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Abstract—A nonisothertmal model of spinodal decomposition is proposed for a binary system described by
the Ginzburg–Landau energy. The initial stages of spinodal decomposition are investigated for a system of
simultaneous equations describing the impurity and temperature redistribution. The dispersion equation and
the instability growth rate of spinodal structures are obtained. The temperature dependence of the growth rate
and the wave number corresponding to the maximum instability is found. The observed difference in the dis-
persion relations of isothermal and nonisothermal models shows that a criterion for the effect of temperature
fluctuations on the spinodal decomposition is given by a dimensionless parameter Γ; for large values of Γ
(Γ ≥ 1000), temperature f luctuations in the form of noise are certainly insufficient for spinodal decomposi-
tion due to a change in the dispersion structure of the equations, which suggests the need to take into account
the nonisothermal behavior of the system.
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1. INTRODUCTION
The processes of spontaneous separation of con-

densed media into regions with different impurity
compositions, called spinodal decomposition, have
been widely known since the 1950s. Spinodal decom-
position has been observed in many experiments on
polymer blends [1], liquid solutions [2, 3], and metal
systems [4]. A phenomenological description of the
phenomenon under isothermal conditions was pro-
posed by Cahn and Hilliard [5, 6] and was theoreti-
cally developed and experimentally tested in [7–10]. It
turned out [11, 12] that the experimental data do not
always agree with the linear behavior of the dispersion
relation in the Cahn–Hilliard model [5, 6]. It was
noted [10] that the linear behavior of the dispersion
relation at early stages of spinodal decomposition is
characteristic of systems with long-range interaction,
whereas, for systems with short-range interaction,
nonlinear effects are essential [13, 14]. Today, the
understanding of the physical nature of the early stages
of spinodal decomposition is the main problem in the
theory of this phenomenon. As regards the late stages
of spinodal decomposition, when the separation of
solutions into regions with different concentrations
has already occurred, starting from [15], the authors
were mainly focused on the description of the scenar-

ios of coalescence and possible crossover between
these regions. Since the natures of the phenomena at
the initial and final stages of spinodal decomposition
are significantly different, below we restrict the analy-
sis to the initial stages of the process.

The nonlinearity at early stages can be attributed to
the local nonequilibrium of the spinodal decomposi-
tion process [16–21], to the Brownian motion [22], as
well as to the nonisothermality of the process in solu-
tions. Most of the theoretical work on spinodal
decomposition uses the so-called isothermal approxi-
mation. This approximation within a continuum
model usually implies that the temperature of the sys-
tem may vary with time, but at any moment it remains
homogeneous in space. Within this work, speaking of
non-isothermal spinodal decomposition, we will fur-
ther assume that the temperature distribution is non-
uniform and varies both in space and in time.

Earlier, temperature f luctuations were introduced
into the spinodal decomposition process in [7, 8]. In
[23], nonisothermality during the phase separation
was taken into account in connection with the thermal
expansion and the effect of elastic stresses on the
spinodal decomposition in solid solutions. More
modern approaches to the construction of a noniso-
thermal model of spinodal decomposition were pro-
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posed in [24, 25]. However, these works contain no
qualitative analysis of the dynamics of the proposed
models. Therefore, at the moment, it is important to
understand the nature and degree of influence of non-
isothermality on spinodal decomposition. A numeri-
cal study of spinodal decomposition on the basis of the
Cahn–Hilliard model in the presence of both the tem-
perature dependence of the thermodynamic potential
and random thermal noise was carried out in [26],
where the authors demonstrated the effect of noniso-
thermality on the position of the extrema of the cor-
relation function. In the present study, we propose a
self-consistent thermodynamic description of noniso-
thermal spinodal decomposition on the basis of the
approach of [27] and carry out a semianalytical analy-
sis of the initial stages of decomposition for a tempera-
ture-dependent model binary system (solution) with
the Ginzburg–Landau energy.

