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PROPORTIONAL LOCAL ASSIGNABILITY OF LYAPUNOV
SPECTRUM OF LINEAR DISCRETE TIME-VARYING SYSTEMS\ast 

ARTUR BABIARZ\dagger , IRINA BANSHCHIKOVA\ddagger , ADAM CZORNIK\dagger ,

EVGENII MAKAROV\S , MICHA\L NIEZABITOWSKI\P , AND SVETLANA POPOVA\| 

Abstract. We consider a local version of the pole assignment problem for linear discrete time-
varying systems. Our aim is to obtain sufficient conditions to place the Lyapunov spectrum of the
closed-loop system in an arbitrary position within some neighborhood of the Lyapunov spectrum of
the free system using an appropriate time-varying linear feedback. Moreover, we assume that the
norm of the matrix of linear feedback should be bounded from above by the distance between these
two spectra with some constant multiplier. We prove that diagonalizability, Lyapunov regularity, and
stability of the Lyapunov spectrum each separately are the required sufficient conditions provided
that the open-loop system is uniformly completely controllable.
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1. Introduction. It is well known [34] that for a linear time-invariant system
the controllability is equivalent to the possibility of assigning an arbitrary set of the
eigenvalues of the closed-loop system by choosing a suitable time-invariant feedback.

The search for an analogue of this property for linear time-varying systems has
a long history and has not been completed yet [1, 17, 18, 22, 29, 35]. Even the
formulation for the problem encountered many difficulties. First, because for time-
varying systems we have many nonequivalent concepts of controllability [21]. Second,
because we have no proper replacement for the concept of poles, but their role, to a
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certain extent, is taken by some numerical characteristics such as the Lyapunov and
Bohl exponents [2].

The Lyapunov exponents describe exponential growth or decay of system trajec-
tory and, in particular, characterize exponential stability. In turn, the Bohl exponents
are related to the uniform growth or decay rate of the trajectory and characterize the
uniform asymptotic stability. For linear time-invariant systems, the Bohl and the
Lyapunov exponents coincide and, for discrete-time systems, they are equal to the
logarithm of absolute value of the poles.

Research on the pole placement problem for time-varying systems may be divided
into three groups. Historically, the first group is composed of works in which the
relationship between different types of controllability and the possibility of finding
a feedback loop, for which the closed-loop system is time-invariant with in-advance
fixed poles, is studied. This approach is presented in [29, 35]. The second group is
formed by the works where the relationship between controllability and various types
of stabilizability, or more broadly the existence of feedback, which guarantees that all
trajectories tend to zero at a rate faster than an in-advance given rate, is studied in
[1, 17, 18]. Finally, the third group contains studies concerning the possibility of the
placement of some numerical characteristics (including the Lyapunov and the Bohl
exponents) through a feedback in given locations [3, 26, 27, 31, 32].

This paper belongs to the third group and it contains a continuation of the re-
search presented in [3]. Here, we consider a local version of the pole assignment
problem for linear discrete time-varying systems, whereas in [3] a global version was
investigated. Our aim is to obtain sufficient conditions to place the Lyapunov spec-
trum of the closed-loop system in an arbitrary position within some neighborhood of
the Lyapunov spectrum of the free system using some time-varying linear feedback.
Moreover, we assume that the norm of the feedback matrix should be bounded from
above by the distance between these two spectra, with some constant coefficient. We
say that the Lyapunov spectrum is proportionally locally assignable if all of these
assumptions are valid. Our main result is that diagonalizability, Lyapunov regularity,
and stability of the Lyapunov spectrum each separately are sufficient conditions when
the open-loop system is uniformly completely controllable. In [3] we have shown that
uniform complete controllability is a sufficient condition for global assignability of the
Lyapunov spectrum. The question of the necessity of this condition is a subject of
our current research.

The paper is organized as follows. In section 2, we introduce the basic notation
and definitions, including the concept of proportional local assignability of the Lya-
punov spectrum. In section 3, we prove some auxiliary results concerning the uniform
complete controllability. We consider the concept of the uniform complete control-
lability as the most suitable one for the pole placement problem for time-varying
systems. Section 4 is devoted to the concept of dynamic equivalence of linear sys-
tems. The main object of section 5 is multiplicatively perturbed systems. Section 6
contains the main result of the paper. In section 7 we discuss our results and present
some open questions. The work is ended with conclusions.

2. Basic notation and formulation of the problem. Let \BbbR s be the s-
dimensional Euclidean space with a fixed orthonormal basis e1, . . . , es and the stan-
dard norm \| \cdot \| . By \BbbR s\times t we shall denote the space of all real matrices of the size s\times t
with the spectral norm, i.e., with the operator norm generated in \BbbR s\times t by Euclidean
norms in \BbbR s and \BbbR t, respectively. By [a1, . . . , at] \in \BbbR s\times t we denote a matrix with
sequential columns a1, . . . , at \in \BbbR s; I \in \BbbR s\times s is the identity matrix. For any sequence
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F =
\bigl( 
F (n)

\bigr) 
n\in \BbbN \subset \BbbR s\times t we define

\| F\| \infty = sup
n\in \BbbN 

\| F (n)\| .

A bounded sequence
\bigl( 
L(n)

\bigr) 
n\in \BbbN \subset \BbbR s\times s of invertible matrices such that

\bigl( 
L - 1(n)

\bigr) 
n\in \BbbN 

is bounded will be called the Lyapunov sequence.
By \BbbR s

\leq we denote the set of all nondecreasing sequences of s real numbers. For a
fixed sequence \mu = (\mu 1, . . . , \mu s) \in \BbbR s

\leq and any \delta > 0 let us denote by O\delta (\mu ) the set
of all sequences \nu = (\nu 1, . . . , \nu s) \in \BbbR s

\leq such that maxj=1,...,s | \nu j  - \mu j | < \delta . In other
words, O\delta (\mu ) is a \delta -neighborhood of the sequence \mu \in \BbbR s

\leq with respect to the metric
generated by the vector l\infty norm of the space \BbbR s [16, p. 265] on its subset \BbbR s

\leq .
We consider a discrete linear time-varying system

(2.1) x(n+ 1) = A(n)x(n) +B(n)u(n), n \in \BbbN ,

with a Lyapunov sequenceA = (A(n))n\in \BbbN \subset \BbbR s\times s, a bounded sequenceB = (B(n))n\in \BbbN 
\subset \BbbR s\times t, and a control sequence u = (u(n))n\in \BbbN \subset \BbbR t.

Let
a
.
= \| A\| \infty + \| A - 1\| \infty + \| B\| \infty <\infty .

Note that

\| A\| \infty + \| A - 1\| \infty \geq \| A(1)\| + \| A - 1(1)\| \geq \| A(1)\| + \| A(1)\|  - 1 \geq 2;

hence a \geq 2.
We shall denote the transition matrix of the free system

(2.2) x(n+ 1) = A(n)x(n)

by \Phi A(n,m), n,m \in \BbbN , and the Lyapunov spectrum of the system (2.2) by

\lambda (A) =
\bigl( 
\lambda 1(A), \lambda 2(A), . . . , \lambda s(A)

\bigr) 
\in \BbbR s

\leq 

(see [3] for definitions of these concepts).
The solution of (2.1) corresponding to a control u =

\bigl( 
u(n)

\bigr) 
n\in \BbbN and the initial

condition x(k0) = x0, where k0 \in \BbbN , x0 \in \BbbR s, is denoted by (x (n, k0, x0, u))n\geq k0
.

Using the variation of constants formula this solution can be written in the form
(see [13, p. 130], [14, p. 20], [21, p. 92])

(2.3) x (n, k0, x0, u) = \Phi A (n, k0)x0 +

n - 1\sum 
j=k0

\Phi A (n, j + 1)B(j)u(j), n > k0.

For a sequence U = (U(n))n\in \BbbN \subset \BbbR t\times s we consider a linear feedback control for
system (2.1),

u(n) = U(n)x(n), n \in \BbbN .

