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A B S T R A C T

We show that in a binary solution in the presence of liquid phase of non-permanent composition, and a stoi-
chiometric phase, for solute concentration exceeding some critical value, the instability mathematically de-
scribed by the Cahn–Hilliard type equation can develop. Within the framework of the model system a dispersion
relation is constructed. This relation allows to determine the concentration fluctuations dependence on time, and
to investigate dynamics of structural factor and of amplification rate. The observed instability can explain the
processes of slow non-monotonic relaxation in the glass-forming metal melts upon melting.

1. Introduction

Despite the significant progress achieved in the metallurgy, some
processes of formation and dynamics of the internal microstructure in
metal alloys have not been fully understood to this day. The main
reason of this is that the scales of mesoscopic phenomena playing basic
role in these processes, are too large to use such microscopic ap-
proaches as molecular dynamics, and at the same time are too small to
study the phenomenon with the help of measurement technics.

One of these phenomena is the slow nonmonotonic relaxation of
viscosity in the glass-forming metallic melts after melting [1,2]. For
example, after melting of aluminum with small additions of yttrium or
nickel, the relaxation time can reach several hours. In metallurgy, this
relaxation is due to the processes of melting, caused by the slow dis-
solution of refractory materials in training. However, the kinetics of
these relaxation processes can not be explained in the framework of
linear diffusion model, the characteristic relaxation time in which
should be in the order of few seconds.

The corresponding estimation of characteristic dissolution time of
the initial inhomogeneity Al3Y with the characteristic size 10−5 m was
done in the paper [3] and is 10−2 s, which is much shorter than the
relaxation time, observed on the experiment: τ≈ 104 s. In addition, in
some cases the relaxation is accompanied by an unusual nonmonotonic
dependence of the melt viscosity [2,4–6] on time (see Fig. 1 and in
Fig. 2). Firstly, for a certain period of time after melting, the melt
viscosity decreases exponentially, but at the some point viscosity

suddenly begins to grow, reaching local maximum, and then returns to
the normal exponentially decreasing mode. It was experimentally es-
tablished that in the melts of AleY alloys the nonmonotonic viscosity
behavior is observed both in the presence of other solutes and without
them. One can assume that the nature of this unusual phenomenon is
mainly related to the peculiarities of AleY melt relaxation. Therefore,
initially for its description, we can limit ourselves to the consideration
of the binary melt.

As the possible explanation of the phenomena under consideration
(an abnormally slow relaxation and nonmonotonic dependence of
viscosity on time) in [3] it was assumed that they are related to non-
linear concentration dependence of the system chemical potential near
the liquids line, leading to the phenomenon similar to the spinodal
decomposition [7]. The appearance of spinodal decomposition by
nature is related to the characteristic dependence of free energy (or
Gibbs potential) on the solute concentration x.

2. The Cahn–Hillard equation of spinodal decomposition

First of all, let us recall the main data about of the synodal de-
composition, and start from the Cahn–Hilliard equation for isothermal
phase separation [7], which has the following form:
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where x(r, t) is the order parameter (local deviation from the average
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concentration of solute), MD is transport coefficient (mobility) asso-
ciated with diffusion coefficient, and
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The Cahn–Hilliard equation plays a fundamental role in materials
science, in description of the process of separation of the continuous
medium into the regions with different concentrations. As a result of the
stratification, a “worm-like” structure is formed. The coefficient ε2 and
the free energy density f(x) are determined by the equilibrium prop-
erties of the system. If f(x) has a single minimum, then the eq. (1) de-
scribes the usual diffusion with the characteristic dispersion relation
[8]ω= − k2(D+MDε

2k2) between the frequency ω and the wave
number k, where the contribution of the gradient term (∇x)2 is assumed
to be small compared to the contribution of the free energy density. The
value D=MD∂

2f(x)/∂x2 is the diffusion coefficient, where MD is a some
positive kinetic factor (mobility). Spinodal decomposition occurs when
f(x) has two minima. Then, in the region between the minima, the
diffusion coefficient D < 0 and the dispersion relation

ω= k2(|D|−MDε
2k2) indicate an important stabilizing role of the

gradient term in the expression (2). The negative diffusion coefficient
leads to instability, which results in a characteristic “worm-like”
structure of the solute distribution over space.