2. THE LANGER–BARON–MILLER (LBM) 
MODEL

The Langer–Baron–Miller (LBM) model
describes spinodal decomposition at the initial instant
of time and begins with the Cahn–Hilliard–Cook
(CHC) equation [5–7]

(1)

where ∇ is the gradient operator, x(r, t) is a local devi-
ation from the mean value of the concentration of the
impurity component in a binary solution, MD is a pos-
itive transport coefficient (mobility) related to the dif-
fusion coefficient of the impurity component, ξ(r, t) is
thermal noise, and  is the total free energy of the sys-
tem,

(2)

where dV0 is a spatial volume element occupied by the
solution. The coefficient ε2 proportional to the
squared correlation length for concentration f luctua-
tions in the solution [5] and the free energy density
f(x) are determined by the equilibrium properties of

the binary system. The expression ε2(∇x)2 in the
Cahn–Hilliard theory describes the contribution of
the interface energy between regions with different
concentrations. If f(x) has a single minimum, then
Eq. (1) reduces to a diffusion equation with the char-
acteristic dispersion relation [9]

between frequency ω and wave number k, where the
contribution of the gradient term is assumed to be
small compared with the diffusion coefficient D0 ≡
MD(∂2f(x)/∂x2):
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The division into regions with different concentra-
tions according to the spinodal decomposition mech-
anism occurs if f(x) has two minima. Then, in the
domain between the minima, the diffusion coefficient
is negative (D0 < 0), and the term with k4 in the disper-
sion relation ω = k2(|D0| – MDε2k2) limits the growth of
short-wave perturbations, which points to the stabiliz-
ing role of the contribution ε2(∇x)2 in expression (2).

The CHC equation (1) in the LBM approach [8] is
considered as a set of Langevin equations with an
independent random source ξ(r, t) at every point of
the space. Since the set of Langevin equations is
equivalent to the Fokker–Planck equation for proba-
bility distribution [28], in [8], the authors made cer-
tain assumptions concerning the structure of this
probability distribution, which made it possible to
obtain the equation of motion for the structure factor
S(k, t), which is the Fourier transform of the simulta-
neous pair correlation function x(r1, t)x(r2, t) with
respect to the difference r1 – r2. The evolution of the
structure factor was compared with light scattering
experiments in binary liquids [29]. Since the system
was transferred to an unstable state through the
removal of pressure, the LBM model well describes
the resulting structure factors if we take into account
that the process is adiabatic [30]. An exception is made
by the initial moments of time when the theoretical
curve lags behind the experimental curve. Somewhat
later, the LBM theory was quantitatively confirmed by
X-ray scattering at early stages of spinodal decomposi-
tion in Al0.62Zn0.38 solid solution in [31]. However,
there is still no definite answer to the question of what
is responsible for the discrepancy, found in [30],
between theoretical and experimental data on the
structure factor at the initial instants of time.

As the factors responsible for the discrepancy
between theoretical and experimental data on the
structure factor, one considered the local nonequilib-
rium of the spinodal decomposition process [16–21]
at the initial instants of time, due to the f lux relaxation.
Phenomenologically, the dynamics of f luxes depends
on their relaxation time, whose variation leads to a
characteristic behavior of the growth rate of unstable
modes [19, 20]. A complete quantitative description of
the experimental data of [10–12] can be obtained only
as a result of the comparative analysis of the effects of
local nonequilibrium, nonisothermality, and Brown-
ian motion. In this paper, we discuss the effect of non-
isothermality of a process on the spinodal decomposi-
tion by an example of a simple thermodynamic model.
The effect of Brownian motion requires separate con-
sideration.

3. COMPUTER SIMULATION
After the formulation of the LBM model [8], its

analysis, and the comparison of its solutions with
experimental data [29, 30], the process of spinodal
YSICS  Vol. 129  No. 1  2019



88 LEBEDEV, GALENKO
decomposition has been intensively studied by meth-
ods of mathematical modeling [21] with regard to the
extension of the thermodynamic description [18, 32]
and with the application of the results in materials sci-
ence [33, 34]. In this regard, note that the LBM model
formally ignores the dynamics of the order parameter
and directly describes the dynamics of the structure
factor; this facilitates the analysis of the latter dynam-
ics when processing the experimental data and offers
two options for direct modeling:

(1) modeling the CHC equation (1) with noise and
averaging the result for specific implementations;

(2) modeling the Fokker–Plank equation and
finding the correlation functions (including the struc-
ture factor) by the distribution function obtained.

In practice, both approaches (1) and (2) are not
usually used because the CHC equation is modeled
either without any thermal noise [35–38] or with ther-
mal noise [39–41] but without averaging over possible
implementations.

