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Preface

The 6th Russian Supercomputing Days Conference (RuSCDays 2020), was held during
September 21–22, 2020. The conference was dedicated to the 65th anniversary of the
Research Computing Center, Moscow State University (RCC MSU) and the 100th
anniversary of I.S. Berezin, the first RCC MSU director.

The conference was organized by the Supercomputing Consortium of Russian
Universities and the Russian Academy of Sciences. The conference organization
coordinator was RCC MSU.

Due to COVID-19 pandemic, for the first time the conference was held online. It
was a new challenge for the conference organizers. However, online format provides a
number of opportunities which are hard to perform offline, e.g. gathering invited
speakers from all around the world. At the same time, the Organizing Committee did its
best to keep the look and feel of the real-life meeting for attendees, including traditional
sets of conference events – sessions, workshops, exhibitions, etc.

The conference was supported by the Russian Foundation for Basic Research and
our respected partner (IBM), platinum sponsors (RSC, Merlion, Hewlett Packard
Enterprise, Intel, Huawei), gold sponsors (NVIDIA, Dell Technologies in a partnership
with CompTek), and silver sponsor (Xilinx). The conference was organized in a
partnership with the ISC High Performance conference series.

RuSCDays was born in 2015 as a union of several supercomputing event series in
Russia and quickly became one of the most notable Russian supercomputing inter-
national meetings. The conference caters to the interests of a wide range of represen-
tatives from science, industry, business, education, government, and students – anyone
connected to the development or the use of supercomputing technologies. The con-
ference topics cover all aspects of supercomputing technologies: software and hardware
design, solving large tasks, application of supercomputing technologies in industry,
exaflops-scale computing issues, supercomputing co-design technologies, supercom-
puting education, and others.

All 106 papers submitted to the conference were reviewed by three referees in the
first review round. During single-blind peer reviewing, the papers were evaluated
according to their relevance to the conference topics, scientific contribution, presen-
tation, approbation, and related works description. After notification of conditional
acceptance, the second review round arranged aimed at the final polishing of papers
and also at the evaluation of authors’ work after the referees’ comments. After the
conference, the 55 best papers were carefully selected to be included in this volume.

The proceedings editors would like to thank all the conference committees mem-
bers, especially the Organizing and Program Committee members as well as the ref-
erees and reviewers for their contributions. We also thank Springer for producing these
high-quality proceedings of RuSCDays 2020.

October 2020 Vladimir Voevodin
Sergey Sobolev
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Resource-Efficient Parallel CG
Algorithms for Linear Systems Solving

on Heterogeneous Platforms

Nikita S. Nedozhogin(B) , Sergey P. Kopysov , and Alexandr K. Novikov

Udmurt State University, Izhevsk, Russia
nedozhogin07@gmail.com, s.kopysov@gmail.com,

alexander.k.novikov@gmail.com

Abstract. The article discusses the parallel implementation of solving
systems of linear algebraic equations on the heterogeneous platform con-
taining a central processing unit (CPU) and graphic accelerators (GPU).
The performance of parallel algorithms for the classical conjugate gra-
dient method schemes when using the CPU and GPU together is sig-
nificantly limited by the synchronization points. The article investigates
the pipeline version of the conjugate gradient method with one synchro-
nization point, the possibility of asynchronous calculations, load balanc-
ing between the CPU and GPU when solving the large linear systems.
Numerical experiments were carried out on test matrices and computa-
tional nodes of different performance of a heterogeneous platform, which
allowed us to estimate the contribution of communication costs. The
algorithms are implemented with the combined use of technologies: MPI,
OpenMP and CUDA. The proposed algorithms, in addition to reducing
the execution time, allow solving large linear systems, for which there
are not enough memory resources of one GPU or a computing node. At
the same time, block algorithm with the pipelining decreases the total
execution time by reducing synchronization points and aggregating some
messages in one.

Keywords: Parallel computing on heterogeneous platform · Hybrid
parallel technologies · Conjugate gradient method · Reduction of
communications

1 Introduction

Computing accelerators are contained in the computing nodes of supercomputers
and are used quite successfully in solving many computing problems despite the
fact that the central processor (CPU) is idle after running the core functions
on the accelerator. There are several more important conditions for which the
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joint use of the CPU and accelerators (for example, GPU) in parallel computing
within the same problem seems to be promising.

