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Abstract: In strongly coupled fluid-structure interaction simulations, the fluid dynamics and
solid dynamics problems are solved independently on their own meshes. Therefore, it becomes
necessary to interpolate the physical properties (pressure, displacement) across two meshes. In
the present paper, we propose to accelerate the interpolation process by the method of radial
basis functions using the matrix-free solution of the system of equations on a GPU. Also, we
reduce the number of equations in the system by using an adaptive algorithm for choosing
interpolation points.
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1 Introduction

Several approaches are used to simplify algorithms for
the numerical solving of the fluid-structure interaction
(FSI) problem such as the decreasing of the problem
size, algorithms accelerating the computations, the analysis
methods and the use of the properties of subtasks.

Let us consider the variants of decreasing the
computational costs at the interpolation of data between
non-matching meshes: the decrease of the interpolation
data; the parallelisation of algorithms taking into account
the geometry of the extended boundaries of axisymmetric
bodies.

The main methods for interpolation on non-matching
meshes for the FSI simulations are surveyed in Berndt et al.
(2011) and Farrell et al. (2009). We consider a method
based on radial basis functions (RBF) (De Boer et al.,
2007), where the coefficients of the interpolant are found
from the system of equations, the matrix of which is formed
using a RBF. The choice of the function determines the
condition number and density of the matrix, and, as a
result, the computational complexity of solving the system
of equations.

The RBF interpolation has the following advantages:

• it does not require any mesh connectivity information

• it requires solving a sparse system of equations,
especially with the compact basis functions

• it can be efficiently parallelised.

This paper is structured as follows. Section 2 briefly
describes the RBF interpolation scheme for the FSI
problem. Section 3 presents a new approach based on
layer-by-layer mesh partitioning for reducing the problem
size. Section 4 describes a matrix-free solution of the
interpolation problem on a GPU. Finally Section 5 will be
the conclusions.

2 RBF interpolation for FSI problems

Let P d
Q−1 be the d-dimensional space of the polynomials

of a degree smaller than Q− 1 and p1, . . . , pq be a basis
in this space. The main idea of the RBF method is to find

the required interpolation function as a linear combination
of the following functions:

w(xi) =
n∑

j=1

αjϕ(∥xi − xj∥) +
q∑

l=1

βlpl(xi), (1)

where q is additional degrees of freedom and the
coefficients αi and the polynomials pl(xi) satisfy

n∑
j=1

αjpl(xj) = 0, 1 ≤ l ≤ q. (2)

The solution of the system exists and is unique if

p(xj) = 0, for all 1 ≤ j ≤ n and
p ∈ P d

Q−1 implies p = 0. (3)

The system of equations (1)–(3) is always solvable if ϕ is
a positive-definite RBF.

Let Ω be the domain with the given pressure pΩ. The
domain with the required pressure is denoted by Φ. The
pressure interpolation between the meshes can be expressed
in the matrix form as follows:[

WΩΩ PΩ

PT
Ω O

] [
α
β

]
=

[
pΩ
0

]
or Aγ = b, (4)

here WΩΩ is the nΩ × nΩ matrix, consisting of the elements
ϕ( ∥xiΩ − xjΩ∥ ) and 1 ≤ i, j ≤ nΩ; PΩ is the column matrix
consisting of the elements

[
1 xiΩ

]
; α, β are the coefficients

of the interpolant; nΩ is the number of interpolation points
of the domain. The target pressure vector pΦ is obtained by
the matrix-vector product

pΦ = [WΦΩPΦ]

[
α
β

]
, (5)

where WΦΩ is the nΦ × nΩ matrix, consisting of the
elements ϕ( ∥xiΦ − xjΩ∥ ), 1 ≤ i ≤ nΦ and 1 ≤ j ≤ nΩ; nΦ

is the number of interpolation points on the domain Φ; PΦ

is the column matrix
[
1 xiΦ

]
. The dimension of the matrices

PΩ and PΦ depends on the type of basis functions. For
example, the dimension of the matrices WΩΩ and WΦΩ for
the global RBF thin-plate spline is 3 × nΩ and 3 × nΦ,
respectively.