There are many reasons for this difference between
the approaches; on the whole, we can state that the
paradigms of computer simulation and theoretical
description of spinodal decomposition differ signifi-
cantly from each other. Naturally, the question arises
of how to bring them together as closely as possible. In
this sense, the study of the effect of nonisothermality
on spinodal decomposition is very important: the
interaction between temperature and concentration
should change the dispersion structure of the equa-
tions, thus leading to a single model instead of a two-
faced Janus. Therefore, we briefly consider the deriva-
tion of a nonisothermal model of spinodal decompo-
sition and analyze the dispersion relation of the model
in comparison with the Cahn–Hilliard equation.

4. MODIFICATION
OF THE CAHN–HILLIARD MODEL

For a simplified derivation of the Cahn–Hilliard
model under nonisothermality conditions, we neglect
locally nonequilibrium effects that take into account
the f lux relaxation [16–21]. This means that nonuni-
form temperature variations are considered at time
intervals greater than the characteristic relaxation
times of diffusion fluxes.

Consider the simplest system that describes
spinodal decomposition and, at the same time, allows
one to take into account the nonisothermality of the
process. Due to additivity, the Gibbs potential of the
total system should consist of the bulk potential and
the energy of the interface between regions with differ-
ent concentrations x(r, t). Denote the temperature
field by T(r, t). Assume that the problem is isobaric,
with pressure equal to zero. As the control functional
of a nonisothermal, isobaric system, we take the
entropy of the system,
JOURNAL OF EXPERIMENTAL AN
(3)

where G = G(T, x) is the Gibbs potential density and
T0 is the temperature of the initial state of the solution.

Neglecting the variation of the volume and internal
stresses during spinodal decomposition and express-
ing the enthalpy density H(x, T) in terms of the Gibbs
potential density G(x, T),

(4)

we write the enthalpy conservation law

(5)

where JT is the heat f lux. Using expression (4) and cal-
culating the partial derivatives of a composite func-
tion, we rewrite Eq. (5) as

(6)

Since the specific heat at constant pressure is Cp =
‒T(∂2G/∂T2), we define the chemical potential as μ =
(∂G/∂x) and pass from relation (6) to the heat equation

(7)

On the other hand, the differentiation of entropy (3)
with respect to time can be reduced, with the use of
relation (6), to the expression

(8)

Using the impurity conservation law

(9)

where JD is the diffusion flux, we can rewrite (8) as

(10)

Using the available freedom in the definition of f luxes
[42] and separating total squares in (10), we obtain the
following expression for f luxes from the condition of
nonnegativity of entropy variation in relaxation pro-
cesses (dS/dT ≥ 0):

(11)

where λ is the thermal diffusivity of the solution and

(12)

The coefficients MT > 0 and MD > 0 are positive f lux
mobilities.
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Fig. 1. (Color online) The Ginzburg–Landau energy (15)
as a function of temperature T and the impurity concentra-
tion x. 
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Fig. 2. (Color online) (dashed curve) Binodal and (solid
curve) spinodal of the Ginzburg–Landau potential (15). 
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As a result, we find that the dynamics of spinodal
decomposition taking into account the continuous
variation of temperature is governed by a coupled sys-
tem of equations including the Cahn–Hilliard equa-
tion modified by the effective chemical potential

(13)

(14)

and the heat equation (7) with f lux (11).

5. THERMODYNAMIC POTENTIAL

To qualitatively study the effect of nonisothermal-
ity on spinodal decompositrion, we take the volume
density of the Gibbs energy as the Ginzburg–Landau
model potential [43]

(15)

As the parameters of the Gibbs potential, we use g0 =
1.88 × 104 J/cm3, B0 = 0.45, xc = 0.5, and Tc = 1400 K,
which are chosen for illustrative purposes. The corre-
sponding surface of the Gibbs energy is demonstrated
in Fig. 1. In view of the symmetry of the potential with
respect to concentration, the binodal and spinodal of
the model system are defined by the conditions
(∂G/∂x)T = 0 and (∂2G/∂x2)T = (∂μ/∂x)T = 0. The
graphs of the binodal and spinodal are demonstrated
in Fig. 2.
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6. INITIAL STAGES OF NONISOTHERMAL 
SPINODAL DECOMPOSITION

Consider an idealized situation when a solution
with average concentration  and temperature T0 is
very rapidly (instantaneously) cooled to temperature

, which is then maintained constant at the boundar-
ies of the sample. We will assume that, at the initial
instant of time, the f luctuations of the initial compo-
sition and the initial temperature distribution are so
small that one can neglect the spatial derivatives of the
specific heat Cp, heat conductivity λ, the diffusion
coefficient D0, as well as the derivatives of the chemi-
cal potential ∂μ/∂x and ∂(μT)/∂T.