We identify the control u with the sequence U . The sequence U is called a feedback
control for the system (2.1).

Definition 2.1 (see [3]). A bounded sequence

U = (U (n))n\in \BbbN \subset \BbbR t\times s

is said to be an admissible feedback control for system (2.1) if (A (n) +B (n)U (n))n\in \BbbN 
is a Lyapunov sequence.



1358 BABIARZ ET AL.

Let U = (U(n))n\in \BbbN be any admissible feedback control for the system (2.1). Then
for a closed-loop system

(2.4) x(n+ 1) = (A(n) +B(n)U(n))x(n)

we can define the Lyapunov spectrum \lambda (A+BU) \in \BbbR s
\leq .

Definition 2.2. The Lyapunov spectrum of the system (2.4) is called proportion-
ally locally assignable if there exist \ell > 0 and \delta > 0 such that for all

\mu = (\mu 1, . . . , \mu s) \in O\delta 

\bigl( 
\lambda (A)

\bigr) 
there exists an admissible feedback control U = (U(n))n\in \BbbN for the system (2.1), satis-
fying the estimate

(2.5) \| U\| \infty \leq \ell max
j=1,...,s

| \lambda j(A) - \mu j | 

and providing the validity of the relation

(2.6) \lambda (A+BU) = \mu .

In this paper we obtain sufficient conditions for the local proportional assignability
of the Lyapunov spectrum of the system (2.4). We notice that in [3] a problem of the
global assignability of the spectrum (2.4) was considered. The Lyapunov spectrum of
the system (2.4) is called globally assignable if for any \mu \in \BbbR s

\leq there exists an admis-

sible feedback control U =
\bigl( 
U(n)

\bigr) 
n\in \BbbN for the system (2.1), such that \lambda (A+BU) = \mu .

In [3] it was shown that the uniform complete controllability of the system (2.1) is a
sufficient condition for global assignability of the Lyapunov spectrum of (2.4). How-
ever, it is not a sufficient condition for proportional local assignability since a small
shift of the Lyapunov spectrum may require a feedback with a large norm.

3. Controllability. In the literature several nonequivalent definitions of con-
trollability of the system (2.1) are considered. There are global controllability, con-
trollability from zero, to zero, and others (see [21]). In the paper we shall use the
concept of uniform complete controllability [36]. Its formal definition is as follows.

Definition 3.1. The system (2.1) is uniformly completely controllable if there
exist a positive p0 and a natural K such that for all x0 \in \BbbR s and k0 \in \BbbN there exists
a control sequence u(n), n = k0, k0 + 1, . . . , k0 +K  - 1, such that

x (k0 +K, k0, x0, u) = 0

and

(3.1) \| u(n)\| \leq p0 \| x0\| 

for all n = k0, k0 + 1, . . . , k0 +K  - 1. In such a situation we shall also say that the
system (2.1) is K-uniformly completely controllable.

In controllability investigation a crucial role is played by the Kalman controlla-
bility matrix

W (k, n) =

n - 1\sum 
j=k

\Phi A (k, j + 1)B( j)BT ( j)\Phi T
A (k, j + 1) ,

where n > k, n, k \in \BbbN . The next theorem gives, in the terms of the Kalman control-
lability matrix, necessary and sufficient conditions for K-uniform complete controlla-
bility.
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Theorem 3.2 (see [15, Proposition 3, p. 34]). Suppose that A is a Lyapunov
sequence and B is bounded. Then the system (2.1) is uniformly completely controllable
if and only if there exist a positive \gamma and a natural K such that

(3.2) W (k0, k0 +K) \geq \gamma I

for all k0 \in \BbbN .
Before we discuss the main problem of the local assignability of the Lyapunov

spectrum we shall prove some auxiliary results concerning the uniform complete con-
trollability. Similar results for continuous-time systems have been proven in article [25]
(see also [27, Lemma 12.1, Theorem 12.1]).

Lemma 3.3. The system (2.1) is K-uniformly completely controllable if and only
if there exists p > 0 such that for all k0 \in \BbbN and each matrix H \in \BbbR s\times s there exists
a sequence V (n), n = k0, . . . , k0 +K  - 1, of elements of \BbbR t\times s such that

\| V (n)\| \leq p \| H  - I\| 

and the sequence Z(n), n = k0, k0 + 1, . . . , k0 +K, given by

(3.3) Z(n+ 1) = Z(n) + \Phi A (k0, n+ 1)B(n)V (n)

and the initial condition

(3.4) Z(k0) = I,

satisfies

(3.5) Z(k0 +K) = H.

Proof. Suppose that (2.1) is K-uniformly completely controllable. Consider k0 \in 
\BbbN and H \in \BbbR s\times s. From Definition 3.1 for each vector zl = (I  - H) el, l = 1, 2, . . . , s,
there exists a control ul(n), n = k0, k0 + 1, . . . , k0 +K  - 1, such that

\| ul(n)\| \leq p0 \| zl\| 

and
x (k0 +K, k0, zl, ul) = 0.

The last equality together with (2.3) gives

0 = \Phi A (k0 +K, k0) zl +

k0+K - 1\sum 
j=k0

\Phi A (k0 +K, j + 1)B(j)ul(j)

= \Phi A(k0 +K, k0)

\Biggl( 
zl +

k0+K - 1\sum 
j=k0

\Phi A(k0, j + 1)B(j)ul(j)

\Biggr) 
;

therefore, by the nonsingularity of the matrix \Phi A(k0 +K, k0) we have the equality

(I  - H) el +

k0+K - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)ul(j) = 0.

Denoting
V (n) = [u1(n), . . . , us(n)]
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we have

(I  - H) el +

k0+K - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j)el = 0

for every l \in \{ 1, . . . , s\} ; therefore,

(I  - H) +

k0+K - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j) = 0

and

H = I +

k0+K - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j).

But the solution of (3.3), (3.4) has the form

(3.6) Z(n) = I +

n - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j);

hence Z(k0+K) = H. Moreover, for all n \in \{ k0, . . . , k0+K - 1\} and x =
\sum s

j=1 xjej \in 
\BbbR s we have

\| V (n)x\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
s\sum 

j=1

xjV (n)ej

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
s\sum 

j=1

xjuj(n)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 

s\sum 
j=1

| xj | \| uj(n)\| \leq \| x\| 
s\sum 

j=1

\| uj(n)\| 

\leq \| x\| p0
s\sum 

j=1

\| zj\| \leq p0s \| x\| \| H  - I\| .

Defining p = p0s we obtain

\| V (n)\| = sup
x \not =0

\| V (n)x\| 
\| x\| 

\leq p \| H  - I\| .

Conversely, suppose that for all k0 \in \BbbN and H \in \BbbR s\times s there exists a sequence
V (n) \in \BbbR t\times s, n = k0, k0 + 1, . . . , k0 + K  - 1, such that the sequence Z(n), n =
k0, . . . , k0+K - 1, given by (3.3) and (3.4) satisfies (3.5) and the inequality \| V (n)\| \leq 
p\| H  - I\| holds for certain positive p and all n = k0, k0 +1, . . . , k0 +K  - 1. Consider
any k0 \in \BbbN and x0 \in \BbbR s. Adding up (3.3) from n = k0 to n = k0 +K  - 1 we obtain

k0+K - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j) = H  - I.

Let H = I + [ - x0, 0, . . . , 0]. We define the control as u(n) = V (n)e1. Then we have

x (k0 +K, k0, x0, u)

= \Phi A (k0 +K, k0)

\Biggl( 
x0 +

k0+K - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j)e1

\Biggr) 

= \Phi A (k0 +K, k0)

\Biggl( 
 - H + I +

k0+K - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j)

\Biggr) 
e1 = 0.
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Moreover,

\| u(n)\| \leq \| V (n)\| \leq p \| H  - I\| = p \| (H  - I) e1\| = p \| x0\| .

It means that the system (2.1) is K-uniformly completely controllable.

The next theorem will play a fundamental role in our further considerations.