Since visually it is very difficult to distinguish spinodal decom-
position (homogeneous nucleation) from metastable state (hetero-
geneous nucleation), the concept of structural factor S(k, t) is used [8].
The structural factor S(k, t) is proportional to square of the Fourier
component of the order parameter and usually increases as S
(k, t)∝ exp (2A(k, t)). The value A(k, t) is called “the amplification rate”.
Usually from experiments one finds dependence A(k, t)k−2 [8]. From
the dispersion relation for the Cahn–Hilliard equation we can easily
find that A(k, t)k−2= (|D|−MDε

2k2) gives a linear dependence by k2.
One can note that the experimental data on the the amplification rate
are characterized by significant nonlinearity [8]. Nevertheless, it is
believed that the Cahn–Hilliard equation correctly reflects the essence
of what is happening in the spinodal decay: the convexity of the po-
tential leads to the instability, which is extinguished by the fourth de-
rivative.

Now we should ask ourselves the following question: can the spi-
nodal decay, which is highly desirable [3] to explain the phenomena
under consideration of abnormally slow relaxation and nonmonotonic
dependence of viscosity on time, be observed in the AleY system be-
cause of its Gibbs potential? Obviously, the answer is no. The Gibbs
potential of the AleY system, shown in Fig. 3 has a single minimum.
Also, one can note the other feature of the solute presented in Fig. 3,
this is the closely spaced vertical lines of stoichiometric compounds
Al2Y and Al3Y attending in the initial samples. Therefore, one can as-
sume that the presence of these compounds in initial solid can lead to
presence of the local areas with a solute concentration exceeding the
sample-average, in the melt. Moreover, it is well known that the phy-
sical processes taking place near peritectic, are quite complex and in-
teresting, and continue to be researched until the present time [10,11].

The aim of this work is to study the solute redistribution processes
between the liquid phase and stoichiometric compounds, which can
result to the instability characteristic of the process of spinodal de-
composition. For simplicity, we will limit ourselves to the convex po-
tential model, for which it is possible to carry out up to the end ana-
lytical calculations and to analyze the dynamics of the system with
liquid and stoichiometric phases. Since usually at the spinodal decom-
position the separation of the region with a different solute con-
centration is discussed, but with one aggregate nature, below we will be
talk not about the spinodal decay, but about the upward diffusion in the
processes of melting.

Fig. 1. The time dependencies of the liquid melt viscosity, Al87Ni8Y5, at 900 °C
(1), 1050 °C (2) and 1200 °C (3), obtained after heating from room temperature.
b The time dependencies of the liquid melt viscosity, Al86Ni8La6 (1) and
Al86Ni8Ce6 (2), at 1100∘C [5].
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Fig. 2. The temporal dependencies of the viscosity of Al95Y5 (a) and Al90Y10 (b)
melts at the various temperatures [5,6].
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3. Model of phase transformations in the presence of
stoichiometric phase

Let us consider the model isothermal problem of phase transfor-
mations in a binary melt with a molar solute concentration x in the
liquid (phase S). We suppose that the melt at the given concentration
corresponds to the volume density of the Gibbs potential GS(x). For
alloys in which there is a nonmonotonic relaxation of viscosity, the
density of Gibbs potential is a convex downward function of the con-
centration, so to simplify the calculations, we restrict ourselves to the
quadratic approximation

= − ∗G g x x1
2

( ) ,S 0
2

where x∗ is the GS(x) minimum position (Fig. 4).
Further we assume that this binary compound, in addition to the

liquid, has another stoichiometric phase (phase F) of the fixed compo-
sition x0. For the stoichiometric phase the Gibbs potential also has the
fixed value of GF at the given temperature.