Each architecture of the CPU and GPU has unique features and, accord-
ingly, is focused on solving certain tasks for which typical, for example, high
performance or low latency. Heterogeneous nodes containing and sharing CPU
plus GPUs can provide an effective solution to a wide range of problems or one
problem for which the parallel properties of the algorithms are changed and
determined to be executed on one or another computing device. We also note
the high energy efficiency of the heterogeneous computing systems.

One of the computationally complex operations in numerical methods is the
solution of linear systems (SLAE). Currently, many parallel algorithms have been
proposed that provide high performance and scalability when solving large sparse
systems of equations on modern multiprocessor with a hierarchical architecture.

The construction of hybrid solvers with a combination of direct and iterative
methods for solving SLAE allows the use of several levels of parallelism [1–5].
So in [6] a hybrid method for solving systems of equations of Schur comple-
ment by preconditioned iterative methods from Krylov subspaces was built and
implemented when used together the cores of central (CPU) and graphic pro-
cessing units (GPU). The classical preconditioned conjugate gradient method [7]
was applied for the block ordered matrix and the separation of calculations in
matrix operations between the CPU and one or more GPUs, when the system
of equations in Schur complement was solved in parallel.

Currently, there are several approaches for computing load scheduling of the
parallel conjugate gradient method (CG) on heterogeneous Multi-CPUs/Multi-
GPUs platforms. Firstly, the separate steps of the CG algorithm are executed
on a CPU or GPU, such as a preconditioner [8].

Second approach is based on the data mapping (matrix block and vectors)
or separate tasks are carried out of all CG steps on the CPU or GPU [6].

In [9] task scheduling on Multi-CPUs/Multi-GPUs platforms for the clas-
sical CG from the PARALUTION library is executed in the StarPU. It’s unified
runtime system for heterogeneous multicore architectures which is developed in
the INRIA laboratory (France).

In this paper, we consider an approach that reduces the cost of data exchang-
ing between the CPU and GPU by reducing the number of synchronization points
and pipelining of computing when SLAE is solved on heterogeneous platforms.

The Krylov subspace methods are some of the most effective options for
solving large-scale linear algebra problems. However, the classical Krylov sub-
space algorithms do not scale well on modern architectures due to the bottle-
neck related to synchronization of computations. Pipeline methods of the Krylov
subspace [10] with hidden communications provide high parallel scalability due
to the global communications overlapping with computing, performing matrix-
vector and dot products. The first work on reducing communications was related
to a variant of the conjugate gradient method, having one communication at each
iteration [11], using the three-term recurrence relations CG [12].
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The next stage of development was the emergence of s-step methods from
Krylov subspaces [13], in which the iterative process in the s-block uses various
bases of Krylov subspaces. As a result, it was possible to reduce the number
of synchronization points to one per s iterations. However, for a large number
of processors (cores), communications can still take significantly longer than
computing a single matrix-vector product. In [14] it was proposed a CG algo-
rithm using auxiliary vectors and transferring a sequential dependence between
the computing of matrix-vector product and scalar products of vectors. In this
approach, the latency of communications is replaced by additional calculations.

2 Pipelined Algorithm of the Conjugate Gradient
Method

We consider now the pipelined version of the conjugate gradient method, which
is mathematically equivalent to the classical form of the preconditioned CG
method and has the same convergence rate.

Algorithm 1: Pipelined algorithm CGwO.
1 r = b − Ax;
2 u = M−1r;
3 w = Au;
4 γ1 = (r, u); δ = (w, u);

while ||r||2/||b||2 > ε do
5 m = M−1w ;
6 n = Am;

if (j = 0) then
7 β = 0;

else
8 β = γ1/γ0 ;

9 α = γ1/(δ − βγ1/α) ;
10 z = n + βz; w = w − αz; s = w + βs; r = r − αs;
11 p = u + βp; x = x + αp; q = m + βq; u = u + αq;
12 γ0 = γ1;
13 γ1 = (r, u); δ = (w, u);