Theorem 3.4. If the system (2.1) is K-uniformly completely controllable, then
there exist \alpha > 0 and r > 0 such that for all k0 \in \BbbN and each matrix H \in \BbbR s\times s,
\| H  - I\| < r, there exists a sequence U(n), n = k0, . . . , k0 + K  - 1, of elements of
\BbbR t\times s such that

\| U(n)\| \leq \alpha \| H  - I\| ,\bigm\| \bigm\| \bigl( A(n) +B(n)U(n)
\bigr)  - 1\bigm\| \bigm\| < 3a2K ,

and
\Phi A+BU (k0 +K, k0) = \Phi A (k0 +K, k0)H,

where \Phi A+BU is the transition matrix of the system (2.4).

Proof. Consider any H \in \BbbR s\times s and k0 \in \BbbN . Let V (n), n = k0, . . . , k0+K - 1, and
Z(n), n = k0, . . . , k0 +K, be the sequences from Lemma 3.3. From (3.6) we deduce
that for n = k0 + 1, . . . , k0 +K

\| Z(n) - I\| \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n - 1\sum 
j=k0

\Phi A (k0, j + 1)B(j)V (j)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 
n - 1\sum 
j=k0

\| \Phi A (k0, j + 1)\| \| B(j)\| \| V (j)\| 

\leq p \| H  - I\| 
n - 1\sum 
j=k0

\| \Phi A (k0, j + 1)\| \| B(j)\| \leq p\| H  - I\| 
n - 1\sum 
j=k0

aj - k0+1

\leq p\| H  - I\| 
k0+K - 1\sum 
j=k0

aj - k0+1 = p\| H  - I\| 
K\sum 
i=1

ai = p\| H  - I\| a(a
K  - 1)

a - 1
.

Define

r =
a - 1

2a(aK  - 1)p
,

and assume that \| H  - I\| < r, then \| Z(n) - I\| < 1/2. The last inequality implies [16,
p. 301] that Z(n) is invertible and

\| Z - 1(n)\| = \| Z - 1(n) - I + I\| \leq \| Z - 1(n) - I\| + 1 = \| Z - 1(n)(I  - Z(n))\| + 1

\leq \| Z - 1(n)\| \| I  - Z(n)\| + 1 <
\| Z - 1(n)\| 

2
+ 1,

and therefore, \| Z - 1(n)\| < 2. Consider the sequence V1(n), n = k0, . . . , k0 +K  - 1,
given by

V1(n) = V (n)Z - 1(n).

Then
\| V1(n)\| \leq 2p \| H  - I\| 

and

Z(n+ 1) =
\bigl( 
I +\Phi A (k0, n+ 1)B(n)V1(n)

\bigr) 
Z(n),

Z(k0) = I, Z(k0 +K) = H.
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Denoting
Y (n) = \Phi A(n, k0)Z(n), U(n) = V1(n)\Phi A(k0, n),

we have

Y (n+ 1) = \Phi A (n+ 1, k0)Z(n+ 1)

= A(n)\Phi A(n, k0)
\bigl( 
I +\Phi A(k0, n+ 1)B(n)V1(n)

\bigr) 
Z(n)

= A(n)\Phi A (n, k0)Z(n) +A(n)A - 1(n)B(n)V1(n)Z(n)

= A(n)Y (n) +B(n)V1(n)\Phi A (k0, n) \Phi A (n, k0)Z(n)

= A(n)Y (n) +B(n)U(n)Y (n) =
\bigl( 
A(n) +B(n)U(n)

\bigr) 
Y (n).

It means that the sequence Y (n), n = k0, . . . , k0+K - 1, is the solution of the matrix
equation

(3.7) Y (n+ 1) = (A(n) +B(n)U(n))Y (n)

with the above defined sequence U(n). Moreover,

Y (k0) = I.

Consequently,
Y (n) = \Phi A+BU (n, k0), n = k0, . . . , k0 +K,

and

\Phi A+BU (k0 +K, k0) = Y (k0 +K) = \Phi A (k0 +K, k0)Z(k0 +K) = \Phi A (k0 +K, k0)H.

Observe that
\| U(n)\| \leq \| V1(n)\| \| \Phi A (k0, n)\| \leq 2paK \| H  - I\| 

and defining \alpha = 2paK we obtain the estimate \| U(n)\| < \alpha \| H  - I\| . Finally, from
(3.7) we get the invertibility of the matrix A(n) +B(n)U(n) and the estimates\bigm\| \bigm\| \bigm\| \bigl( A(n) +B(n)U(n)

\bigr)  - 1
\bigm\| \bigm\| \bigm\| \leq \| Y (n)\| \| Y  - 1(n+ 1)\| 

\leq \| \Phi A(n, k0)\| \| Z(n)\| \| Z - 1(n+ 1)\| \| \Phi A(k0, n+ 1)\| 
< 2a2K\| Z(n)\| \leq 2a2K

\bigl( 
\| Z(n) - I\| + 1

\bigr) 
< 2a2K3/2 = 3a2K ,

which complete the proof.

4. Dynamic equivalence. In our further considerations we shall use the con-
cept of dynamically equivalent systems.

Definition 4.1 (see [15, p. 15], [14, p. 100]). Let
\bigl( 
L(n)

\bigr) 
n\in \BbbN \subset \BbbR s\times s be a

Lyapunov sequence. A linear transformation

(4.1) y = L(n)x, n \in \BbbN ,

of the space \BbbR s is called a Lyapunov transformation.

Definition 4.2 (see [15, p. 15]). We say that the system (2.2) is dynamically
equivalent to the system

(4.2) y(n+ 1) = C(n)y(n), n \in \BbbN , y \in \BbbR s,

if there exists a Lyapunov transformation (4.1) which connects these systems, i.e., for
every solution x(n) of the system (2.2) the function y(n) = L(n)x(n) is a solution
of system (4.2) and for every solution y(n) of the system (4.2) the function x(n) =
L - 1(n)y(n) is a solution of the system (2.2).
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Let us note that if a Lyapunov transformation (4.1) establishes the dynamic
equivalence between systems (2.2) and (4.2), then

y(n+1) = L(n+1)x(n+1) = L(n+1)A(n)x(n) = L(n+1)A(n)L - 1(n)y(n), n \in \BbbN ;

hence

(4.3) C(n) = L(n+ 1)A(n)L - 1(n), n \in \BbbN .

Thus, systems (2.2) and (4.2) are dynamically equivalent if and only if there exists a
Lyapunov sequence

\bigl( 
L(n)

\bigr) 
n\in \BbbN \subset \BbbR s\times s such that the equality (4.3) is satisfied.

It is well known (see, for example, [6], [14, p. 125]) that dynamically equivalent
systems have the same Lyapunov spectrum. We shall use the following criterion of
dynamic equivalence [3].

Theorem 4.3 (see [3]). Suppose that A = (A (n))n\in \BbbN and C = (C (n))n\in \BbbN are
Lyapunov sequences. Assume that

\Phi C (nk+1, nk) = \Phi A (nk+1, nk)

for all k \in \BbbN , where (nk)k\in \BbbN is a sequence of natural numbers such that 0 < nk+1  - 
nk \leq c < \infty for all k \in \BbbN . Then the systems (2.2) and (4.2) are dynamically
equivalent.

5. Perturbed systems. Together with the system (2.2) we consider the per-
turbed system

(5.1) z(n+ 1) = A(n)R(n)z(n), n \in \BbbN .

The perturbation
\bigl( 
R(n)

\bigr) 
n\in \BbbN will be called the multiplicative perturbation of the

system (2.2). Let \Phi AR(n, k) be the transition matrix of the system (5.1).

Lemma 5.1. For any natural numbers n > k, the equality

(5.2) \Phi AR(n, k) = \Phi A(n, k) +

n - 1\sum 
j=k

\Phi A(n, j)
\bigl( 
R(j) - I

\bigr) 
\Phi AR(j, k)

holds.

Proof. Let us introduce the notation

Q(n) = A(n)
\bigl( 
R(n) - I

\bigr) 
, n \in \BbbN .