To describe the phase state of solution we restrict ourselves to the
scalar field φ, such that for each unit of volume some share of the
stoichiometric phase φ corresponds, and (1− φ) is the share of the li-
quid. In the solid (stoichiometric) phase F we assume that φ=1, and in
the liquid s the phase field is zero. Unlike the well-known ideology of

the phase field [12], we assume that the intermediate value of the field
0≤φ≤ 1 does not describe the interface between the phases, but ra-
ther corresponds to the volume mixture of phases in the spirit of the
quasi-equilibrium theory of crystallization [13]. Neglecting the change
in volume during phase transformations of the solidifying liquid, we
write down the Gibbs potential in the form of phase interpolation. Since
we are not interested in the interface, we omit the gradient contribution
of the field (∇φ)2, in contrast to the approach of the phase field, but
consider the similar contribution to the liquid concentration of x, as-
suming the existence of correlations of the solute concentration only in
the liquid:

∫= ⎛
⎝

+ − + ∇ − ⎞
⎠

G φG φ G x ε x φ V(1 ) ( ) 1
2

( (1 )) d ,F S
2 2

(3)

that formally exactly coincides with the Cahn–Hilliard energy [7] at
φ=0, but in this case, unlike [7], the Gibbs potential of the liquid
phase is always convex down ∂2GS/∂x2≫ 0. The coefficient ε2 in (3)
corresponds to the coefficient in the Cahn–Hilliard equation and is
proportional to the square of the correlation length.

Note that the molar concentration of solute in the liquid x is not a
constant value and can vary both due to changes in the phase fraction
and due to diffusion. The average concentration of 〈x〉 per unit volume
can be changed only by diffusion fluxes JD in the liquid with a fraction
(1−φ):

∂
∂

〈 〉 = − − ∇⋅
t

x φ J(1 ) ,D

the choice of which is due to the requirement to reduce the total Gibbs
energy of the system in the relaxation processes. The concentration
average in phases can be written as

〈 〉 = + −x φx φ x(1 ) ,0

differentiation of which gives

∂
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t
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From the expression (4) one can find the equation for solute in the
liquid:

− = − − − − ∇⋅φ x φ x x φ J(1 ) ̇ ̇ ( ) (1 ) .D0 (5)

Taking into account the eq. (5) we get the dynamic system of two
independent variables x(r, t), φ(r, t), whose Lyapunov functional is the
total Gibbs energy of the system (3).

4. Relaxation equations

In order to obtain the relaxation equations of the dynamical system
(3) let us analyze the rate of change of the control potential by requiring
the constant decrease of its value:

∫= − + ∇ − +

+ − − ∇ − ≤

dG
dt

φ G G x xε x φ

x φ μ ε x φ V

( ̇ [ ( ) ( (1 ))]

̇ (1 )[ ( (1 ))])d 0,

F S

S

2 2

2 2

where

≡ ∂
∂

μ G
xS

S

is the chemical potential. Taking into account the conservation law (5),
after integration in parts the rate of change of the Lyapunov functional
is rewritten as
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Fig. 3. Real Gibbs potentials of the liquid phase and two stoichiometric phases,
Al3Y and Al2Y, in AleY alloy at the temperature T=1200∘C [9].

Fig. 4. The equilibrium conditions between phases at the given temperature.
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According to the nonequilibrium thermodynamics [14] the simplest
choice guaranteeing the decreasing of the Lyapunov functional, is

= − − − − + ∇ −
= − ∇ −

∼
∼

φ M G G x x x μ xε x φ
M φ μJ

˙ [ ( ) ( ) ( (1 ))],
[(1 ) ],

φ F S S

D D S

0
2 2

where MD > 0, Mφ > 0 are the kinetic coefficients of mobility. For
diffusion processes in the liquid with Gibbs potential GS(x) the mobility
is defined as MD= D/(∂2GS(x)/∂x2), where D is the diffusion coeffi-
cient. The kinetic coefficient Mφ determines the rate of phase growth
and is usually empirical. Thus, taking into account the definition (6)
and the conservation law (5), the dynamics of the system with the
control functional (3) is determined by the equations

= − + − − ∇ −
− = − − + − ∇ ∇ − ∼

φ M G x G x x μ x ε x φ
φ x x x φ φ M φ μ

̇ [ ( ) ( ) ( (1 ))],
(1 ) ̇ ( ) ̇ (1 ) ( [(1 ) ]).