Introducing the thermal diffusivity a, a = κ/Cp, and
the diffusion coefficient D0,

(16)

we rewrite Eqs. (7) and (14) as

(17)

Here it is assumed that the initial concentration  and
the (instantaneous) temperature T(r, t) correspond to
the spinodal domain for the Gibbs potential G(T, x);
i.e., for a given , the temperature T is below the crit-
ical value:
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Fig. 3. (Color online) /q2 as a function of the squared
wave number q2 and temperature .

0
0.2

0.4
0.6

0.8 1.0

800
600

400

1000

0

0.2

0.4

0.6

0.8

1.0

1.2

Ωq/q2+

T, Kq2

+
qQ

T

Fig. 4. (Color online) /q2 as a function of the squared
wave number q2 and temperature.
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7. FOURIER ANALYSIS
Consider a one-dimensional problem of evolution

of initial stages of spinodal decomposition in an
unbounded domain with space coordinate z. The devi-
ations of concentration and temperature from their
average values at any instant of time can be expressed
in terms of the Fourier components (xk, Tk) as

(18)

where ω is the frequency of the Fourier harmonic with
wave number k.

The substitution of the Fourier expansion (18) into
Eq. (17) leads to the following dispersion relation:

(19)
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After the change
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as using the notation τ = |D0|/a, we can easily reduce
the dispersion relation (19) to the quadratic equation

(21)

Now, calculating the discriminant of Eq. (21),

we find the roots of the quadratic equation:

(22)

The dependence of /q2 on temperature and wave
number is demonstrated in Figs. 3 and 4 for the fol-
lowing values of the parameters: the initial concentra-
tion of the solution  = 0.25, the initial temperature of
the solution T0 = 1410 K, the parameter ε = 6.2 ×
10‒8 (J/cm)1/2, the diffusion coefficient |D0| = 5.5 ×
10‒5 cm2/s, the thermal diffusivity a = 2.2 × 10–3 cm2/s,
and the specific heat Cp = 0.5 J/(cm3 K). Figures 3 and
4 show that the increasing solutions correspond only
to , whereas  is always negative and defines
decaying harmonics.

Figure 3 also shows that /q2 is a linear function
of q2 for any fixed temperature and reproduces the
function Ω(q)/q2 for the Cahn–Hilliard model in the
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Fig. 5. The dimensionless parameter Γ as a function of the
average temperature  for the Ginzburg–Landau poten-
tial for  = 0.25.
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isothermal situation. Therefore, one would think that
such a situation also should contradict the experimen-
tal data [10]. However, the similarity between these
two functions should not be misleading. The full solu-
tion of the nonisothermal model, in contrast to the
Cahn–Hilliard model, is determined by the superpo-
sition of two independent solutions corresponding to
both  and  (see Fig. 4). Therefore, the growth
dynamics of initial perturbations in the nonisothermal
model may essentially differ from that in the Cahn–
Hilliard model.

It is easily seen that the Cahn–Hilliard model
arises for dispersion (22) only in two limit situations.
Indeed, for finite values of thermal diffusivity, the
parameter τ is a small but finite quantity. In the case of
very high thermal diffusivity (a → ∞), after the divi-
sion of Eq. (17) by the coefficient a, there remains a sin-
gle physically reasonable solution in the form  = const
on the infinite interval. In the limit of τ → 0, the disper-
sion equation (21) reduces, up to a temperature factor,
to a linear (in q2) Cahn–Hilliard dispersion law:

(23)

A more interesting situation is related to the fact
that the Cahn–Hilliard dispersion can be obtained by
examining the contribution of the term proportional
to /Cp to the dispersion equation (22). The emer-
gence of such a dimensionless factor is by no means
accidental because, following [44], one can easily
show that, in the isobaric case, /Cp is the variance of
temperature f luctuations in a canonical ensemble (see
the Appendix), whence
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The limit Γ → 0 corresponds to the limit of small tem-
perature f luctuations, because, as a result, the initial
dispersion relation (19) reduces to the product of fac-
tors

which determine the dispersion of two independent
equations (the heat equation and the Cahn–Hilliard
equation). The Cahn–Hilliard equation, which arises
in the limit of Γ → 0, contains only the average tem-
perature, which redefines the diffusion coefficient,
whereas temperature f luctuations have no effect on
spinodal decomposition.