With this notation we have A(n)+Q(n) = A(n)R(n), and therefore, the system (5.1)
coincides with the system

z(n+ 1) =
\bigl( 
A(n) +Q(n)

\bigr) 
z(n), n \in \BbbN ,

and the transition matrices of these systems are equal:

\Phi AR(n, k) = \Phi A+Q(n, k), n > k.

Let us fix k \in \BbbN . We consider the matrix \Phi A+Q(n, k) = [z1(n), . . . , zs(n)] for n \geq k.
As \Phi A+Q(k, k) = I we obtain zl(k) = el, l = 1, . . . , s. For any l \in \{ 1, . . . , s\} and all
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natural numbers n > k we have the formula

\Phi A+Q(n, k)el = zl(n) = \Phi A(n, k)el +

n - 1\sum 
j=k

\Phi A(n, j + 1)Q(j)zl(j)

= \Phi A(n, k)el +

n - 1\sum 
j=k

\Phi A(n, j + 1)Q(j)\Phi A+Q(j, k)el

= \Phi A(n, k)el +

n - 1\sum 
j=k

\Phi A(n, j + 1)Q(j)\Phi A+Q(j, k)el.

Therefore,

\Phi A+Q(n, k) = \Phi A(n, k) +

n - 1\sum 
j=k

\Phi A(n, j + 1)Q(j)\Phi A+Q(j, k)

and

\Phi AR(n, k) = \Phi A+Q(n, k) = \Phi A(n, k) +

n - 1\sum 
j=k

\Phi A(n, j + 1)Q(j)\Phi A+Q(j, k)

= \Phi A(n, k) +

n - 1\sum 
j=k

\Phi A(n, j + 1)A(j)
\bigl( 
R(j) - I

\bigr) 
\Phi AR(j, k)

= \Phi A(n, k) +

n - 1\sum 
j=k

\Phi A(n, j)
\bigl( 
R(j) - I

\bigr) 
\Phi AR(j, k).

Below we shall examine the problem of the behavior of the Lyapunov exponents
of the perturbed system (5.1) for different types of perturbations R. According to our
assumptions the sequence

\bigl( 
A(n)

\bigr) 
n\in \BbbN is a Lyapunov sequence. For this reason, the

Lyapunov spectrum \lambda (AR) of the perturbed system (5.1) will consist of s numbers if
the sequence

\bigl( 
R(n)

\bigr) 
n\in \BbbN is a Lyapunov sequence. Therefore, it is natural to introduce

the following definition.

Definition 5.2 (see [5]). A multiplicative perturbation
\bigl( 
R(n)

\bigr) 
n\in \BbbN is called ad-

missible if the sequence
\bigl( 
R(n)

\bigr) 
n\in \BbbN is a Lyapunov sequence.

The set of all admissible multiplicative perturbations will be denoted by \scrR , and
the subset of \scrR consisting of perturbations satisfying the condition \| R - I\| \infty < \delta will
be denoted by \scrR \delta .

Theorem 5.3. If the system (2.1) is uniformly completely controllable, then there

exist \widehat \delta > 0 and l > 0 such that for each
\bigl( 
R(n)

\bigr) 
n\in \BbbN \in \scrR \widehat \delta there exists an admissible

feedback control U =
\bigl( 
U(n)

\bigr) 
n\in \BbbN for the system (2.1) such that

\| U\| \infty \leq l\| R - I\| \infty 

and the system (5.1) is dynamically equivalent to the system (2.4).

Proof. Let K \in \BbbN be such that the system (2.1) is K-uniformly completely
controllable. According to Theorem 3.4 there exist \alpha , r > 0 such that for all
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m \in \BbbN and any matrix Hm \in \BbbR s\times s, \| Hm  - I\| < r, there exists a sequence Um(n),
n = (m - 1)K + 1, . . . ,mK of elements of \BbbR t\times s such that

\| Um(n)\| \leq \alpha \| Hm  - I\| ,\bigm\| \bigm\| \bigl( A(n) +B(n)Um(n)
\bigr)  - 1\bigm\| \bigm\| < 3a2K ,

and

(5.3) \Phi A+BUm (mK + 1, (m - 1)K + 1) = \Phi A (mK + 1, (m - 1)K + 1)Hm.

Let \widehat \delta be such that

(5.4) \widehat \delta Ka2K(\widehat \delta + 1)K < r.

Consider any sequence R = (R(n))n\in \BbbN \subset \scrR \widehat \delta . Let us observe that

\| R\| \infty \leq \| R - I\| \infty + 1 < \widehat \delta + 1.

From Lemma 5.1 we have

\Phi AR

\bigl( 
mK + 1, (m - 1)K + 1

\bigr) 
= \Phi A

\bigl( 
mK + 1, (m - 1)K + 1

\bigr) 
+

mK\sum 
j=(m - 1)K+1

\Phi A(mK + 1, j)
\bigl( 
R(j) - I

\bigr) 
\Phi AR

\bigl( 
j, (m - 1)K + 1

\bigr) 
= \Phi A

\bigl( 
mK + 1, (m - 1)K + 1

\bigr) 
Hm,

where

Hm = I +

mK\sum 
j=(m - 1)K+1

\Phi A

\bigl( 
(m - 1)K + 1, j

\bigr) \bigl( 
R(j) - I

\bigr) 
\Phi AR

\bigl( 
j, (m - 1)K + 1

\bigr) 
.

Moreover,

\| Hm  - I\| \leq \| R - I\| \infty 
mK\sum 

j=(m - 1)K+1

\| \Phi A

\bigl( 
(m - 1)K + 1, j

\bigr) 
\| \| \Phi AR

\bigl( 
j, (m - 1)K + 1

\bigr) 
\| 

\leq \| R - I\| \infty KaK
\bigl( 
a\| R\| \infty 

\bigr) K
< \| R - I\| \infty Ka2K(\widehat \delta + 1)K < \widehat \delta Ka2K(\widehat \delta + 1)K < r.

The last inequality together with (5.3) implies that there exists a bounded se-
quence (U(n))n\in \BbbN ,

U(n) = Um(n), m \in \BbbN , n \in \{ (m - 1)K + 1, . . . ,mK\} ,

such that

\Phi A+BU

\bigl( 
mK + 1, (m - 1)K + 1

\bigr) 
= \Phi A+BUm

\bigl( 
mK + 1, (m - 1)K + 1

\bigr) 
= \Phi A

\bigl( 
mK + 1, (m - 1)K + 1

\bigr) 
Hm

= \Phi AR

\bigl( 
mK + 1, (m - 1)K + 1

\bigr) 
.
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Observe that

\| U\| \infty = sup
m\in \BbbN 

\Biggl( 
max

n=(m - 1)K+1,...,mK
\| Um(n)\| 

\Biggr) 
\leq \alpha sup

m\in \BbbN 
\| Hm  - I\| 

\leq \alpha Ka2K(\widehat \delta + 1)K\| R - I\| \infty 
.
= l\| R - I\| \infty .

The constructed sequence
\bigl( 
U(n)

\bigr) 
n\in \BbbN is a Lyapunov sequence, since

\| U\| \infty \leq l\| R - I\| \infty < l\widehat \delta ,
and therefore,

\| A+BU\| \infty \leq \| A\| \infty + \| B\| \infty \| U\| \infty < a(1 + l\widehat \delta ).
Moreover, the matrix A(n) +B(n)U(n) is invertible for all n \in \BbbN and\bigm\| \bigm\| \bigm\| \bigl( A+BU

\bigr)  - 1
\bigm\| \bigm\| \bigm\| 
\infty 
< 3a2K .

From Theorem 4.3 we conclude that the systems (2.4) and (5.1) are dynamically
equivalent.