In this algorithm, the modification of the vectors rj+1, xj+1, sj+1, pj+1 and
matrix-vector products provides pipeline computations. The computation of dot
products (line 4) can be overlapped with the computation of the product by
the preconditioner (line 3) and the matrix-vector product (line 3). However,
the number of triads in the algorithm increases to eight, in contrast to three
for the classic version and four in [13]. In this case, a parallel computation of
triads and two dot products at the beginning of the iterative process and one
synchronization point is possible.
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The pipelined version CG presented in this work can be used with any pre-
conditioner. There are two ways to organize computations in the preconditioned
pipelined CG, which provide a compromise between scalability and the total
number of operations [15]. Thus, the CG pipeline scheme is characterized by a
different order of computations, the presence of global communication, which can
overlap with local computations, such as matrix-vector product and operations
with a preconditioner, and the possibility of organizing asynchronous communi-
cations.

The two variants of the conjugate gradient method were compared: the clas-
sical scheme and the pipelined one. Table 1 presents the results of numerical
experiments where the execution time of a sequential version of the classical CG
and the CGwO pipelined scheme (Algorithm 1) executed on the CPU and GPU
are shown. Note that in the variants for the GPU, joint computation of all dot
products of vectors in one kernel function was implemented, independently of
each other. For this, when starting the CUDA kernel, the dimension of the Grid
hierarchy of CUDA threads was set in two-dimensional form: 3 sets of blocks,
each for performing computations on its own pair of vectors. This allowed us to
reduce the number of exchanges between the CPU and GPU memory, combining
all the resulting scalars in one communication.

Matrices from the SuiteSparse Matrix Collection (formerly the University of
Florida Sparse Matrix Collection, https://sparse.tamu.edu/) were used in the
test computations. The right hand side vector was formed as a row-wise sum of
matrix elements. Thus, the solution of the system Ax = b, dimension N × N
(with the number of nonzero elements nnz) is a vector x = (1, 1, . . . , 1)T .

For systems of equations of small dimension, the solution time on the CPU
according to the classical CG scheme is significantly less than the GPU execution
time for the same number of iterations (see Table 1). For large systems, the costs
of synchronization and forwarding between the CPU and GPU overlap with
the speed of the GPU. In the pipelined version of CGwO, the computational
execution costs on the GPU are reduced almost threefold for all the considered
systems of equations only due to the reduction of exchanges between the GPU
and the CPU in the computation of dot products.

3 CG with the Combined Use of CPU and GPU

Let us consider the application of the Algorithm 1 for the parallel solution of
super-large systems of equations on computing nodes, each of which contains
several CPUs and GPUs. To solve SLAEs on several GPUs, we construct a
block pipelined algorithm for the conjugate gradient method. On heterogeneous
platform, data exchange between different GPUs within the same computing
node is carried out with OpenMP technology, and the exchange between different
computing nodes is carried out by MPI technology.

For example, consider a node containing a central eight-core processor and
two graphics accelerators. The number of OpenMP threads is selected by the
number of available CPU cores. The first two OpenMP threads are responsible
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for exchanging data and running on two GPUs. Threads 2–6 provide computa-
tions on the CPU and can perform computations on a block of the SLAE matrix.
The last thread provides data exchange with other computing nodes by MPI.

3.1 Matrix Partitioning

To divide the matrix A into blocks, we construct the graph GA(V, E), where
V = {i} is the set of vertices associated with the row index of the matrix (the
number of vertices is equal to the number of rows of the matrix A); E = {(i, j)}
is the set of edges. Two vertices i and j are considered to be connected if the
matrix A has a nonzero element with indices i and j. The resulting graph is
divided into subgraphs whose number is d. For example, to split a graph, you can
use the [16] layer-by-layer partitioning algorithm, which reduces communication
costs due to the need to exchange only with two neighboring computing nodes.
After that, each vertex of the graph is assigned its own GPU or CPU. On each
computing unit, the vertices are divided into internal and boundary. The latter
are connected with at least one vertex belonging to another subgraph.