Solving the system of equation (4) is the most
computationally expensive part of the interpolation. In



Radial rasis function for non-matching mesh interpolation in parallel solving FSI problem 21

De Boer et al. (2006), it was shown that the choice of basis
functions affected both the quality of the interpolation and
the solution time. The functions providing more accurate
interpolation may require a large amount of time for the
solution. The computational cost can be optimised by

1 reducing the system

2 parallelising the steps of the pre-conditioning and
solution of sparse/dense systems of equations.

3 Reducing the size of the system of equations

In this section, we demonstrate reducing the size of
the system of equations for the FSI of a supersonic
flow with a nozzle wall that has a high geometric
expansion ratio (Zhao et al., 2013). The boundary along
which the computational data are interpolated is quite
long and the pressure is irregularly distributed along
the boundary Ω (the nozzle wall). The solution of the
above problems is considered within the framework of the
layer-by-layer mesh partitioning method proposed in our
previous work (Novikov et al., 2016). The method provides
a conflict-free data access during the parallel summation of
the components of the finite element vectors in the shared
memory of the multi-core computing systems.

Figure 1 (a) The interface boundary partitioned into 150 layers
(b) The partition into 15 layers parallel to the
directrix (c) The partition into 15 layers by the
surface generatrix

(a) (b)

(c)
Let us divide the interface part ΓΩh = ∂Ωh of the mesh Ωh

into layers. To do this, we use the neighbourhood criterion
where any two mesh cells are considered adjacent if they
have at least one common node.

The considered physical area and the computational
mesh are symmetrical. Therefore, the choice of the initial
set of interpolation points is carried out in accordance
with the distribution of the layers. Here, there are two
possibilities for selecting layers: along the generatrix and
along the directrix.

The mesh ΓΩh is the discrete description of the rotation
surface ΓΩ with the closed directrix. To form layers in

parallel to the directrix ΓΩ [see Figure 1(b)] or along the
surface generatrix [see Figure 1(c)], we use the algorithm
proposed in Novikov et al. (2016).

The layer-by-layer partitioning is used to reduce the
number of interpolation points. To construct the interpolant,
we choose those layers of the interface surface which most
accurately represent the distribution of the interpolated data
(pressure). Figure 1 shows the partitioning of the surface
mesh into 150 layers. The dark layers correspond to 15
layers involved in the pressure interpolation [Figures 1(b)
and 1(c)].

Figure 2 (a) The given pressure distribution at the boundary of
the domain Ω (b) The pressure distribution obtained
at the use of 15 out of 150 layers at the radial
partition (c) At the partition along the generatrix
(see online version for colours)

(a) (b)

(c)

The quality of interpolation is compared for the local
ϕ(∥x∥) = 1− ∥x∥, ϕ(∥x∥) = (1− ∥x∥)2, the global
ϕ(∥x∥) = e−∥x∥2

, ϕ(∥x∥) = ∥x∥2 log ∥x∥ basis functions
and inverse distance weighting (IDW) (Shepard, 1968),
using different partitions and numbers of layers. The quality
of the pressure interpolation can be estimated as the relative
error computed by the ratio of the norms of the resultant
forces of the pressure on the interface boundary.

Table 1 shows the results for the pressure interpolation
in parallel to the directrix (Radial partitioning) and along
the surface generatrix (longitudinal partitioning). In the
second column, the evaluation of the interpolation quality
is given for all possible interpolation points of ΓΩh .

The quality of the interpolation with the data reduction
depends not only on the number of interpolation points
but also on the choice of the points (Figure 2). When
compact basis functions in the form (1− ∥x∥)2 are
used, the orientation of the pressure distribution after
the interpolation depends on the partitioning. The best
interpolation is achieved for the radial partitioning of the
domain. The RBF method using the global basis function
ϕ(x) = ∥x∥2 log ∥x∥ gives the best results. It allows to
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reduce the number of equations in system (4) by a factor
of 15 with the acceptable quality of the interpolation. The
IDW interpolation gives the greatest error, even in the case
of the full data.