6. Main result. We start with the following definition.

Definition 6.1. The Lyapunov spectrum of the system (5.1) is called proportion-

ally globally assignable if for all \Delta > 0 there exists \widehat \ell = \widehat \ell (\Delta ) > 0 such that for any
sequence

\mu = (\mu 1, . . . , \mu s) \in O\Delta 

\bigl( 
\lambda (A)

\bigr) 
there exists a sequence R = (R(n))n\in \BbbN \in \scrR satisfying the estimate

(6.1) \| R - I\| \infty \leq \widehat \ell max
j=1,...,s

| \lambda j(A) - \mu j | 

and providing the validity of the relation

(6.2) \lambda (AR) = \mu .

Theorem 6.2. Suppose that system (2.1) is uniformly completely controllable. If
the Lyapunov spectrum of (5.1) is globally proportionally assignable, then the Lya-
punov spectrum of (2.4) is locally proportionally assignable.

Proof. From the global proportional assignability of the spectrum of (5.1) it fol-

lows that for \Delta = 1 there exists \widehat \ell = \widehat \ell (1) > 0 such that for any sequence

\mu =
\bigl( 
\mu 1, . . . , \mu s

\bigr) 
\in O1

\bigl( 
\lambda (A)

\bigr) 
there exists a sequence R =

\bigl( 
R(n)

\bigr) 
n\in \BbbN \in \scrR satisfying the estimate (6.1) and providing

the validity of relation (6.2). Since (2.1) is uniformly completely controllable, then

according to Theorem 5.3, there exist \widehat \delta > 0 and l > 0 such that for each system (5.1)
with R \in \scrR \widehat \delta there exists an admissible feedback control U = (U(n))n\in \BbbN for the
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system (2.1), such that \| U\| \infty \leq l\| R  - I\| \infty and the system (5.1) is dynamically

equivalent to the system (2.4). Let \delta 1 = min\{ 1, \widehat \delta /\widehat \ell \} . Consider any sequence

\mu =
\bigl( 
\mu 1, . . . , \mu s

\bigr) 
\in O\delta 1

\bigl( 
\lambda (A)

\bigr) 
\subset O1

\bigl( 
\lambda (A)

\bigr) 
.

From the global proportional assignability of the spectrum of (5.1) it follows that
there exists a sequence R \in \scrR such that

\| R - I\| \infty \leq \widehat \ell max
j=1,...,s

| \lambda j(A) - \mu j | \leq \widehat \ell \delta 1 \leq \widehat \delta 
and (6.2) is satisfied. By the uniform complete controllability of the system (2.1) for
this sequence R there exists an admissible feedback control U for the system (2.1)
such that

\| U\| \infty \leq l\| R - I\| \infty \leq l\widehat \ell max
j=1,...,s

| \lambda j(A) - \mu j | 

and such that the systems (2.4) and (5.1) are dynamically equivalent. Since equivalent
systems have the same spectrum the proof is completed.

In the remaining part of this section we shall present results about local propor-
tional assignability of the spectrum of the system (2.4). They will be expressed in
the forms of certain concepts from the asymptotic theory of linear systems, which are
defined below.

Definition 6.3. The system (2.2) is called diagonalizable if it is dynamically
equivalent to the system (4.2) with diagonal matrix C(n).

Definition 6.4 (see [14, p. 63]). The system (2.2) is called regular (in the
Lyapunov sense) if the equality

s\sum 
i=1

\lambda i(A) = lim inf
n\rightarrow \infty 

1

n

n - 1\sum 
j=1

ln | detA(j)| 

holds.

The notion of regularity of linear differential systems was introduced in the famous
paper of Lyapunov [24], and this concept was further developed in [33]. Some facts
about regularity of discrete equations may be found in the works [7, 10, 11, 12, 14].
Let us notice that all time-invariant or all periodic systems are regular.

Definition 6.5 (see [5]). The Lyapunov spectrum of the system (2.2) is called
stable if for any \varepsilon > 0 there exists \delta > 0 such that

\lambda 
\bigl( 
\scrR \delta 

\bigr) 
\subset O\varepsilon 

\bigl( 
\lambda (A)

\bigr) 
,

where
\lambda 
\bigl( 
\scrR \delta 

\bigr) 
=
\bigl\{ 
\lambda (AR)| R \in \scrR \delta 

\bigr\} 
.

The effect of instability of the Lyapunov spectrum under the influence of small
coefficient perturbations for linear continuous-time systems was discovered by Per-
ron [30]. Later, the stability property of the Lyapunov spectrum for these systems
was investigated in [8, 9, 19, 20, 28]. The study of this property for discrete-time
systems was started in [5].

Now we show global proportional assignability of the Lyapunov spectrum of the
system (5.1) under one of the following assumptions: stability of the Lyapunov spec-
trum or diagonalizability or regularity of the free system (2.2).
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Theorem 6.6. If the system (2.2) is diagonalizable, then the Lyapunov spectrum
of the system (5.1) is proportionally globally assignable.

Proof. Suppose that the Lyapunov transformation (4.1) transforms the system
(2.2) into the system (4.2) with a diagonal matrix

C(n) = diag
\bigl( 
c1(n), . . . , cs(n)

\bigr) 
, n \in \BbbN .

Then [14, p. 55] the Lyapunov spectrum of the diagonal system (4.2) consists of the
numbers

\lambda j = lim sup
n\rightarrow \infty 

n - 1
n\sum 

k=1

ln | cj(k)| , j = 1, . . . , s.

Without loss of generality, we may assume that these numbers are numbered in in-
creasing order. Since the Lyapunov transformation preserves the Lyapunov spectrum,
it follows that \lambda j(A) = \lambda j , j = 1, . . . , s.

Let us fix \Delta > 0 and a sequence \mu = (\mu 1, . . . , \mu s) \in O\Delta 

\bigl( 
\lambda (A)

\bigr) 
. Denote \nu j =

\mu j  - \lambda j(A), j \in \{ 1, . . . , s\} . Then | \nu j | < \Delta for all j \in \{ 1, . . . , s\} . Consider an
admissible multiplicative perturbation H = diag

\bigl( 
e\nu 1 , . . . , e\nu s

\bigr) 
for the system (4.2). A

coefficient matrix of the multiplicatively perturbed system

(6.3) \psi (n+ 1) = C(n)H\psi (n), n \in \BbbN , \psi \in \BbbR s,

is diagonal; hence the Lyapunov spectrum of this system consists of the numbers

\lambda j = lim sup
n\rightarrow \infty 

n - 1
n\sum 

k=1

ln | cj(k)e\nu j | = \lambda j(A) + \nu j = \mu j , j = 1, . . . , s.

Applying the Lyapunov transformation z = L - 1(n)\psi to the system (6.3) and using
the equality (4.3), we obtain the system

z(n+ 1) = L - 1(n+ 1)\psi (n+ 1)

= L - 1(n+ 1)C(n)H\psi (n)

= L - 1(n+ 1)L(n+ 1)A(n)L - 1(n)HL(n)z(n)

= A(n)L - 1(n)HL(n)z(n).

Let us denote

(6.4) R(n) = L - 1(n)HL(n), n \in \BbbN .

From the fact that L =
\bigl( 
L(n)

\bigr) 
n\in \BbbN is a Lyapunov sequence and becauseH is invertible,

it follows that R =
\bigl( 
R(n)

\bigr) 
n\in \BbbN is a Lyapunov sequence, i.e., R \in \scrR . Thus, we have

the multiplicatively perturbed system (5.1), wherein \lambda (AR) = \mu .

Let \^l
.
= max

\bigl\{ 
\| L\| \infty , \| L - 1\| \infty 

\bigr\} 
and

\widehat \ell = \widehat \ell (\Delta ) = \^l2(e\Delta  - 1)/\Delta .

We shall show that
\| R - I\| \infty \leq \widehat \ell max

j=1,...,s
| \mu j  - \lambda j(A)| .

In fact, from (6.4) we obtain that R(n) - I = L - 1(n)
\bigl( 
H  - I

\bigr) 
L(n); therefore,

\| R - I\| \infty \leq \^l2\| H  - I\| 
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and
\| H  - I\| = max

j=1,...,s
| e\nu j  - 1| \leq max

j=1,...,n

\bigl( 
e| \nu j |  - 1

\bigr) 
.