After partitioning, each block Ak of the original matrix A contains the fol-
lowing submatrices:

– A
[ik,ik]
k – matrix associated with the internal vertices;

– A
[ik,bk]
k , A

[bk,ik]
k – matrices associated with the internal and boundary vertices;

– A
[bk,bl]
k – matrix associated with the boundary vertices of the k-th and l-th

blocks.

Then the matrix A can be written in the following form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A
[i1,i1]
1 A

[i1,b1]
1 · · · 0 0

A
[b1,i1]
1 A

[b1,b1]
1 · · · 0 A

[b1,bd]
1

...
...

. . .
...

...
0 0 · · · A

[id,id]
d A

[id,bd]
d

0 A
[bd,b1]
d · · · A

[bd,id]
d A

[bd,bd]
d

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We divide the matrix-vector product n = Am into two components by using
the obtained partition:

nb
k = A

[bk,ik]
k mi

k +
l≤d�

l=1

A
[bk,bl]
k mb

l , ni
k = A

[ik,ik]
k mi

k + A
[ik,bk]
k nb

k. (1)

Here k corresponds to the computing device. The block representation of the
vectors involved in the algorithm is inherited from the matrix partitioning. For
example, the vector m has the form mT =

�
mi

1, m
b
1, . . . , m

i
k, mb

k, . . . , mi
d, m

b
d

�
.

The implementation of the matrix-vector product reduces the cost of communi-
cation between blocks at each iteration of conjugate gradient method. To perform
this operation, an exchange of vectors mb

k is required, the size of which is less
than the dimension of the initial vector m.

The partitioning of the preconditioner M is carried out in a similar way.
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3.2 Block Pipelined Algorithm

The matrix blocks were mapped on the available CPU and GPU with the block
partitioning of the matrix and vectors. The number and size of blocks let on
to map the load in accordance with the performance of the computing units,
including the allocation of several blocks to one.

Algorithm 2: Block algorithm CGwO performed on k-th device

Data: Matrix partitioning into blocks A
[ik,ik]
k , A

[ik,bk]
k , A

[bk,ik]
k , A

[bk,bl]
k .

1 r = b;
2 u = M−1r;
// Parallel algorithm branches
// (CPU ∨ GPU)k

3 wi
k = A

[ik,ik]
k · ui

k + A
[ik,bk]
k · ub

k;
4 wb

k = A
[bk,bk]
k · ub

k + A
[bk,ik]
k · ui

k;
5

6 wb
k = wb

k + wb
h;

7 m = M−1w;
8 γ1k = (rk, uk); δk = (wk, uk);

// CPU

Assembly of the vectors ub
k;

wb
h =

�l≤d
l=1,l �=k A

[bk,bl]
k · ub

k ;
Copying wb

h on the GPUk;

Assembly of the vectors mb
k;

Assembly δ =
�

k δk; γ1 =
�

k γ1k ;
while ||r||2/||b||2 > ε do

9 ni
k = A

[ik,ik]
k · mi

k + A
[ik,bk]
k · mb

k;
10 nb

k = A
[bk,bk]
k · mb

k + A
[bk,ik]
k · mi

k;
11

12 nb
k = nb

k + nb
h;

13 z = n + βz;
14 w = w − αz;
15 q = m + βq;
16 s = w + βs;
17 p = u + βp;
18 x = x + αp;
19 r = r − αs;
20 u = u + αq;
21 m = M−1w;
22 γ0 = γ1;
23 γ1k = (rk, uk); δk = (wk, uk);

nb
h =

�l≤d
l=1,l �=k A

[bk,bl]
k · mb

k;
Copying nb

h on the GPUk;

β = ((j = 0) ? 0 : γ1/γ0);
α = γ1/(δ − βγ1/α);

Assembly of the vectors wb
k;

Assembly vectors mb
k;

Assembly δ =
�

k δk; γ1 =
�

k γ1k;

Let us represent parallel block scheme of the method CGwO that is performed
each k-th computing unit in the form of Algorithm 2. Two parallel branches of
this algorithm are executed accordingly on the CPU and GPU/CPU. Operations
performed in parallel are shown in one line of the algorithm. Vector operations on
each computing unit occur in two stages, for internal and boundary nodes. The
designations of the internal and boundary nodes for vectors are omitted, with
the exception of the matrix-vector multiplication. Dot products are performed
independently by each computing unit on its parts of vectors. The summation
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of intermediate scalars occurs in parallel threads responsible for communication,
which is the synchronization point at each iteration of the algorithm.

