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1. Introduction

The problem of eigenvalue spectrum assignment relates to the classical problems of 
mathematical control theory. Consider a linear control system

x(n) + a1x
(n−1) + . . . + anx = b1u. (1)

Here x ∈ K is a state, u ∈ K is a control, ai ∈ K, i = 1, n, b1 ∈ K are constants, 
K = R or K = C. System (1) is called arbitrary eigenvalue spectrum assignable (AESA) 
by linear static state feedback (LSSF) if for any γi ∈ K, i = 1, n, there exists a linear 
state feedback control

u = k1x
(n−1) + . . . + knx (2)

such that the closed-loop system (1), (2) has the form

x(n) + γ1x
(n−1) + . . . + γnx = 0. (3)

It is clear that if b1 �= 0, then the feedback control (2), where ki = b−1
1 (ai − γi), i = 1, n, 

reduces system (1) to the form (3), i.e., the problem is resolvable. In particular, one 
can ensure required asymptotics to solutions of (3) (e.g., stability or instability etc.). If 
b1 = 0, then system (1) is not controllable, and the problem is not resolvable.

Consider a linear control system in the vector form

ż = Fz + Gv. (4)

Here z ∈ Kr is a state, v ∈ Kq is a control, F ∈ Mr(K), G ∈ Mr,q(K), Mr,q(K) is a space 
of r×q-matrices with elements of K, Mr(K) := Mr,r(K) (we will denote Mr,q := Mr,q(K), 
Mr := Mr(K)). System (4) is called AESA by LSSF if for any δi ∈ K, i = 1, r, there 
exists a linear state feedback control

v = Lz (5)

with L ∈ Mq,r(K) such that the characteristic polynomial χ(F +GL; λ) of the matrix of 
the closed-loop system

ż = (F + GL)z

satisfies the condition

χ(F + GL;λ) = λr + δ1λ
r−1 + . . . + δr.

It was proved (in [21] for K = C and in [35] for K = R) that system (4) is AESA by 
LSSF (5) iff system (4) is completely controllable, i.e.,
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rank [G,FG, . . . , F r−1G] = r. (6)

Consider the corresponding problem for the differential equation (1) when the state 
vector and the control vector are multidimensional. Let s ∈ N be given. Consider a linear 
control system

x(n) + A1x
(n−1) + . . . + Anx = B1u. (7)

Here x ∈ Ks is a state vector, u ∈ Ks is a control vector, Ai ∈ Ms(K), i = 1, n, 
B1 ∈ Ms(K) are constant matrices.

Definition 1. We say that system (7) is arbitrary matrix eigenvalue spectrum assignable 
(AMESA) by LSSF if for any Γi ∈ Ms(K), i = 1, n, there exists a linear static state 
feedback control

u = K1x
(n−1) + . . . + Knx, (8)

where Ki ∈ Ms(K), such that the closed-loop system has the form

x(n) + Γ1x
(n−1) + . . . + Γnx = 0. (9)

The following proposition is evident.

Proposition 1. System (7) is AMESA by LSSF iff detB1 �= 0.

In fact, if detB1 �= 0, then the feedback control (8), where

Ki = B−1
1 (Ai − Γi), i = 1, n,

reduces system (7) to system (9). Vice versa, if detB1 = 0, then it is clear that not for 
any Γi ∈ Mn(K), i = 1, n, there exists a feedback control (8) that reduces system (7) to 
system (9).

By using the standard replacement z1 = x, z2 = x′, . . . , zn = x(n−1), one can 
rewrite the control system (7), (8) in the form (4), (5) where z = col[z1, . . . , zn] ∈ Kns, 
v = u ∈ Ks,

F =

⎡⎢⎢⎢⎢⎣
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
−An −An−1 −An−2 . . . −A1

⎤⎥⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎣
0
0
...
0
B1

⎤⎥⎥⎥⎥⎦ ,

L = [K ,K , . . . ,K ], r = ns, q = s.

(10)
n n−1 1
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Here 0 ∈ Ms, I ∈ Ms is the identity matrix. We say that system (4) with matrices (10)
is the big system corresponding to system (7). System (7) is called AESA by LSSF if the 
corresponding big system (4), (10) is AESA by LSSF. If detB1 �= 0, then it is easy to 
see that rank [G, FG, . . . , Fn−1G] = ns. It follows that condition (6) is satisfied. Thus, 
the following proposition holds.

Proposition 2. If detB1 �= 0 then system (7) is AESA by LSSF (8).

Remark 1. In contrast to Proposition 1, the condition detB1 �= 0 in Proposition 2 is 
only sufficient but not necessary. The following example shows this. Let n = 2, s = 2,

A1 =
[
0 −1
1 0

]
, A2 =

[
1 0
0 1

]
, B1 =

[
1 1
0 0

]
. (11)

One can check that, for system (4), (10), (11), condition (6) holds, i.e., system (4), (10), 
(11) (and, hence, system (7)) is AESA by LSSF but detB1 = 0. This example shows, 
in particular, that, for system (7), the properties of AMESA and AESA by LSSF are 
different.