Conversely, under the condition Γ ≫ 1, one cannot
neglect the contribution of thermal f luctuations,
because we have a strongly coupled system of equa-
tions in which thermal noise should play an important
role. The emergence of thermal f luctuations ΔT2 in
the dispersion relation (22) can be interpreted as a
result of averaging the dynamics of spinodal decompo-
sition with respect to random external forces. Physi-
cally, the emergence of random forces occurs due to
the local variation of the impurity concentration,
which is responsible for the f luctuating source in the
heat equation (17) normalized by the variance of tem-
perature f luctuations. Usually, τ ≪ 1; therefore, heat
propagation processes occur much faster than diffu-
sion processes and give rise to rapidly varying heat
fluxes that play, according to Cook’s idea [7], the role
of random forces in the equation for concentration.

Thus, taking into account random fluctuations, as
is done in the LBM model [8] to match to experimen-
tal data, arises naturally within the nonisothermal
model of spinodal decomposition. Moreover, the
Fourier analysis shows that the values of the dimen-
sionless parameter Γ can serve a certain criterion for
the necessity to take into account temperature f luctu-
ations in the system. In particular, for binary systems,
the Γ criterion can be calculated on the basis of open
thermodynamic database NIMS [45]. For the Ginz-
burg–Landau potential considered in the present
study, the dependence of Γ on the average temperature

 for a given concentration  = 0.25 is shown in
Fig. 5. At temperatures close to the spinodal bound-
ary, Γ → ∞ because the boundary is defined as

As temperature  decreases, the parameter Γ again
starts to monotonically increase after some plateau.
From Fig. 5 we can conclude that temperature f luctu-
ations should especially strongly manifest themselves
at the intersection of spinodal boundaries and (much
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Fig. 6. (Color online) The derivative d /dq2 as a function of
the average temperature  and the squared wave number q2.
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weaker) at sufficiently low temperatures. Since the
cooling process is not instantaneous in practice, tem-
perature f luctuations should manifest themselves pre-
cisely at early stages of spinodal decomposition and
remain insignificant at large times.

The difference in the behavior of isothermal and
nonisothermal Cahn–Hilliard models is already seen
from the analysis of the maximally unstable Fourier
mode. The surface of the derivative d /dq2 from the
solution of (22) is demonstrated in Fig. 6. Solving the
equation d /dq2 = 0, we find that the wave number
corresponding to the maximum instability varies
(although rather slowly for chosen parameters of the
model) under the variation of the average temperature,
in contrast to the constant maximum in the isothermal
Cahn–Hilliard model. The corresponding depen-
dence is demonstrated in Fig. 7.

8. STRUCTURE FACTOR
OF THE NONISOTHERMAL MODEL

For simplicity, we will assume that there are no
temperature f luctuations at the initial moment,  =
0, and the composition f luctuations have the same
magnitude for all Fourier components:  = const.
We take unnormalized eigenvectors corresponding to
Ω± in the form

(24)

+Ωq
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and the general solution for a Fourier harmonic q has
the form

(25)

where t' and z' are dimensionless time and coordinate
related to t and z by the scale change (20). Since
exp(ω+t) appears in both variables (T, x), the instabil-
ity determining the spinodal decomposition manifests
itself in a local increase in the temperature field due to
the source (∝ ∂x/∂t) in the heat equation (17). Using
the initial conditions, we obtain the following system
of equations for the coefficients Aq and Bq:

(26)

Calculating the Fourier amplitudes from system (26)
and defining the structure factor as Sq(t) = |xq(t)|2,
we can easily calculate the time evolution of the struc-
ture factor. The normalization coefficient is taken
equal to Nq = |xq(0)|2. The corresponding graphs for
different temperatures are presented in Figs. 8–10.
These graphs show that the formation rate of a peri-
odic spinodal structure significantly increases as tem-
perature decreases.