In block CGwO, compared to Algorithm 1, the preconditioning step has been
moved (line 5 to line 21). This is done in order to combine vector operations on
the computing unit and the assembly of the vector parts of the right hand side
to perform matrix-vector multiplication in preconditioning. The 13 line on the
right uses the ternary operator: if j = 0, then β = 0, in other cases β = γ1/γ0.
The subscript h is used for vectors that are stored only in CPU memory.

Numerical experiments on the Algorithm 2 were carried out on heterogeneous
platform with various configuration of computing nodes containing several CPUs
and GPUs. In the general case, the parallel computing on several heterogeneous
computing nodes containing one or more CPUs and several GPUs is implemented
by the combination of several technologies: MPI, OpenMP and CUDA.

Let us consider the software organization of computations using as example
some cluster, which includes two computing nodes (8 CPU cores and 2 GPUs).
Each computing node is associated with a parallel MPI process. In a parallel
process, 9 parallel OpenMP threads are generated, which is one more than the
available CPU cores. The eighth OpenMP thread is responsible for communica-
tions between different computing nodes (using MPI technology, vector assembly
using the Allgatherv function, adding scalars Allreduce) and various GPUs.
In the 2 Algorithm, the operations performed by this thread are presented to the
right. Zero and first OpenMP threads are the host threads for one of the available
GPU devices and are responsible for transfer data between the GPU-CPU (calls
to asynchronous copying functions) and auxiliary computations. Each available
GPU device (further considered as a computing unit) is associated with one of
the parallel OpenMP threads, which is responsible for transferring data between
the GPU and CPU (calls to asynchronous copy functions) and participates with
the eighth treads in matrix-vector product on boundary vertices (lines 4, 9 right
column). The remaining parallel threads (second to seventh) perform the cal-
culations as a separate computing unit for their matrix block. The operations
performed by computing units in the 2 Algorithm are shown on the left.

The preconditioning in lines 2, 7 and 21 implies the use of block matrix-vector
multiplication of the form (1) considered above.

4 Numerical Experiments

The numerical experiments were performed on the heterogeneous partitions of
cluster “Uran” on the computing nodes (CNs) of several types of Supercomputer
center IMM UB RAS, Yekaterinburg, Russia. The cluster partitions with the
following characteristics were used:

– partition “debug”: 4 CNs tesla [31–32,46–47] with two 8-cores CPU Intel
Xeon E5-2660 (2.2 GHz), cache memory is 20 MB L3 cache, RAM is 96 GB
and 8 GPU Tesla M2090 (6 GB per device), network is 1 Gb/s Ethernet.
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– partition “tesla[21–30]”: 10 CNs with two 6-cores CPU Intel Xeon X5675
(3.07 GHz), RAM is 192 GB, cache memory is 12 MB L3 cache and 8 GPU
Tesla M2090 (6 GB per device), with network is Infiniband 20 Gb/s.

– partition “tesla[33–45]”: 13 CNs with two 8-cores CPU Intel Xeon E5-2660
(2.2 GHz), cache memory is 20 MB L3 cache, RAM is 96 GB, and 8 GPU
Tesla M2090 (6 GB per device), network is Infiniband 20 Gb/s.

– partition “tesla[48–52]”: 5 CNs with two 8-cores CPU Intel Xeon E5-2650
(2.6 GHz), cache memory is 20 MB L3 cache, RAM is 64 GB and 3 GPU
Tesla K40m (12 GB per device), network is Infiniband 20 Gb/s.

The results of comparing two algorithms of the conjugate gradient method
on SLAEs containing test matrices are presented in Table 1. The results are
given for several types of computing nodes using a single graphics accelerator.

Table 1. Statistics of the test problems. Problem names, dimensions (N), number
of nonzeros (nnz), device type (DT) and problem analysis in terms of the timing in
seconds.

