_{\alpha}(y) = \pi_{\alpha}(y_0) \text{ for } \alpha \neq \widetilde{\alpha} \}.$$

Let $\eta' = \{G' : G \in \eta\}$. Consider $Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} YX = \prod_{X \in \exp \omega} (\prod_{\alpha \in A} Z_{\alpha, X})$. In $Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} YX$ there is a countable set $Q \subseteq Z^{\mathfrak{c}}$, satisfying (*). Let $E \subseteq Q \subseteq Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} YX$ be a countable set.

By (*) there is a countable subset $E' \subseteq E$ such that for every $G' \in \eta'$ there is $X \in \exp \omega$ such that $\pi_X(E') = G'$ and $\pi_X(E') \colon E' \to G'$ is a finite-to-one mapping.

Let $G \in \eta$ and consider corresponding $G' \in \eta'$. Then there is $\widetilde{X} \in \exp \omega$ such that

$$\pi_{\widetilde{X}}(E') = G'$$

where $\pi_{\widetilde{X}} \colon \prod_{X \in \exp \omega} YX \to Y_{\widetilde{X}}$ is a \widetilde{X} -projection from $\prod_{X \in \exp \omega} YX$ on $Y_{\widetilde{X}} = \prod_{\alpha \in A} Z_{\alpha,\widetilde{X}}$ and $\pi_{\widetilde{X}}|_{E'} \colon E' \to G'$ is a finite to one morphing

is a finite-to-one mapping.

 $\begin{array}{l} \text{Consider } \pi_{\widetilde{\alpha},\widetilde{X}} \colon \prod_{\alpha \in A} Z_{\alpha,\widetilde{X}} \to Z_{\widetilde{\alpha},\widetilde{X}}. \\ \text{Then } \pi_{\widetilde{\alpha},\widetilde{X}}(\pi_{\widetilde{X}}(E')) = \pi_{\widetilde{\alpha},\widetilde{X}}(G')) = G. \\ \text{The mapping } \pi_{\widetilde{\alpha},\widetilde{X}} \circ \pi_{\widetilde{X}} \text{ is a projection of } Z^{\mathfrak{c}} = \prod_{X \in \exp \omega} YX = \prod_{X \in \exp \omega} (\prod_{\alpha \in A} Z_{\alpha,X}) \text{ on } Z_{\widetilde{\alpha},\widetilde{X}}. \\ \text{And } \pi_{\widetilde{\alpha},\widetilde{X}} \circ \pi_{\widetilde{X}}|_{E'} \text{ is a finite-to-one mapping.} \quad \Box \end{array}$

Consider some facts, which follow from Theorem 4.1.

Theorem 4.2. Let Z be a not single point separable T_1 -space. Then there is a countable dense subset $Q \subseteq Z^{\mathfrak{c}}$ which contains no convergent in $Z^{\mathfrak{c}}$ nontrivial sequences.

Proof. Let Z be a separable not single point T_1 -space.

Consider Z^{ω} .

There are two countable subsets of Z^{ω} with disjoint closures.

Indeed, Z is not single point T_1 -space, and let $x, y \in Z$, $x \neq y$. Consider $\pi^{-1}(x)$ and $\pi^{-1}(y)$ where $\pi: Z^{\omega} \to Z$ is a projection on Z. Then $\pi^{-1}(x)$ and $\pi^{-1}(y)$ are closed infinite sets, $\pi^{-1}(x) \cap \pi^{-1}(y) = \emptyset$. Let $\Phi_x \subseteq \pi^{-1}(x)$ and $\Phi_y \subseteq \pi^{-1}(y)$ be countable subsets of Z^{ω} , then $[\Phi_x] \cap [\Phi_y] \neq \emptyset$.

Consider a subset $G = \Phi_x \cup \Phi_y$ of the space Z^{ω} and let $\eta = \{G\}$ be a family consisting of the only one

element G.

Consider $\prod_{X \in \exp \omega} YX$, where $Y_X = Z^{\omega}$ for all $X \in \exp \omega$.