φ S F S

D S

0 0
2 2

0 (7)

The obtained Eqs. (7) show that the phase transition velocity φ ̇ is
determined by the difference between the grand potentials of the
phases (ΩS=GS(x)− xμS, and ΩF=GF− x0μS), that coincides with the
accepted point of view on the driving forces of phase transformations
([15,16]) in thermodynamic. The additional driving force of the phase
transition is associated with concentration correlations defined by ∇2(x
(1− φ)). In areas where function of the liquid concentration x(1− φ)
is convex upwards, the growth of the stoichiometric phase is ac-
celerated, and where liquid concentration is convex downward its
growth is slows.

According to the liquid concentration eq. (4) there are three dif-
ferent mechanisms of its redistribution, which are determined by the
term −x x φ( ) ̇0 : the solute diffuses either from the solid into liquid,
when it is in excess supply, or from the liquid to the solid, if the solute
concentration is not enough for the stoichiometry compound formation.
The third way is the concentration redistribution influenced by the
chemical potential (see (6) and (7)), which is specified by the expres-
sion

− ∇ ∇ − = − ∇ − ∂ ∂ ∇ +…=
= − ∇ − ∇ +…

φ M φ μ φ φ M μ x x
φ φ D x

(1 ) ( [(1 ) ]) (1 ) ((1 ) ( / ) )
(1 ) ((1 ) ) ,

D S D S

which describes usual diffusion in liquid. The last term, arising from
substitution eq. (6) into (7), and defined by the summand with ε2, is
analogous to the summand with fourth derivative in the Cahn–Hilliard
equation, and serves to smooth short-wave perturbations.

The result is the system of coupled nonlinear equations that can be
fully investigated only numerically. However, interested in the initial
stages of the relaxation process close to equilibrium, we can get a
qualitative idea of what is happening, using the Fourier analysis of
small deviations from equilibrium.

5. The linearized equation

To simplify further analysis of the dynamics we proceed in the eqs.
(7) to dimensionless variables. Considering the mobilities as constants,
and marking out the characteristic scales in space and time as

= =L ε
g

t
gM x

, 1 ,
φ

0
0
2

after replacing

= = =∼∗ ∗x x ξ x x ξ G G
gx

, , ,F
F

0 0
0
2

where ξ is the dimensionless concentration variable, we come to the
equations of the form

= − − − − − ∇ −

− = − − + ∇ − − − ∇ −

∼∗ ∗
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φ ξ ξ ξ ξ G ξ φ
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̇ 1
2
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F
2

0
2 2

where D0= gMD/ε2x02Mφ. Note also that the region of change of di-
mensionless concentration in the new variables is ξ∈ [0,1/x0].

The graphs of stoichiometry and liquid phase potential in di-
mensionless variables are shown in Fig. 4. Stoichiometry is represented
conditionally in the form of a narrow potential bounded from below by
the GF value. In our model the temperature formally is absent. How-
ever, the implicitly set temperature determines the relative position of
the phase potentials, as well as the equilibrium concentration value,
which also depends on temperature. Therefore, Fig. 4 corresponds to
the certain temperature at which the stoichiometry and the liquid melt
are in equilibrium.