Matrix N nnz # iter. DT
Time, s

CG CGwO

Plat362 362 5786 991 M2090 6.88E-01 3.07E-01

K40m 4.13E-01 3.12E-01

1138 bus 1138 4054 717 M2090 3.81E-01 1.84E-01

K40m 5.31E-01 2.01E-01

debug 6.82E-01 1.90E-01

Muu 7102 170134 12 M2090 2.64E-01 4.68E-03

K40m 3.31E-01 4.55E-03

Kuu 7102 340200 378 M2090 4.31E-01 1.31E-01

K40m 4.39E-01 1.35E-01

Pres Poisson 14822 715804 661 M2090 6.72E-01 3.13E-01

K40m 6.346E-01 2.73E-01

Inline 1 503712 36816342 5642 M2090 4.74E+01 5.17E+01

K40m 3.06E+01 3.37E+01

Fault 639 638802 28614564 4444 M2090 3.83E+01 4.32E+01

K40m 2.44E+01 2.77E+01

debug 2.44E+01 2.77E+01

thermal2 1228045 8580313 2493 M2090 1.35E+01 1.82E+01

K40m 8.33E+00 1.18E+01

G3 circuit 1585478 7660826 592 M2090 3.43E+00 4.32E+00

K40m 1.94E+00 2.92E+00

Quenn 4147 4147110 399499284 8257 M2090 5.46E+02 5.78E+02

K40m 3.55E+02 3.75E+02
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The matrices are ordered by increasing the order of the system of equations
(N) and the number of nonzero elements (nnz). Bold indicates the best time to
solve the system in each case. The pipelined algorithm CGwO showed a reduction
in execution time on small SLAEs which are characterized by a small computing
load, due to which a reduction in communications provides less time. Note that
the classic CG algorithm was implemented based on CUBLAS, while the CGwO
variant uses matrix and vector operations of its own GPU implementation.

For systems Inline 1 and Fault 639, the execution time of the pipeline algo-
rithm is 10 and 13.5% longer than the block version of CG, which is associated
with additional vector operations that are not blocked by reduced communica-
tions. With a decrease in the number of iterations, for example, for solving a
large system with G3 circuit) with an approximately equal number of equa-
tions with thermal2, the execution time of the CG and CgwO algorithms on one
GPU increases slightly. For the system (thermal2 and G3 circuit) the increase
in costs becomes more significant.

Table 2 presents the results of the block variant of the algorithms for comput-
ing on several computing nodes for systems with small dimension matrices. Here
are the results for 2 and 3 subdomains. Each subdomain was considered on a sep-
arate computing node. Communications were carried out using MPI technology.
A significant influence of network characteristics on the performance of block
methods can be seen in Table 2 for system of equations with matrix 1138 bus.
Computations for these SLAEs were performed at various computing nodes with
different throughput and latency of the network. In numerical experiments on
the CNs (partition “debug”) connected by a Gigabit network, communication
costs significantly increase the execution time of the CG algorithm.

Table 2. Time of solving by the block algorithms CG and CGwO on CPU/GPU, s.

Matrix/DT CG/#blocks CGwO/#blocks

2 3 2 3

Plat362/M2090 1.55E+00 1.22E+00

/K40m 1.92E+00 1.56E+00 1.28E+00 1.31E+00

1138 bus/M2090 1.84E+00 9.28E-01

/K40m 1.90E+00 1.85E+00 1.03E+00 1.04E+00

/debug 1.25E+01 5.36E+00

Muu/M2090 6.12E-01 2.29E-01

/K40m 6.59E-01 5.64E-01 2.89E-01 2.88E-01

Kuu/M2090 1.30E+00 6.43E-01

/K40m 1.29E+00 1.36E+00 6.81E-01 7.95E-01

Pres Poisson/M2090 1.55E+00 9.57E-01

/K40m 1.60E+00 1.66E+00 1.02E+00 1.19E+00

G3 circuit/M2090 4.27E+00 3.99E+00

/K40m 4.04E+00 3.510E+00 3.27E+00 2.77E+00



Resource-Efficient Parallel CG Algorithms for Linear Systems Solving 131

For example, in the variant 1138 bus on the cluster partition “debug”, the
execution time of the pipeline algorithm is 3.6 times less (the line “debug” in
Table 2 and any row in Table 1). Using the Infiniband 20 Gb/s communication
network reduces the execution time for all presented systems of equations (lines
“M2090” and “K40m”).