 $\prod_{X \in \exp \omega} YX \text{ is naturally homeomorphic to } Z^{\mathfrak{c}}.$

By Theorem 4.1 in $\prod_{X \in \exp \omega} YX$ there is a countable dense set $Q \subseteq \prod_{X \in \exp \omega} YX$, satisfying (*) of the

Theorem 4.1 for η .

Suppose, there is a non-trivial convergent sequence $\xi = \{x_n : n \in \omega\} \subseteq Q$.

Then there is a countable subset E' of $\{x_n : n \in \omega\}$ and X such that for $\pi_X : \prod_{X \in \exp \omega} YX \to Y_X$

we have $\pi_X(E') = \Phi_x \cup \Phi_y = G$ and $\pi_{X|_{E'}} \colon E' \to \Phi_x \cup \Phi_y$ is an "on" and finite-to-one mapping. Since $[\Phi_x] \cap [\Phi_y] = \emptyset$, we get that ξ contains two subsequences with disjoint closures. This contradicts the fact that ξ is a convergent sequence. \Box

From this it follows, in particular, that in the Tychonoff product Z_m^c , where Z_m is an infinite space with minimal T_1 -topology, there is a countable dense set which contains no non-trivial convergent sequences.

Consider a countable product $Z^{\omega} = \prod_{i \in \omega} Z_i$, where $Z = Z_i$ $(i \in \omega)$ is an uncountable space.

Then for every countable dense subset $Q \subseteq Z^{\omega}$ there is a point $z \in Z$ such that for a set $Z_z = Z \setminus \{z\}$ the following holds: $Z_z^{\omega} \supseteq Q$.

In the case of $Z^{\mathfrak{c}}$ we have the following.

Theorem 4.3. Let Z be a separable space, $\omega \leq |Z| \leq \mathfrak{c}$. Then in Z^{\mathfrak{c}} there is a countable dense subset Q, which satisfies the following condition:

for all $z \in Z$ the following holds: $|Z_z^{\mathfrak{c}} \cap Q| < \omega$ where $Z_z = Z \setminus \{z\}$.

Proof. For a space Z let η be the family of all countable subsets of Z. Let Q be a countable dense set of $Z^{\mathfrak{c}}$, which satisfies (*) of Theorem 4.1 for η .

Suppose that for some $z \in Z$ we have that a set $E = Z_z^{\mathfrak{c}} \cap Q$ is countable. Let $z \in G$ for some $G \in \eta$. By (*) of Theorem 4.1, there is $E' \subseteq E$ and $X \in \exp \omega$ such that $\pi_X(E') = G$. Then $\pi_X(E') \ni z$. But since $E' \subseteq Z_z^{\mathfrak{c}} \cap Q$ we have that $\pi_X(E') \subseteq Z_z$ and therefore $z \notin \pi_X(E')$. Contradiction. \Box

For a space $I^{\mathfrak{c}}$ in every dense subset, in particular in Q, which has no convergent sequences, there is a sequence $E \subseteq Q$, which converges to a set F such that $E \cap F = \emptyset$. For $R^{\mathfrak{c}}$ we have the following.

Theorem 4.4. Let Z be a separable not countably compact T_1 -space. Then there is a countable dense subset $Q \subseteq Z^c$ satisfying the following condition: if $E \subseteq Q$ is a countable set and E converges to a set $F \subseteq Z^c$, then $|E \setminus F| < \omega$.

Proof. Let $G \subseteq Z$ be a countable discrete closed set and the family $\eta = \{G\}$ consists of the only set G. Then for η there is a countable dense set of $Q \subseteq Z^{\mathfrak{c}}$ satisfying (*) of the Theorem 4.1.

Let us prove the that for every countable subset $E \subseteq Q$ there is a countable discrete and closed subset $E' \subseteq E$.

Let $E \subseteq Q$.

By (*) of Theorem 4.1 for E there is a countable E' such that for some $X \in \exp \omega$ we have $\pi_X(E') = G$ and π_X on E' is a finite-to-one mapping of E'.

