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Abstract—In this paper we consider the evasion problem from
the group of pursuers in the finite-dimensional Euclidean space.
The motion is describe by the linear system of fractional order(

CDα
0+zi

)
= Azi + ui − v,

where CDα
0+f is the Caputo derivative of order α ∈ (0, 1) of

the function f and A is a simple matrix. The initial positions
are given at the initial time. The set of admissible controls of all
players is a convex compact. It is further assumed that the evader
does not leave the convex polyhedron with nonempty interior. In
terms of the initial positions and the parameters of the game,
sufficient conditions for the solvability of the evasion problem
are obtained.

I. INTRODUCTION

An important direction in the development of the modern
theory of differential games is associated with the development
of methods for solving game problems of pursuit-evasion with
the participation of several objects [1], [2], [6], moreover, in
addition to deepening the classical methods of solving, actively
searching for new tasks to which the developed methods.
In particular, the problems of the pursuit of two persons,
described by equations with fractional derivatives, where suf-
ficient capture conditions were obtained, were considered in
papers [3], [7]–[9].

In this paper we consider one task of pursuing a group
of pursuers by one evader, provided that the motion of all
participants is described by linear equations with derivatives
fractional in the Caputo sense, the matrix of the system is
simple, and the runaway does not leave the limits of a convex
polyhedral set.

Sufficient conditions for evasion are obtained, expressed in
terms of the initial positions and parameters of the game. The
work continues the research [4].

Definition 1 (see [10, p. 97]): Let f : [0,∞) → Rk —
be an absolutely continuous function and α ∈ (0, 1). Caputo
derivative of order α of a function f is a function CDα

0+f
of the form

(
CDα

0+f
)

(t) =
1

Γ(1− α)

∫ t

0

f ′(τ)

(t− τ)α
dτ.

In the space Rk (k > 2) n+1 persons the differential game
is considered: n pursuers Pi, i = 1, . . . , n, and the evader E.
The law of motion of each of the pursuers Pi has the form(
CDα

0+xi
)

(t) = axi(t) + ui(t), xi(0) = x0i , ui ∈ Q. (1)

The law of motion of the evader E has the form(
CDα

0+y
)

(t) = ay(t) + v(t), y(0) = y0, v ∈ Q. (2)

Here α ∈ (0, 1), xi, y, ui, v ∈ Rk, Q is a convex compactum
in Rk, a is a real number. We assume that x0i 6= y0 for all i.
In addition, it is assumed that the evader E does not leave a
convex polyhedral set with a nonempty interior Ω of the form

Ω =
{
ξ ∈ Rk

∣∣ 〈pj , ξ〉 6 µj , j = 1, . . . , r, r > 0
}
,

where pj , j = 1, . . . , r, are the unit vectors of Rk, µj , j =
1, . . . , r, are real numbers such that int Ω 6= 0; for r = 0 we
assume that Ω = Rk.

Instead of the systems (1), (2) we consider systems(
CDα

0+zi
)

(t) = azi(t) + ui(t)− v(t),

zi(0) = z0i = x0i − y0, ui, v ∈ Q.
(3)

Let T > 0 be an arbitrary positive number, σ = {0 = t0 <
t1 < . . . < ts+1=T } is a finite partition of the interval [0, T ].

Definition 2: The piecewise-program strategy SE of the
evader E, given on [0, T ], corresponding to a partition σ is
a family of mappings bl, l = 0, . . . , s, that correspond the
values (tl, z1(tl), . . . , zn(tl)) to a measurable function vl(t),
defined for t ∈ [tl, tl+1) and such that vl(t) ∈ Q, y(t) ∈ Ω
for all t ∈ [tl, tl+1].

Definition 3: The piecewise-program counterstrategy CSPi

of the pursuer Pi, given on [0, T ], corresponding to the
partition σ is the family of mappings cl, l = 0, . . . , s, that
correspond the values (tl, z1(tl), . . . , zn(tl)) and control vl(t),
t ∈ [tl, tl+1), to a measurable function uil(t), defined for
t ∈ [tl, tl+1) and such that uil(t) ∈ Q for all t ∈ [tl, tl+1].

Definition 4: In the differential game evasion from the
meeting occurs, if for any T > 0 there are partition σ of the
interval [0, T ] and the strategy SE of the evader E such that
for any trajectories xi(t) of pursuers Pi the following holds

xi(t) 6= y(t), t ∈ [0, T ]. (4)
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Let IntA and coA be the interior and convex hull of
set A respectively, I(l) = {1, 2, . . . , n + l}, Eρ(z;µ) =
∞∑
k=0

zk

Γ(µ+ k/ρ)
—is a generalized Mittag-Leffler function,

λi(v) = max
{
λ > 0

∣∣−λz0i ∈ Q− v} , i ∈ I(0),

λn+j(v) = 〈pj , v〉, j = 1, . . . , r,

δr = min
v∈Q

max
l∈I(r)

λl(v).

II. SUFFICIENT CONDITIONS FOR THE EVASION PROBLEM

Theorem 1: Let r = 0 (Ω = Rk), δ0 = 0. Then in a
differential game an evasion occurs.

Proof: From the hypothesis of the theorem it follows that
there exist v0 ∈ Q such that

λi(v0) = 0 for all i ∈ I(0).

Let T > 0 be an arbitrary positive number. We define the
strategy of the evader E, assuming

σ = {0, T}, v(t) = v0 for all t ∈ [0, T ].