Observe that the function f(t) = (et  - 1)/t is strictly increasing for t > 0, and
therefore, for any \delta \in (0,\Delta ) the inequality

\bigl( 
e\delta  - 1

\bigr) 
/\delta <

\bigl( 
e\Delta  - 1

\bigr) 
/\Delta holds. It implies

that e\delta  - 1 < e\Delta  - 1
\Delta \delta . Since | \nu j | < \Delta for all j \in \{ 1, . . . , s\} , it follows that

\| H  - I\| \leq max
j=1,...,s

e\Delta  - 1

\Delta 
| \nu j | = max

j=1,...,s
| \nu j | \widehat \ell /\^l2 = max

j=1,...,s
| \mu j  - \lambda j(A)| \widehat \ell /\^l2,

and consequently,

\| R - I\| \infty \leq \^l2\| H  - I\| \leq \widehat \ell max
j=1,...,s

| \mu j  - \lambda j(A)| .

Theorem 6.7. If the system (2.2) is regular, then the Lyapunov spectrum of the
system (5.1) is proportionally globally assignable.

Proof. From the Perron theorem (see [6], [14, p. 70]) it follows that the sys-
tem (2.2) is dynamically equivalent to the system (4.2) with an upper triangular
matrix C(n) = \{ cij(n)\} ni,j=1 and \lambda (A) = \lambda (C). Assume that this dynamic equiv-
alence is provided by the Lyapunov transformation (4.1). Taking into account the
equality (4.3), we obtain

lim inf
n\rightarrow \infty 

1

n

n - 1\sum 
j=1

ln | detC(j)| 

= lim inf
n\rightarrow \infty 

1

n

n - 1\sum 
j=1

ln
\bigm| \bigm| \bigm| det\bigl( L(j + 1)A(j)L - 1(j)

\bigr) \bigm| \bigm| \bigm| 
= lim inf

n\rightarrow \infty 

1

n

\Biggl( 
ln | detL(n)|  - ln | detL(1)| +

n - 1\sum 
j=1

ln | detA(j)| 

\Biggr) 

= lim inf
n\rightarrow \infty 

1

n

n - 1\sum 
j=1

ln | detA(j)| =
s\sum 

i=1

\lambda i(A) =

s\sum 
i=1

\lambda i(C),

and therefore, the system (4.2) is regular. From the Lyapunov theorem on the reg-
ularity of the triangular system [14, p. 67] we have that for the diagonal elements
cjj(n) of the matrix C(n) there exist the limits

lim
n\rightarrow \infty 

n - 1
n\sum 

k=1

ln | cjj(k)| , j = 1, . . . , s,

which form the Lyapunov spectrum of the system (4.2). Since the systems (2.2)
and (4.2) are dynamically equivalent, it follows that

\lambda j(A) = lim
n\rightarrow \infty 

n - 1
n\sum 

k=1

ln | cjj(k)| , j = 1, . . . , s.

For any fixed \Delta > 0 let us consider any \mu = (\mu 1, . . . , \mu s) \in O\Delta 

\bigl( 
\lambda (A)

\bigr) 
and denote

\nu j = \mu j  - \lambda j(A), j \in \{ 1, . . . , s\} . For the system (4.2) consider the multiplicatively
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perturbed system (6.3) with the matrix H from Theorem 6.6. It is clear that the
coefficient matrix of the system (6.3) is upper triangular, its diagonal elements are
equal to cjj(n)e

\nu j , j = 1, . . . , s, and

lim
n\rightarrow \infty 

n - 1
n\sum 

k=1

ln | cjj(k)e\nu j | = \mu j , j = 1, . . . , s.

Using again the Lyapunov theorem on the regularity of the triangular system we get
that the system (6.3) is regular and that its spectrum coincides with the sequence
\mu = (\mu 1, . . . , \mu s). The end of the proof is the same as in the proof of Theorem 6.6.

Theorem 6.8. If the Lyapunov spectrum of the system (2.2) is stable, then the
Lyapunov spectrum of the system (5.1) is proportionally globally assignable.

Proof. Let us assume that the Lyapunov spectrum of the system (2.2) consists
of the numbers \Lambda 1 < \Lambda 2 < \cdot \cdot \cdot < \Lambda q, where the number \Lambda j is repeated sj times;
s1+s2+ \cdot \cdot \cdot +sq = s. It is known [5, Theorem 1, Remark 3] (see also [8, 28]) that if the
Lyapunov spectrum of the system (2.2) is stable, then there exists a Lyapunov trans-
formation (4.1), reducing the system (2.2) to the system (4.2) with block-triangular
matrix C(n) = diag

\bigl( 
C1(n), . . . , Cq(n)

\bigr) 
, with the following properties:

(1) for each j \in \{ 1, . . . , q\} the matrix Cj(n) is lower-triangular of order sj \times sj ;
(2) the diagonal elements cii(n) of the matrix C(n) are such that for all j \in \{ 1, . . . , q\} 
and i \in sj we have

lim sup
n\rightarrow \infty 

n - 1
n - 1\sum 
k=1

ln | cii(k)| = \Lambda j .

The notation i \in sj means that

i \in \{ s0 + \cdot \cdot \cdot + sj - 1 + 1, . . . , s0 + \cdot \cdot \cdot + sj\} ,

where s0
.
= 0.

Let us fix \Delta > 0. Consider any sequence \mu = (\mu 1, . . . , \mu s) \in O\Delta 

\bigl( 
\lambda (A)

\bigr) 
and

denote \nu j = \mu j  - \lambda j(A), j \in \{ 1, . . . , s\} . Let us consider i \in \{ 1, . . . , q\} . For each
j \in si the equality \nu j = \mu j  - \Lambda i(A) holds; therefore, the numbers \nu j , j \in si, are
increasingly ordered. Let us order them in decreasing order and denote the obtained
sequence \eta j , j \in si. Let Hi be a diagonal matrix of the order si \times si with sequential
diagonal elements e\eta j , j \in si. Then the matrix H

.
= diag

\bigl( 
e\eta 1 , . . . , e\eta n

\bigr) 
is equal

to the block-diagonal matrix diag
\bigl( 
H1, . . . ,Hq

\bigr) 
. For the system (4.2) consider the

multiplicatively perturbed system (6.3) with the constructed matrix H. This system
has a block-diagonal coefficient matrix with diagonal blocks in the form of lower-
triangular matrices Ci(n)Hi, i = 1, . . . , q. In the proof of Theorem 3 in [5] it was
shown that the Lyapunov spectrum of the system (6.3) coincides with the sequence
\mu . The end of the proof is the same as in the proof of Theorem 6.6.

Now we may formulate the main result of this paper which directly follows from
Theorems 6.2 and 6.6--6.8.

Theorem 6.9. Let the system (2.1) be uniformly completely controllable and as-
sume that at least one of the following conditions holds:

1. the system (2.2) is regular;
2. the system (2.2) is diagonalizable;
3. the Lyapunov spectrum of the system (2.2) is stable.

Then the Lyapunov spectrum of the system (2.4) is proportionally locally assign-
able.
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7. Discussion of the results. First, we discuss the question of the values of
the constants \ell and \delta from Definition 2.2, existence of which is guaranteed by our
results about local proportional assignability of the Lyapunov spectrum. To begin
with, note that if the Kalman matrix of system (2.1) satisfies the inequality (3.2) for
each k0 \in \BbbN , then the conditions of Definition 3.1 are satisfied for this system, where
the value of p0 may be estimated from above by the inequality [15, p. 34]

p0 \leq aK+1\| W - 1(k0, k0 +K)\| .

Notice [27, p. 94] that

\| W - 1(k0, k0 +K)\| \leq \| W (k0, k0 +K)\| s - 1

detW (k0, k0 +K)
\leq 
\bigl( 
Ka2(K+1)

\bigr) s - 1

\gamma s
.