Let us prove that E' is discrete and closed.

Let us prove that E' discrete.

Let $z \in E'$. Consider $\pi_X(z)$. Since G is discrete, there is an open set $U \subseteq Z$ such that $U \cap G = \pi_X(z)$. Then $E' \cap \pi_X^{-1}(U) = \pi_X^{-1}(\pi_X(z))$.

Since π_X on E' is a finite-to-one mapping of E', a set $E' \cap \pi_X^{-1}(U) = \pi_X^{-1}(\pi_X(z))$ is finite.

Therefore there is an open in $Z^{\mathfrak{c}}$ neighborhood Oz of z such that $Oz \cap E' = \{z\}$.

Let us prove that E' is closed. Let $z \in Z^{\mathfrak{c}} \setminus E'$.

Let $\pi_X(z) \in G$. By the same arguments as before, we can prove that there is a neighborhood Oz such that $Oz \cap E' = \emptyset$.

If $\pi_X(z) \notin G$ then, since G is closed, there is a neighborhood U of $\pi_X(z)$ such that $U \cap G(X) = \emptyset$. Then $\pi^{-1}(U)$ is a neighborhood of z and $\pi^{-1}(U) \cap E' = \emptyset$.

Now let E be a countable subset of Q and $F \subseteq Z^c$ be such that E converges to F. Suppose $|E \setminus F| = \omega$. Then there is a countable $E' \subseteq E \setminus F$ which is discrete and closed in Z^c .

Then $U = Z^{\mathfrak{c}} \setminus E'$ is a neighborhood of F and $|E \setminus U| = \omega$. Contradiction. \Box

References

- P.S. Alexandroff, Vvedenie v Teoriyu Mnozestv i Obschuyu Topologiyu (Introduction to Set Theory and General Topology), Izd. "Mir", Moscow, 1977.
- [2] A.V. Archangel'skiĭ, V.I. Ponomarev, Osnovy Obshchey Topologii v Zadachakh i Uprzhneniyakh (Fundamentals of General Topology through Problems and Examples), Izd. "Nauka", Moscow, 1974.
- [3] R. Engelking, General Topology, Translated from Polish by the Author, Series Monografie Matematyczne (Mathematical Monographs), vol. 60, PWN – Polish Scientific Publishers, Warsaw, 1977.
- [4] R. Engelking, M. Karlowicz, Some theorems of set theory and their topological consequences, Fundam. Math. LVII (1965) 275–285.
- [5] G. Fichtenholz, L. Kantorovich, Sur les opérations linéairs dans l'espace des fonctions bornées, Stud. Math. 5 (1934) 69–98.
- [6] A.A. Gryzlov, On dense subsets of Tychonoff products, Topol. Appl. 170 (2014) 86–95.
- [7] A.A. Gryzlov, On independent matrix and dense subsets of Tychonoff products, Topol. Appl. 202 (2016) 337–345.
- [8] A.A. Gryzlov, About dense subsets of Tychonoff products of discrete spaces, Topol. Appl. 221 (2017) 300–308.
- [9] A.A. Gryzlov, On dense subsets, convergent sequences and projections of Tychonoff products, Topol. Appl. 233 (2018) 52-60.
- [10] F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovich, Stud. Math. 6 (1936) 18–19.
- [11] K. Kunen, Weak p-points in N*, in: Coll. Matem. Societ. Yános. Bolyai 23. Topology, Budapest (Hungary), 1978, pp. 741–749.
- [12] J. van Mill, A remark on the Rudin–Keisler order of ultrafilters, Houst. J. Math. 9 (1) (1983) 125–129.
- [13] W.H. Priestley, A sequentially closed countable dense subset of I^I, Proc. Am. Math. Soc. 24 (2) (1970) 270–271.
- [14] P. Simon, Divergent sequences in compact Hausdorff spaces, in: Coll. Math. Soc. János Bolyai 23, Budapest, 1978, pp. 1087–1094.