Note that the structure factor in Figs. 8–10 is pre-
sented for sufficiently large dimensionless times,
which actually correspond to the late stages of
spinodal decomposition. Although the average tem-
perature is almost constant at such times in view of the
chosen boundary conditions, the impurity distribu-
tion becomes highly inhomogeneous, which is indi-
cated by the structure factor itself. In view of the lin-

+ −ω + ω ++ −  = + 
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Fig. 8. (Color online) Structure factor Sq as a function of
the squared wave number q2 at different instants of time t
at temperature  = 1100 K.
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Fig. 9. (Color online) Structure factor Sq as a function of
the squared wave number q2 at different instants of time t
at temperature  = 900 K.
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Fig. 10. (Color online) Structure factor Sq as a function of
the squared wave number q2 at different instants of time t
at temperature  = 700 K.
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earization of the problem for the Fourier analysis, its
solutions can be assumed valid up to times of t0 ≈

1/ ; at large times t > t0, we need a numerical analy-
sis of the whole nonlinear problem (17). Therefore,
here the graphs (Figs. 8–10) are presented for illustra-
tive purposes, to show the dependence of the spinodal
decomposition process on the average temperature .
One can expect that the nonlinearity of the problem
introduces some changes in the form of the structure
factor at late stages; however, the qualitative depen-
dence of the structure factor on q2 changes rather
weakly, because the wormlike structure of impurity
distribution by the time t0 will be close to the stationary
state.

9. GROWTH RATE
The growth rate R(q2, t), more precisely, R(q2,

t)/q2, defined as

(27)

and measured in experiments, is an important charac-
teristic of spinodal decomposition. The growth rate for
the Cahn–Hilliard equation is easily determined from
the dispersion equation

(28)
This equation is linear in q2 and is independent of
time. The real graph of R(q2, t)/q2 is demonstrated in
Fig. 11. The dependence of R(q)q–2 on q2 for a solid
solution of Al–12.1 at % Zn at temperature of  =
293 K [46, 47] exhibits strong nonlinearity and depen-

+Ωq

T

=2 1( , ) ,q

q

dS
R q t

S dt

− = −2 2 2( , ) 2(1 ).R q t q q

T
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dence on time. Since the difference between (28) and
the functions in Fig. 11 is what makes the main differ-
ence between theory and experiment, we consider the
growth rate within the nonisothermal model. For
comparison, we produce the graphs of the growth rate
in Figs. 12 and 13. Both figures correspond to the same
parameters of the model, except for the parameter Γ,
which takes a value of Γ1 = 66.44 × 102 in Fig. 12 and a
value of Γ2 = 66.44 in Fig. 13. The parameter Γ1 is cho-
sen from considerations of similarity with Fig. 11,
while the parameter Γ2 = 0.01Γ1 in Fig. 13 is chosen to
demonstrate the effect of Γ on the growth rate. In par-
YSICS  Vol. 129  No. 1  2019
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Fig. 11. Typical experimental values of the growth rate
R(q)q–2 as a function of q2 for Al–12.1 at % Zn at different
instants of time t at an average temperature of  = 293 K
[46, 47]. 
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Fig. 12. (Color online) Theoretical values of the growth
rate R(q)q–2 as a function of q2 at different instants of
time t at an average temperature of  = 300 K and Γ =
66.44 × 102.
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Fig. 13. (Color online) Theoretical values of the growth
rate R(q)q–2 as a function of q2 at different instants of time
t at an average temperature of  = 300 K and Γ = 66.44.
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ticular, Fig. 12 shows that the model of nonisothermal
spinodal decomposition can qualitatively describe
experimental data for real systems. We did not carry
out a quantitative comparison of the nonisothermal
model with the results of [46, 47] due to the lack of
detailed information on the experiment and on the
thermophysical data of materials in the open litera-
ture. Note also that the graphs in Fig. 12 correspond to
small dimensionless times, when the linear approxi-
mation (and the corresponding Fourier series expan-
sion) in the nonisothermal model is quite valid.

10. CONCLUSIONS

In this work, based on the principle of increasing
entropy, we have obtained a nonisothermal general-
ization of the Cahn–Hilliard model of spinodal
decomposition, which is based on the joint dynamics
of the concentration field x(r, t) and the temperature
field T(r, t).