The obtained matrix A is ill-conditioned. When using
global basis functions, the condition number depends on
the number and location of the interpolation points, as
well as on the type of the basis functions. The distance
between the interpolation points influences the condition
number. As the number of interpolation points increases,
the distance between them decreases, and the condition
number increases.

Table 1 Relative error of the pressure interpolation, %

nΩ 28,800 9,600 5,760 2,880 960

Longitudinal distribution

1− ∥x∥ 0.24 3.79 10.4 15.2 349.6
(1− ∥x∥)2 0.78 7.79 69.3 74.3 365.4
IDWp=3 14.2 50.6 105 189 407.0
e−∥x∥2 0.54 1.18 2.68 8.04 147.6
∥x∥2 log ∥x∥ 0.01 0.23 1.07 5.95 28.61

Radial distribution

1− ∥x∥ 0.24 0.34 0.92 10.8 214.3
(1− ∥x∥)2 0.78 1.58 9.34 15.9 36.5
IDWp=3 14.2 53.9 111 205 534.2
e−∥x∥2 0.54 1.07 3.99 5.41 101.6
∥x∥2 log ∥x∥ 0.01 0.01 0.21 1.13 21.6

Adaptive distribution

1− ∥x∥ 0.24 1.23 1.14 0.93 4.89
(1− ∥x∥)2 0.78 0.67 1.75 2.41 1360
IDWp=3 14.2 26.1 27.3 30.8 85.1
e−∥x∥2 0.54 0.94 1.12 0.82 9.61
∥x∥2 log ∥x∥ 0.01 0.37 1.25 1.31 3.65

For interpolation it is practical to use an adaptive algorithm.
It should be noted that the interpolation error is not the
only reason for its use. In De Marchi et al. (2005), it
was shown that in the RBF-based interpolation, the optimal
distribution for the case of a two-dimensional space was
the asymptotically uniform distribution of points. In the
considered case, at the initial non-uniform distribution of
the data, the adaptive choice of the interpolation points
is preferable since it allows obtaining the interpolation
point distribution providing a minimum error. Note that
in the case of the asymptotically uniformly distributed
interpolation points, theoretically, an arbitrarily high error
can be obtained for some functions; however, for others it
is unattainable. Even the use of greedy algorithms (Rendall
and Allen, 2009) does not provide an optimal interpolation
by the RBF method for an arbitrary function.

The aim of the adaptive algorithm is to achieve a
sufficiently small error for the interpolation with the use of
na ≪ nΩ points only, where nΩ is the initial number of
interpolation points.

The adaptive algorithm starts with a very small number
of points and then refines the dataset by adding new points

of the interpolation where the observed interpolation error
is largest. The algorithm constructs an interpolant for the
reduced set of points, which reproduces the interpolation
function in certain tolerance limits. Furthermore, limits can
be imposed on the number of iterations and the total number
of interpolation points (na).

3.1 Adaptive algorithm for selecting interpolation
points

Let us

1 select an initial set of layers and solve Aγ = b for na

init points

2 form and solve the linear system of the interpolation
coefficients for the initial layers Aγ = b

3 evaluate the interpolant at all nΩ data points pΦ = Aγ

4 compute the residual vector or find errors
E(x) = p(x)− pΩ(x)

5 check the stopping criteria, and if they are not
satisfied, increase the iteration count and add new
points with the largest error E(x)

6 the adaptation is successfully completed if the residual
is smaller than the given tolerance.

In the fluid dynamics problem on a flow in a
supersonic over expanded nozzle, the line ℓ =
{(argminx p(x, φ∗), φ∗) ∈ Γ : 0 ≤ φ∗ < 2π} divides the
set of interpolation points Ω into Γ1, where p = p(x) is
the axial symmetry region, and Γ2, where p = p(x, φ)
[Figures 3, 4 and 5(a)].