Let ui(t) be an arbitrary admissible control of the pursuer Pi.
Then the solutions of the systems (3) are representable in the
form

zi(t) = E1/α(atα; 1)z0i +

+

t∫
0

(t− τ)α−1E1/α(a(t− τ)α;α)(ui(τ)− v0) dτ =

= E1/α(atα; 1)z0i + tαE1/α(atα;α+ 1)(ūi
t − v0),

where

ūi
t =

t∫
0

(t− τ)α−1E1/α(a(t− τ)α;α)ui(τ) dτ

tαE1/α(atα;α+ 1)
∈ Q.

Indeed, from Theorem 4.1.1 [5, p. 101] it follows that for
0 < α < 1 the functions E1/α(z; 1) and E1/α(z;α + 1) are
positive for all z ∈ R1, therefore for any value of a and for
all t > 0 ūi

t ∈ Q by the convexity of Q.
We show that zi(t) 6= 0 for all i = 1, . . . , n for all

0 < t 6 T . We argue by contradiction. If for some i0 there was
a moment of time t∗ such that the equality zi0(t∗) = 0 holds,

this would mean that ūi0
t∗ = v0 −

E1/α(atα; 1)

tαE1/α(atα;α+ 1)
z0i .

By the definition of λi0 this would mean that λi0(v0) >
E1/α(a(t∗)α; 1)

tαE1/α(a(t∗)α;α+ 1)
> 0, which contradicts the hypothesis

of the theorem. Thus the theorem 1 is proved.
Corollary 1: Let r = 0 (Ω = Rk), V be a convex strictly

convex compact set with a smooth boundary and

0 /∈ Int co
{
z01 , . . . , z

0
n

}
.

Then in a differential game, an evasion occurs.
Proof: It follows from the conditions of the corollary

and [1, p. 15] that δ0 = 0, that is, in the differential game, an
evasion occurs due to the theorem 1.

Theorem 2: Let r = 1, δ1 = 0 and aµ1 6 0. Then in a
differential game, an evasion occurs.

Proof: From the hypothesis of the theorem it follows that
there exists v0 ∈ Q such that

λi(v0) = 0 for all i ∈ I(0), λn+1(v0) = 〈p1, v0〉 6 0.

It follows from the theorem 1 that if for any T > 0 we take
the partition σ = {0, T} and v(t) = v0, then neither one of
the pursuers Pi does not catch up with the evader E, since the
equality zi(t) = 0 is impossible because λi(v0) = 0, i ∈ I(0).
It remains only to make sure that the evader does not leave
the set Ω. Consider the scalar product 〈p1, y(t)〉:

〈p1, y(t)〉 = E1/α(atα; 1)〈p1, y0〉+

+ tαE1/α(atα;α+ 1)〈p1, v0〉 6
6 E1/α(atα; 1)〈p1, y0〉.

For a < 0 the function E1/α(atα; 1) decreases mono-
tonically on the interval [0, T ] from E1/α(0; 1) = 1 to
E1/α(aTα; 1) > 0, since its derivative d

dtE1/α(atα; 1) =
atα−1E1/α(atα;α) < 0 for all t > 0. Therefore, for µ1 > 0
and for all t > 0

〈p1, y(t)〉 6 E1/α(atα; 1)〈p1, y0〉 6 µ1.

For a = 0 E1/α(atα; 1) = E1/α(0; 1) = 1, therefore for
any µ1 and for all t > 0

〈p1, y(t)〉 6 E1/α(0; 1)〈p1, y0〉 6 µ1.

For a > 0 the function E1/α(atα; 1) increases mono-
tonically on the interval [0, T ] from E1/α(0; 1) = 1 to
E1/α(aTα; 1) > 1. Therefore, for µ1 6 0 and for all t > 0

〈p1, y(t)〉 6 E1/α(atα; 1)〈p1, y0〉 6 µ1.

Hence, under the conditions of the theorem, the control
v(t) = v0 leaves the evader E in the set Ω. The theorem
is proved.

Theorem 3 (evasion in a cone): Let r > 1, δr = 0 and µj =
0, j = 1, . . . , r (Ω be a convex cone). Then in a differential
game, an evasion occurs.

Proof: From the hypothesis of the theorem it follows that
there exists v0 ∈ Q such that

λi(v0) = 0 for all i ∈ I(0),

λn+j(v0) = 〈pj , v0〉 6 0, j = 1, . . . , r.

It follows from the theorem 1 that if for any T > 0 we take
the partition σ = {0, T} and v(t) = v0, then neither one of
the pursuers Pi does not catch up with the evader E, since the
equality zi(t) = 0 is impossible because λi(v0) = 0, i ∈ I(0).
It follows from the theorem 2 that the evader does not leave
the set Ω, since for any value a and for any j = 1, . . . , r the
following inequalities holds:

〈pj , y(t)〉 = E1/α(atα; 1)〈pj , y0〉+

+ tαE1/α(atα;α+ 1)〈pj , v0〉 6
6 E1/α(atα; 1)〈pj , y0〉 6 µj = 0. (5)



Hence, under the conditions of the theorem, the control v(t) =
v0 leaves the evader E in the convex cone Ω. The theorem is
proved.

Corollary 2: Let r > 0, δr = 0 and aµj 6 0 for all j =
1, . . . , r. Then in a differential game, an evasion occurs.

Proof: From the condition δr = 0 and the theorem 1 it
follows that if for an arbitrary T > 0 we take the partition
σ = {0, T} and control v(t) = v0, then none of the pursuers
Pi catches up with the evader E, since the equality zi(t) = 0
is impossible because λi(v0) = 0, i ∈ I(0). The conditions
aµj 6 0, j = 1, . . . , r, ensure the inequalities (5) holds, ,
which in turn mean that the evader does not leave the set
Ω for all t > 0. Hence, in the differential game, an evasion
occurs.
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