When reducing the computational load, a decrease in the number of syn-
chronization points and the consolidation of transfers per transaction is more
pronounced. This shows a comparison of systems with matrices Kuu and Muu.
Both systems have an equal number of equations and nonzero elements, but the
conditionality of these matrices is significantly different and, as a consequence,
the number of iterations in the conjugate gradient method is different. Table 1
shows that using the pipeline algorithm for the matrix Muu gives speedup by 70
times, compared with the matrix Kuu, where the speedup is only 2.8.

Fig. 1. Speedup of the block algorithms CG and CGwO

Figure 1 presents the results of accelerating the block algorithms of the conju-
gate gradient method, when divided into a larger number of blocks, accordingly
8, 12 and 16. To compute the speedup, parallel application was run repeatedly
with different mapping of subdomains to several CPUs and GPUs. For example,
in the case of 12 subdomains, variants were considered: 2 CPUs with 6 GPUs, 3
CPUs with 4 GPUs, 6 CPUs with 2 GPUs. The best time is shown.

The speedup was considered relative to the option on one GPU from Table 1.
An application that implements this algorithm was executed in the exclusive
mode of the computing node but not of the network.

As can be seen from the presented results, the pipelined CG shows the
speedup greater than the classic version of conjugate gradient method. Wherein,
for the largest of the considered matrices Quenn 4147, the speedup achieves 5.49
times, while the classical version gives 3.92 as maximum. For the strongly sparse
matrix thermal2, block algorithms don’t give high speedup (maximum is 1.56),
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since the computational load depends mainly on the number of the nonzero
elements.

An analysis of the results showed that reducing the data size due to the
matrix partitioning and reducing the synchronization points slightly decrease
the impact of communication costs on the total algorithm performance. Only
the use of computing nodes connected by Infiniband allowed us to get speedup
when computing on several computing nodes. The matrix partitioning into blocks
allowed to decrease the execution time of the pipelined block algorithm in com-
parison with the conjugate gradients on one node on the matrices Inline 1,
Fault 639 by reducing the computational load on one GPU.

Large systems thermal2, G3 circuit, solved by the block of the CGwO
algorithm, as well as the reduction in communications costs and synchronization
points, do not overlap the increasing costs of additional vector operations.

5 Conclusion

The heterogeneous computing platforms containing and sharing CPU + GPUs
provide an effective solution to a wider range of problems with high energy
efficiency when CPU and GPUs are uniformly loaded.

The parallel implementation of the solution of systems of linear algebraic
equations on a heterogeneous platform was considered. The performance of par-
allel algorithms for classical conjugate gradient method is significantly limited
by synchronization points when using the CPU and GPU together. A pipelined
algorithm of the conjugate gradient method with one synchronization point was
proposed. Also, it is provided the possibility of asynchronous computations, load
balancing between several GPUs located both on the same computing node and
for a GPU cluster when solving systems of large-dimensional equations. To fur-
ther increase the efficiency of calculations, it is supposed to study not only the
communication load of the algorithms but also the distributing of the compu-
tational load between the CPU and GPU. To obtain more reliable evaluation
of communications costs, it is necessary to conduct a series of computational
experiments on supercomputer with a completely exclusive mode of operation
and a large number of heterogeneous nodes.

The following conclusions can be drawn from the analysis of data obtained
during numerical experiments: the use of a pipeline algorithm reduces commu-
nication costs, but increases computational ones. For systems of small sizes or
with a small number of iterations, this reduces the execution time of the algo-
rithm when using a single GPU. For systems of large dimensions, a reduction
in execution time, in comparison with CG, is possible only with a sufficiently
small partition of the matrix into blocks, in which the increased computing costs
overlap the communication decrease.

The proposed block algorithms, in addition to reducing the execution time,
allow solving large linear systems that requires memory resources not provided
by one GPU or computing node. At the same time, the pipelined block algo-
rithm reduces the overall execution time by reducing synchronization points and
combining communications into one message.
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