Consequently, for the constant

p0 = aK+1

\bigl( 
Ka2(K+1)

\bigr) s - 1

\gamma s
=
Ks - 1

\gamma s
a(K+1)(2s - 1)

the estimate (3.1) from Definition 3.1 of uniform complete controllability is satisfied.
Further, from the proof of Lemma 3.3 we obtain that the value of the constant p

from the formulation of this lemma may be taken as

p = p0s =
sKs - 1

\gamma s
a(K+1)(2s - 1),

and, from the proof of Theorem 3.4, we obtain that the constants \alpha and r from the
formulation of this theorem may be taken as

\alpha = 2paK =
2sKs - 1

\gamma s
a2s(K+1) - 1,

r =
a - 1

2a(aK  - 1)p
=

(a - 1)\gamma s

2s(aK  - 1)Ks - 1a2sK+2s - K
.(7.1)

Now we consider the statement of Theorem 5.3. Analyzing the proof of this
theorem, we have

l = \alpha Ka2K(\widehat \delta + 1)K =
2sKs

\gamma s
a2s(K+1) - 1a2K(\widehat \delta + 1)K

=
2sKs

\gamma s
a2K(s+1)+2s - 1(\widehat \delta + 1)K ,

where \widehat \delta > 0 is a sufficiently small constant satisfying the inequality (5.4). Taking into

account the equality (7.1), we find that the constant \widehat \delta > 0 must satisfy the inequality

(7.2) \widehat \delta (\widehat \delta + 1)K <
(a - 1)\gamma s

2s(aK  - 1)Ksa2sK+2s+K
.

Now we turn to the analysis of Theorem 6.2. The constant \ell in the inequality

(7.3) \| U\| \infty \leq l\| R - I\| \infty \leq l\widehat \ell max
j=1,...,s

| \lambda j(A) - \mu j | 
.
= \ell max

j=1,...,s
| \lambda j(A) - \mu j | 
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may be taken as

\ell = l\widehat \ell = 2\widehat \ell sKs

\gamma s
a2K(s+1)+2s - 1(\widehat \delta + 1)K ,

and the inequality (7.3) holds for any sequence \mu \in O\delta 1

\bigl( 
\lambda (A)

\bigr) 
, where \delta 1 = min\{ 1, \widehat \delta /\widehat \ell \} 

and \widehat \ell = \widehat \ell (1) is the constant from the Definition 6.1. From the proofs of Theorems

6.6--6.8, it follows that \widehat \ell = \widehat \ell (1) = \^l2(e - 1).
Now we are ready to give the values of the constants \ell and \delta , which guarantee

the fulfillment of Definition 2.2:

\ell = 2\^l2(e - 1)
sKs

\gamma s
a2(s+1)K+2s - 1(\widehat \delta + 1)K ,

\delta = min
\bigl\{ 
1, \widehat \delta /\bigl( \^l2(e - 1)

\bigr) \bigr\} 
,

where the constant \widehat \delta is given by the inequality (7.2).

Since \^l \geq 1, K \geq 1, s \geq 1, a \geq 2, it follows that the constant \ell is sufficiently
large, and the constant \delta is sufficiently small.

The only nonconstructive step in our proofs is the one where we use the norm of
the Lyapunov sequence, which transforms the free system (2.2) to a diagonal form in
the case of diagonalizability, and to a special triangular form in the case of regularity
or stability of the Lyapunov spectrum. If the given system (2.2) has the required form,
then Lyapunov transformation in Theorems 6.6--6.8 is the identity transformation, so
\^l = 1 and the constants \ell , \delta may be calculated exactly. If the given system does not
have the required form, then we have only a lower bound on \ell and an upper bound
on \delta , because \^l \geq 1. Thus, the following corollary holds.

Corollary 7.1. Let the system (2.1) be K-uniformly completely controllable and
let the inequality (3.2) hold for it. Then the values of the constants \ell and \delta that
guarantee the fulfillment of the conditions of Definition 2.2 satisfy the inequalities

\ell \geq 2(e - 1)
sKs

\gamma s
a2(s+1)K+2s - 1(\widehat \delta + 1)K ,

\delta \leq min
\bigl\{ 
1, \widehat \delta /(e - 1)

\bigr\} 
,

where the constant \widehat \delta is given by the inequality (7.2).

Now we discuss the question of how our main result is formulated in the special
case of the time-invariant system.

Corollary 7.2. Suppose that the matrices A and B are time-invariant. If the
condition of complete controllability of the system (2.1)

(7.4) rank[B,AB, . . . , As - 1B] = s

is satisfied, then the Lyapunov spectrum of system (2.4) is locally proportionally as-
signable and the constants \ell and \delta can be chosen as

\ell = 2(e - 1)
ss+1

\gamma s
a2s(s+2) - 1(\widehat \delta + 1)s, \delta = min

\bigl\{ 
1, \widehat \delta /(e - 1)

\bigr\} 
,

where \widehat \delta > 0 is a sufficiently small constant satisfying the inequality

\widehat \delta (\widehat \delta + 1)s <
(a - 1)\gamma s

2ss+1(as  - 1)as(2s+3)
.
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Proof. For a time-invariant system (2.1), uniform complete controllability is equiv-
alent to its complete controllability, which, in turn, is equivalent to the fulfillment of
condition (7.4) [13, p. 433], [14, pp. 238--239]. In this case, the value K of the length
of the segment of complete controllability can be chosen from the condition

rank[B,AB, . . . , AK - 1B] = s.

Obviously, for a completely controllable system, we can always assume that K = s.
Since the time-invariant system is regular [14, p. 64], we may use Theorem 6.7 and
reduce the system to a triangular form by a Perron transformation [14, p. 70], that is,
by a transformation (4.1), in which the matrix L(n) is orthogonal for each n. In this

case \| L(n)\| = \| L - 1(n)\| = 1, i.e., \^l = 1. From this and by Corollary 7.1 we obtain
the required formulas for \ell and \delta .

Remark 7.3. From Corollary 7.2 we see that our main result applied to time-
invariant systems does not coincide with the classical pole placement theorem, formu-
lation of which is as follows [13, p. 458]: Let \Lambda = \{ \mu 1, \mu 2, . . . , \mu s\} be an arbitrary set
of s complex numbers such that \Lambda = \{ \mu 1, \mu 2, . . . , \mu s\} = \Lambda . Then the pair (A,B) is
completely controllable if and only if there exists a constant matrix U such that the
eigenvalues of A+BU are the set \Lambda .

The main differences are as follows:
(i) The problem is posed and solved for a system, not for a pair of matrices.
(ii) In our problem the Lyapunov spectrum is assigned, which coincides with the

logarithms of the absolute values of eigenvalues of the coefficient matrix of the system,
and not with the usual spectrum of this matrix as in the classical statement of the
problem.

(iii) The assigned values of the spectrum lie in some neighborhood of the spectrum
of the original system, and not in the whole set of possible values of the spectrum.

(iv) There is a Lipschitz-type estimate of the value of the matrix feedback coeffi-
cient needed to shift the spectrum by a given value from the original one.

(v) The feedback U constructed by us to assign the spectrum depends on time and
is periodic with period K. In fact, from the time-invariance of the matrices A, B and
from the method of constructing the matrix H, in the proof of Theorem 6.6, it follows
that all sequences of matrices V (n) in Lemma 3.3 can be chosen to be the same on
each segment n = k0, . . . , k0 + K  - 1, k0 \in \BbbN . Finally, the method of constructing
the matrices V (n) in the proofs of Theorems 3.4 and 5.3 ensures their repeatability
on each segment n = (m - 1)K + 1, . . . ,mK, m \in \BbbN .

(vi) In contrast to the classical theorem, our result provides only sufficient condi-
tions for the assignability of the spectrum of the system (2.1).

Now we shall construct an example where, using our results, a stabilizing feedback
for a linear control system is designed.