Substituting the equation for φ ̇ into the equation for ξ, we obtain
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− = − + ∇ − + ∇ −

− ∇ − ∇ − + − ⎡
⎣
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As initial state we choose the equilibrium state, for which φ0= const
and ξ0= const satisfy the following condition:

− − − = ∼∗ ∗ξ ξ ξ ξ G1
2

( )(2 ) .F0 0

For small deviations from the initial state φ(r, t)= φ0+ δφ(r, t) and
ξ(r, t)= ξ0+ δξ(r, t), taking into account that

− ≈ − −φ ξ φ δξ ξ δφ(1 ) (1 ) ,0 0

one get the linearization in the form of
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The eqs. (8) show that the coefficient at the second derivative of the
concentration becomes negative, if the initial concentration ξ0 at the
given temperature exceeds some value ξ0 > 1+ D0.

6. Fourier analysis of deviation from the equilibrium

Let us consider the dynamics of small deviations from the equili-
brium position over time t assuming the presence of small phase fluc-
tuations δφ0 and the composition δξ0 inside the melt at the initial time.
For simplicity, we restrict ourselves to a one-dimensional infinite re-
gion, the points of which are numbered by the coordinate z, assuming
that

⎧
⎨⎩

=
=

+

+

δφ C e
δξ C e

,
,

t iqz

t iqz
1

Ω

2
Ω (9)
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where Ω is the frequency, q is the wave number.
Substituting (9) into the eqs. (8), one can find the dispersion rela-

tion

− − + − − − + −
− + − =

β D ξ q D φ q ξ q
D q α φ q

( Ω (1 ) (1 ) )(Ω )
( (1 ) ) 0,p

0 0
2

0 0
4

0
2

2
0

2

which is reduced to the quadratic equation for Ω,

+ + =B CΩ Ω 02

with the following coefficients:

= + + − −
= − + + − + − + −

B D k φ D k β
C φ ξ q D ξ ξ q φ D q D αq βξ q

(1 ) (1 ) ,
(1 ) (1 ) (1 ) .p p

0
2

0 0
4

0 0
6

0 0 0
4

0
4 2

0
2

For model calculations the following parameters were adopted:
D0= 0.1, ξ∗=7, φ0= 0.25, ξ0= 1.2, =∼G 17.98.F The dependence of
roots of the dispersion equation

= − ± −± B B CΩ 1
2

( 4 )2

for the selected parameter values is shown in Fig. 5–6. In Fig. 5 one can
see for small wave numbers there is a region of positive real values Ω+,
which corresponds to the upward diffusion. The second root Ω− is
negative and corresponds to the solutions that fade monotonically over
time. When the wave number increases the real roots disappear, and
appear complex-conjugate ones. This is the area of periodic damped
solutions. With further increase in Fig. 6, the roots again become real,

and the corresponding solutions are monotonically damped. Therefore,
we limit ourselves further to the area with small wave numbers.

7. The structure factor dynamics

In order to study the instability dynamics we consider the structural
factor of the model as the value measured in the x-ray scattering ex-
periments. By definition, the structural factor for the solute is S
(q, t)=Nq|ξq(t)|2. Choosing the eigenvectors corresponding to the fre-
quencies Ω±, in the form of

⎜ ⎟= ⎛

⎝

+
− + −

⎞

⎠
±

± ξ q
α φ q

V
Ω

( (1 ) )
.0

2

0
2

one can represent the solutions for Fourier components (9) of the
equation system (8) in the following form:

⎜ ⎟
⎛
⎝

⎞
⎠

= ++ −+ −
δξ
δφ

C e C e eV V( ) .q
t

q
t iqz

1
Ω

2
Ω

Assuming for simplicity that fluctuations are present at all wave
numbers with the same amplitude, which can be taken as one, from the
initial conditions we find the values of the integration constants:

+ =+ − ( )C CV V 1
1 ,q q1 2

from which the expression for the structural factor is

= + + ++ −+ −S q t N ξ q C e ξ q C e( , ) |(Ω ) (Ω ) | .q q
t

q
t

0
2

1
Ω

0
2

2
Ω 2

The normalization factor is chosen from the condition S(q,0)= 1.
The type of structural factor, given the choice of normalization, for
different time moments is shown in Fig. 7–8. At the initial time moment
the maximum of the structural factor is significantly shifted towards
smaller wave numbers (large characteristic distances). In subsequent
time moments the shift stops, and at some characteristic scales the
concentration increases.