Figure 3 Pressure distribution, (a) adaptive distribution with
nΩ = 9,600 (b) e−∥x∥2 (c) 1− ∥x∥
(see online version for colours)

(a) (b)

(c)

Let us apply the above adaptive algorithm to the pressure
interpolation for the considered FSI problem. At the first
step, we apply it to the layers to which the set of
interpolation points is divided, i.e., we reduce the set of
interpolation points along the coordinate x. Thus, from
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all the layers we leave the minimum number of layers
satisfying the error of interpolation. At the second step, we
apply this algorithm to each remaining layer to select the
interpolation points with the largest error in the coordinate
φ. Thus, we reduce the number of the interpolation points
preserving the interpolation error.

Figure 4 Pressure distribution, (a) adaptive distribution with
nΩ = 5,760 (b) e−∥x∥2 (c) 1− ∥x∥
(see online version for colours)

(a) (b)

(c)

Figure 5 Pressure distribution, (a) adaptive distribution with
nΩ = 960 (b) e−∥x∥2 (c) 1− ∥x∥
(see online version for colours)

(a) (b)

(c)

In addition to the pressure p = p(x, φ) determined on
Ω, the gradient grad p is also known. It is used as an
indicator of the addition of interpolation points. Layers and
interpolation points are added to the minimal set of points
when they are located in regions of the largest gradient.

In the absence of any additional information on the
distribution of the interpolated data (e.g., in the case of
the pressure interpolation it is a gradient), the indicator of
the interpolation error is formed on the basis of local basis
functions or by the IDW method.

Table 1 shows the error of the pressure interpolation
using the adaptive distribution of interpolation points. It
should be noted that the adaptive choice of interpolation
points increases of the condition number of the matrix of
the system of equation (4) and thus, the iterative solution
process converges slowly.

The adaptive distribution of the interpolation points
using the local basis function 1− ∥x∥ substantially reduces
the error for any number of interpolation points, and another
local basis function (1− ∥x∥)2 has a large error for a
small number of points. The Gaussian global function
[Figure 5(b)] shows good results for a small number of the
adaptively chosen points nΩ = 960.

4 Matrix-free solution of interpolation problem on
GPU

One of the specific features of the system (4) is a dense
matrix, which imposes some restrictions on the GPU use
due to the small capacity of the available GPU memory.
The problem can be resolved by

1 using several GPUs, thereby increasing the total
memory available for the system solution

2 solving the system of equations without the formation
of a matrix (matrix-free algorithm).

In this case, the matrix elements are computed as they
are required in the algorithm of the system solution. The
solution of the system by the RBF method is possible
without the formation of a matrix. since the matrix
elements are computed by the chosen basis function.
This improves the data locality and arithmetic intensity
for matrices and vectors. The memory requirements and
CPU-GPU communications are reduced. The efficiency of
the algorithm can be improved if multi-GPUs are used in
the similar way to that in Kopysov et al. (2014).

Let us consider in more detail the MFA computing
expenses. In the MFA, the formation time is excluded.
The time to copy the matrix into the GPU memory is
additionally taken into account when using the algorithm
with the assembled matrix. In addition, Figure 6 shows the
acceleration s for solving the system with the use of both
the algorithm with an assembled matrix and the matrix-free
solution algorithm. The acceleration is computed as S =
t1/tp, where t1 – the time of execution of task per one CPU
thread and tp – the time required to complete the task on
processors (by using CPU, GPU or their mixture).

The CPU parallelisation is carried out with OpenMP.
The solution of the system of equations on several GPUs
is carried out by CUDA in conjunction with OpenMP. The
system of equations is solved by the conjugate gradient
method with the diagonal preconditioner (Kopysov et al.,
2014). The precision is equal to 10−6. In the computations,
double-precision arithmetic is used. The analysis and
performance estimations are performed on a computing
node consisting of 2 × quad− core Intel Xeon processor
E5-2609, 2 × GeForce GTX 980 with 4 GB GDDR.
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Figure 6 Accelerating of interpolation, obtained by using
different approaches for function e−∥x∥2

(see online version for colours)

When the system of equations is solved using the assembled
matrix on the CPU, the step of the matrix formation is
added. The use of GPU increases the cost due to the
necessity of copying the data to the GPU. When the system
is solved using the MFA the cost is not increased because
there in no need to copy the data. Figure 6 shows, the
reducing of total time is given for each of the above
approaches.