The analysis of the early stages of spinodal decom-
position has shown that the effect of nonisothermality
on the impurity dynamics is not reduced only to taking
into account random forces, as considered in the ear-
lier works [7, 8]. The nature of the interaction between
temperature variations and spinodal decomposition
turns out to be much more complicated than it was
assumed in these works and manifests itself in a non-
linear change in the dispersion relation, determined by
the parameter τ = |D0|/a and the dimensionless quan-
tity related to temperature f luctuations Γ ∝ ΔT2.
Only in the case of sufficiently large thermal diffusivity
(with respect to the diffusion coefficient) or a small
JOURNAL OF EXPERIMENTAL AN
parameter Γ, as can be seen from the comparison of
Figs. 12 and 13, the dependence R(q2)q–2 becomes
close to linear. Moreover, the parameter Γ can be con-
sidered as a certain criterion indicating the need to
take into account nonisothermality. Since any system
in a real process passes through lability bounds during
supercooling, Γ always takes large values at such times;
therefore, the classical Cahn–Hilliard equation can be
used to describe and simulate spinodal decomposition
D THEORETICAL PHYSICS  Vol. 129  No. 1  2019
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without taking temperature f luctuations into account
only in some ideal situations.

Even without taking into account the differences
in the dispersion behavior of the proposed noniso-
thermal model compared to the LBM or CHC
approaches, from a purely computational point of
view, this nonisothermal model has a significant
advantage in the computer simulation of spinodal
decomposition. This is determined by the fact that
the process of simultaneous solution of the spinodal
decomposition equations (14) with the heat equa-
tion (7) and (11) allows one to solve the simulation
problem as a fully deterministic problem, without
requiring the averaging of results over a random
source, which is necessary in the LBM or CHC
models.

In this work, we have investigated only the effect of
nonisothermicity on temperature variations in a solu-
tion on the dynamics of spinodal decomposition.
However, there are other factors that influence
spinodal decomposition: the Brownian motion of
droplets with different concentrations [22] followed by
their agglomeration, the emergence of metastable
nuclei of a new phase when supercooling the solution
that compete with the process of spinodal decomposi-
tion, the appearance of internal stresses (in solid solu-
tions), and other concomitant phenomena. Since the
effect of such factors has been studied rather poorly,
both the development of experimental methods for
studying spinodal decomposition and the extension of
theoretical models by the inclusion of new phenomena
remain topical.

Since the nonisothermal model of spinodal
decomposition is more general compared with the
classical Cahn–Hilliard model and includes the latter
as a special case, it should be applicable to the late
stages of spinodal decomposition. However, the ques-
tion of to what effects can nonisothermality lead in the
description of the spinodal decomposition problem at
its late stages should be solved in a separate study
based on numerical simulation. Such a numerical
study and the subsequent comparison with experiment
are also relevant for the early stages of spinodal
decomposition.

APPENDIX

PROBABILITY OF FLUCTUATIONS
IN A CANONICAL ENSEMBLE

Probability of f luctuation in a canonical ensemble
is defined by relation (112.3) from [44]:

From this general formula, we can find the f luctua-
tions of various thermodynamic quantities. In the
textbook [44], the authors took V and T as variables,

( )Δ Δ − Δ Δω ∝ exp .
2

P V T S
T
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because they are independent random variables. We
take P and T as the variables. Then

The fluctuation probability is determined by the
expression

Thus, the f luctuations ΔT and ΔP are correlated; how-
ever, for the isobaric system considered in this paper,
the f luctuations of pressure are missing in principle,
ΔP ≡ 0; therefore, the probability of temperature f luc-
tuations is

This implies that the variance of temperature f luctua-
tions for a canonical ensemble in the variables P and T
is given by

Note also the fact that the present study is “invari-
ant” with respect to a change of isochoricity to isoba-
ricity, because these characteristics are nowhere used.
Therefore, announcing the free energy as a control
potential, we could obtain formula (112.6) from [44],
which differs by the change Cp → CV in the expression
for the variance of temperature f luctuations. The
Ginzburg–Landau potential can be assumed to be
both the free energy and the Gibbs potential because it
is independent of volume and pressure. In the present
study, the choice of the term “Gibbs potential” for the
Ginzburg–Landau potential and, hence, the isobaric-
ity of the system are related solely to the fact that the
description of the thermodynamics of real materials
[32, 45] is based on the Gibbs potentials.
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