More detailed information about the structural factor behavior can
be obtained from the dependence of the amplification rate on the wave
number and time, A(q, t)= S−1dS/dq, shown in Fig. 9. The figure shows
that the positive part of the amplification rate, which provides in-
stability of the process, with time tends to some limit distribution.

For comparison, we can give the normalized amplification rate,
A(q, t)q−2, in Fig. 10, which commonly used in the analysis of spinodal
decomposition processes. Comparing with the available data of [17], it
is possible to note their great similarity, although formally no spinodal
decay occurs in this system.

Fig. 5. Dispersion dependence at small wave numbers.

Fig. 6. Dispersion dependence at hight wave numbers. Fig. 7. The structure factor at the initial moments of time.
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Thus, the obtained structure factor and the amplification rate for the
redistribution of solute in melt in the presence of stoichiometrical
phases are very close in appearance to corresponding values in the

spinodal decay. Moreover, the nonlinearity of the amplification rate in
the considered model is closer to the observed dependence for spinodal
decay [17].

One can conclude that although the real Gibbs potential of liquid is
an unimodular function, the presence of phase transition processes
leads to an effective Gibbs potential, the second derivative of which
determines the negative diffusion coefficient. Thus, assuming that the
initial alloy is heterogeneous over impurity concentration, after melting
in the areas with high impurity content, the “effective upward diffu-
sion” can arise.

This is equivalent to the local realization of the effective double-well
Gibbs potential, that can lead to appearance of the dynamic properties
characteristic for bistable systems. From the spinodal decomposition
theory one well knows that this leads to very slow relaxation. Also, from
the physics of non-linear systems one knows that in like these bistable
systems the appearance of Kramers oscillations [18] is possible. The
mechanism of the appearance of these oscillations in melts was de-
scribed in [19,20], and in [3] one shown that the system with double-
well model Gibbs potential could demonstrate the non-monotonic re-
laxation dynamics. Thus, the theory admits the possibility of local in
space and time growth of inhomogeneity as a result of fluctuation
processes in non-linear system, and the “effective upward diffusion” can
explain the slowness and non-monotonicity of the relaxation processes
observed in the experiment.

8. Conclusions

Thus, a model describing the processes of melting–solidification in a
two–phase system consisting of a liquid and stoichiometric phase is
proposed. The resulting equations, under certain conditions, have the
diffusion instability and behave similarly to the Cahn–Hilliard equation.
From the Fourier analysis of small deviations from the equilibrium
position, expressions for the structural factor and the amplification rate
are obtained, the study of which shows that in the presence of stoi-
chiometric phase in solutions, upward diffusion processes similar to
spinodal decomposition are possible.

Note that the mechanism of upward diffusion considered in this
paper, is different from the spinodal Cahn–Hilliard decay [7]. If during
the spinodal decomposition the instability is associated with the po-
tential convexity upwards, then our instability is due to the redis-
tribution of solute between the phases. If at some point of time in the
solution locally there is a concentration of solute exceeding some cri-
tical value, the excess of this concentration leads to formation of the
stoichiometric phase taking away quite a certain part of solute. The
excess solute is displaced into the liquid phase, leading to an increase in
instability. Formally, mathematically, the model of such process turns
out to be quite equivalent to the Cahn–Hilliard model, although, as
noted earlier, the potential of the liquid phase always remains a convex
function.

Another consequence of this study is the qualitative confirmation of
the possible origin of long-term relaxation and nonmonotonic behavior
of viscosity in the melting processes based on the using of the
Cahn–Hilliard eq. [3]. Of course, this work is based on the model
system, so the resulting picture needs both additional theoretical study
on real materials and additional experimental data, preferably obtained
on matrix X–ray diffraction units. It is such equipment that can give
data on the growth rate of the structural factor in the melting of solid
solutions of AleY and AleNi.
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Fig. 8. The structural factor in later time points.
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Fig. 9. Amplification rate at different times.
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