Example 7.4. Consider a model of digital positioning system, described in [23,
Example 6.2, pp. 447--448]. After discretization, we obtain the following discrete-time
linear system:

(7.5) x(n+ 1) = A(n)x(n) + b(n)u(n), n \in \BbbN , x \in \BbbR 2, u \in \BbbR ,

where

A(n) \equiv A =

\biggl( 
1 0, 08015
0 0, 6313

\biggr) 
, b(n) \equiv b =

\biggl( 
0, 003396
0, 06308

\biggr) 
.
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Let us check for this system the condition (7.4) of complete controllability. Since

det[b, Ab] = det

\biggl( 
0, 003396 0, 008451862
0, 06308 0, 039822404

\biggr) 
\approx  - 0, 0004 \not = 0,

the condition (7.4) is satisfied and the length of the segment of uniform complete
controllability is K = 2. We note that the free system

(7.6) x(n+ 1) = Ax(n), n \in \BbbN , x \in \BbbR 2,

is regular and the Lyapunov spectrum \lambda (A) consists of logarithms of the diagonal
elements of the matrix A, i.e.,

\lambda 1(A) = ln 0, 6313 < 0, \lambda 2(A) = 0.

The free system is stable but not asymptotically [13, p. 187]. Its solution with the
initial condition x(0) = x0e1 is constant for all x0 \in \BbbR .

Closing the system (7.5) by the linear feedback u(n) = U(n)x(n), where U(n) =\bigl( 
u1(n), u2(n)

\bigr) 
\in \BbbR 1\times 2, we obtain the closed-loop system

(7.7)

x(n+ 1) =
\bigl( 
A+ bU(n)

\bigr) 
x(n)

=

\biggl( 
1 + 0, 003396u1(n) 0, 08015 + 0, 003396u2(n)

0, 06308u1(n) 0, 6313 + 0, 06308u2(n)

\biggr) 
x(n), n \in \BbbN .

Since for the system (7.5) the conditions of Corollary 7.2 are fulfilled, it follows that
for any sequence

\mu =
\bigl( 
\mu 1, \mu 2

\bigr) 
\in O\delta 

\bigl( 
\lambda (A)

\bigr) 
there exists 2-periodic control U(n), such that

\| U\| \infty \leq \ell max
\bigl\{ 
| \mu 1  - \lambda 1(A)| , | \mu 2  - \lambda 2(A)| 

\bigr\} 
and in that case

\lambda (A+ bU) = \mu .

Let us take

\mu 1 = \lambda 1(A), \mu 2 = \nu ,

where \nu is any number satisfying | \nu | < \delta . Then the condition

\mu \in O\delta 

\bigl( 
\lambda (A)

\bigr) 
is satisfied. We shall construct the corresponding control U(n) = U\nu (n) for which

\| U\nu \| \infty \leq \ell | \nu | and \lambda (A+ bU\nu ) = \mu .

If \nu < 0, then the closed-loop system (7.7) with the control U(n) = U\nu (n) has the
Lyapunov exponents

\lambda 1(A+ bU\nu ) = ln 0, 6313 < 0, \lambda 2(A+ bU\nu ) = \nu < 0,

and therefore, the closed loop-system (7.7) is asymptotically stable for all \nu \in ( - \delta , 0).
We may stabilize the system (7.5) by a small 2-periodic feedback.
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If \nu > 0, then

\lambda 1(A+ bU\nu ) = ln 0, 6313 < 0, \lambda 2(A+ bU\nu ) = \nu > 0,

and therefore, the closed loop-system (7.7) is unstable for all \nu \in (0, \delta ). In that case
we may destabilize the system (7.5) by a small 2-periodic feedback.

Let us notice that the determinant of the matrix [b, Ab] is closed to zero. It means
that the system (7.5) has ``bad"" controllability characteristics, that is, the \ell is large and
\delta is closed to zero. In fact, let us calculate the values of \ell and \delta , using Corollary 7.2.
For the Kalman matrix W (k0, k0 +K) we have

W (k0, k0 +K) =W (k0, k0 + 2) =W (0, 2)

= \Phi A(0, 1)bb
T\Phi T

A(0, 1) + \Phi A(0, 2)bb
T\Phi T

A(0, 2)

= A - 1bbT (A - 1)T +A - 2bbT (A - 2)T

= A - 2
\bigl( 
bbT +AbbTAT

\bigr) 
(A - 2)T

for each positive integer k0. From the nonsingularity of the matrix A we obtain that

min
\xi \in \BbbR 2

\xi TW (k0, k0 + 2)\xi = min
\xi \in \BbbR 2

\xi T
\bigl( 
bbT +AbbTAT

\bigr) 
\xi .

Direct calculations show that the inequality (3.2) holds for \gamma = 10 - 7. As a number a
we may take a = 6. Then

\ell = 16(e - 1) \cdot 1014615(\widehat \delta + 1)2, \delta = \widehat \delta /(e - 1),

where \widehat \delta > 0 is sufficiently small constant satisfying the inequality

\widehat \delta (\widehat \delta + 1)2 <
5 \cdot 10 - 14

16 \cdot 35 \cdot 614
.

The construction of the control U(n) is carried out on the basis of Lemma 3.3 and
Theorems 3.4, 5.3, and 6.7. Taking in Lemma 3.3 as the control ul(j) the Kalman
control

ul(j) =  - bT\Phi T
A(1, j + 1)W - 1(1, 3)zl, l, j = 1, 2,

and generating the control
\bigl( 
U(n)

\bigr) 
n=1,2

according to the proofs of Theorems 3.4, 5.3,

and 6.7, we get

U(1) =  - bT (A - 1)TW - 1(1, 3)(H  - I),

U(2) =  - bT (A - 2)TW - 1(1, 3)
\bigl( 
I +A - 1bU(1)

\bigr)  - 1
A - 2,

where H = A - 1RAR, R = diag(e\nu , 1).

Note that the method of local assignment of the Lyapunov spectrum that we
proposed allows us to construct the feedback U(n) not only in the time-invariant case,
but also in the time-varying case. The only nonconstructive element is the Lyapunov
transformation L(n). In addition, in the time-varying case, the construction of the
feedback U(n) must be carried out for all n \in \BbbN .

In conclusion, we discuss the necessity and robustness of the sufficient conditions
for the local proportional assignability of the Lyapunov spectrum.

One can prove that the set of uniformly completely controllable systems is open in
the set of all systems of the form (2.1) with the topology of uniform convergence on \BbbN ,
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while the set of systems with stable Lyapunov spectrum and the sets of diagonalizable
and regular systems are not open in the set of all systems of the form (2.2) with the
topology of uniform convergence on \BbbN . Therefore, the properties of diagonalizability,
regularity, and stability of the Lyapunov spectrum cannot be a robust property for
the local proportional assignability of the Lyapunov spectrum.

The proofs of the main results of our paper do not give reasons to suppose that
the properties of diagonalizability, regularity, and stability of the Lyapunov exponents
are necessary for the proportional local assignability or even close to those. The
instability of the Lyapunov exponents of the original system means that the Lyapunov
spectrum, considered as a function defined on the space of systems with the topology
of the uniform convergence on \BbbN , has a discontinuity at the point corresponding to the
system under consideration; i.e., for arbitrarily small perturbations some of exponents
may vary considerably having the so-called jumps. In this case, if the free system is
neither diagonalizable nor regular, some of the corresponding controlled systems may
not have the property of local proportional assignability of the exponents. However,
even the construction of examples of such systems, not to mention the study of the
assignability of their exponents, is a difficult task that must be further investigated.
The problem of the necessity of the condition of uniform complete controllability for
local proportional assignability of the Lyapunov spectrum is also unsolved.

8. Conclusions. In this paper we consider a refined version of the pole assign-
ment problem for discrete time-varying linear systems, namely the proportional local
pole assignment problem. We show that diagonalizability, as well as Lyapunov reg-
ularity or stability of Lyapunov spectrum, ensures the solvability of this problem for
any uniformly completely controllable open-loop system. Now at least two questions
remain open. First, are there some other and more general sufficient conditions for
the local assignability of the Lyapunov spectrum? Second, what are the necessary
conditions for the local proportional assignment of the Lyapunov spectrum?
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