The numerical computations show that the use of
eight CPU threads within one computing node reduces the
solution time almost by a factor of seven. One GPU allows
to speed up solving the system by a factor of 250 compared
with one CPU thead and by a factor of 50 compared with
8 × CPU. The GPU efficiency increases with the increase
of the system size. Using two GPUs reduces the time by
a factor of 1.5 compared with one GPU and by a factor
of 350 compared with the CPU. With an increase in the
number of GPUs, the strong scalability can be provided
only when the sizes of the submatrices on each GPU are
preserved

The matrix-free solution of the system using 8 × CPU
reduces the solution time by a factor of 2.5. However, the
solution with the assembled matrix is twice as fast as the
matrix-free solution. When one GPU is used, the time for
the matrix-free solution of the system of equations is 5
times larger than that for the solution with the assembled
matrix, and in the case of using two GPUs, the matrix-free
solution is 3 times longer. The speedup obtained at the
use of one CPU thread is 55 times smaller than that when
using one GPU and 110 times smaller than that when using
two GPUs. It should be noted that the use of local basis
functions with an introduced radius of influence increases
the MFA efficiency.

Let us estimate the maximum size of the system, which
can be solved using the MFA on a one GPU. For the matrix
A formation, the coordinates of the interpolation points
are used. Then for interpolation in a three-dimensional
space, it is necessary to allocate memory for the vector
of coordinates of length equal to nΩ × 3. The required
memory size for solving the system with the assembled

matrix is nΩ × nΩ. The remaining vectors participating in
the conjugate gradient method coincide for both algorithms.
Thus, the memory size for interpolating the mesh data in
the three-dimensional space is decreased by a factor of
nΩ / 3. The maximum system size solved by the MFA
increases by the same factor. The algorithm of the conjugate
gradient method with a diagonal preconditioner involves the
use of memory to store a matrix of size nΩ × 3 (the MFA)
and six vectors nΩ × 1. Thus, for solving the system using
the MFA and double precision arithmetic, nΩ × (3 + 6)
× 8 bytes are required. Consequently, the maximum size
of a system for the GPU with a 4 GB GDDR is about
6 × 108 equations. Using two graphics cards, the possible
size of the system is increased to 1.2 × 109 equations.
Thus, for the dense matrices obtained on the basis of global
basis functions, a parallel method of conjugate gradients
is constructed. The computations are distributed among
several GPUs. The use of the matrix-free approach makes
it possible to remove any limitations on the amount of
memory.

5 Conclusions

We propose an algorithm for constructing a uniform
distribution of interpolation points on an unstructured mesh
in the interpolation based on RBF. For solving the problems
on unstructured meshes, the adaptive algorithm is proposed
for sampling the data for the interpolation based on the RBF
method. The obtained results show that the interpolation
on the uniformly distributed data is of high quality and
applicable for meshes of super-large dimensions. The use
of the adaptive data reduction based on the layer-by-layer
partition of the mesh makes it possible to reduce the number
of interpolation points, but requires additional information
about the data. At the same time, the quality of the
interpolation for the irregularly-spaced data is preserved
both for global and for local basis functions. Using a
matrix-free algorithm on large meshes significantly reduces
the memory costs associated with the formation of the
interpolation matrix. At the same time, the computation
locality of the matrix-vector product computations increases
when solving the system of equations by iterative methods.
The solution of systems with dense matrices by the MFA on
the CPU does not lead to any significant time reductions.
Since the time of the matrix formation is less than 1%
of the solution time, the use of the MFA in conjunction
with the CPU is inefficient. The matrix-free approach is
most effective when using a GPU, especially when it is
not possible to achieve a large reduction of points without
the interpolation quality loss. Using a GPU for solving
larger systems of equations allows minimising the cost of
additional computations associated with the formation of
the matrix elements.

A further increase in the efficiency of the MFA is
associated with a decrease in the number of iterations
of the algorithm for solving the system of equation by
constructing effective parallel preconditioners and by using
local basis functions with the radius of influence.
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