Consider a control system defined by a linear differential equation of n-th order where 
the input is a linear combination of m variables and their derivatives of order ≤ n − p

and the output is a k-dimensional vector of linear combinations of the state x and its 
derivatives of order ≤ p − 1 (1 ≤ p ≤ n):

x(n) + a1x
(n−1) + . . . + anx =

= bp1u
(n−p)
1 + bp+1,1u

(n−p−1)
1 + . . . + bn1u1 + . . .

+ bpmu(n−p)
m + bp+1,mu(n−p−1)

m + . . . + bnmum,

(12)

y1 = c11x + c21x
′ + . . . + cp1x

(p−1), . . . ,

yk = c1kx + c2kx
′ + . . . + cpkx

(p−1).
(13)

Here x ∈ K is a state variable, uα ∈ K are control variables, yβ ∈ K are output variables, 
ai, blα, cνβ ∈ K, i = 1, n, l = p, n, ν = 1, p, α = 1,m, β = 1, k. Let us construct the 
vectors u = col(u1, . . . , um) ∈ Km, y = col(y1, . . . , yk) ∈ Kk.

Suppose that the control in system (12), (13) has the form of linear static output 
feedback (LSOF):

u = Qy. (14)

Here Q = {qαβ} ∈ Mm,k(K), qαβ ∈ K, α = 1,m, β = 1, k. System (12), (13) is called 
AESA by LSOF if for any γi ∈ K, i = 1, n, there exists a linear static output feedback 
control (14) such that the closed-loop system (12), (13), (14) has the form (3). System 
(12), (13) with (14) is a generalization of system (1) with (2): in the case if m = 1, p = n, 
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k = n, and {cij}ni,j=1 = I ∈ Mn, system (12), (13), (14) is coinciding with (1), (2). The 
conditions imposed on the orders of derivatives in (12) and (13) are natural because one 
needs the orders of the derivatives on the right-hand side of the closed-loop system to 
be less than n (see also [44]).

In the vector form, the problem of eigenvalue spectrum assignment by LSOF is as 
follows. For time-invariant plant described by

ż = Fz + Gv, ξ = Hz,

with z ∈ Kr, v ∈ Kq, ξ ∈ Kd, F ∈ Mr(K), G ∈ Mr,q(K), H ∈ Md,r(K), one needs to 
construct a linear static output feedback control

v = Lξ

with L ∈ Mq,d(K) ensuring for the characteristic polynomial χ(F + GLH; λ) of the 
matrix of the closed-loop system

ż = (F + GLH)z (15)

the equality

χ(F + GLH;λ) = λr + δ1λ
r−1 + . . . + δr (16)

with an arbitrary pregiven δi ∈ K, i = 1, r.
The static output feedback problem of eigenvalue assignment is one of the most im-

portant open questions in control theory [24,3], see also reviews [29,25,28]. This problem 
has been studied for over 40 years by many authors. The most essential results at differ-
ent times have been obtained by Davison and Wang [7] (K = R), Kimura [16] (K = R), 
Hermann and Martin [14] (K = C), Willems and Hesselink [34] (K = R), Brockett and 
Byrnes [4] (K = C), Wang [31,32] (K = R), Rosenthal, Schumacher, and Willems [23]
(K = R). Some new results on eigenvalue assignment by static output feedback were 
obtained in works [40–43,33,2,17,20,22,19,11,30,1,5].

Although there is a huge amount of papers on static output feedback, however, as 
noted in [25], “so far, there has been no exact solution to this prominent problem which 
can guarantee the design of static output feedback or determine that such a feedback 
does not exist”.

For the scalar system (12), (13), (14), this problem has been solved in [39]. Let us 
construct the matrices B = {blα}, l = 1, n, α = 1,m, and C = {cνβ}, ν = 1, n, β = 1, k, 
where blα := 0 for l < p and cνβ := 0 for ν > p. Let J := {ϑij} ∈ Mn(R) where ϑij = 1
for j = i + 1 and ϑij = 0 for j �= i + 1. Let T denote the transposition of a matrix. The 
following theorem holds [39].
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Theorem 1. System (12), (13) is AESA by LSOF (14) iff the matrices

CTB, CTJB, . . . , CTJn−1B

are linearly independent.

Consider the corresponding problem for system (12), (13), (14) when the state, input 
and output variables are multidimensional. Suppose that numbers s, n, m, k ∈ N, and 
p ∈ {1, n} are given. Consider the following system:

x(n) + A1x
(n−1) + . . . + Anx =

= Bp1u
(n−p)
1 + Bp+1,1u

(n−p−1)
1 + . . . + Bn1u1 + . . .

+ Bpmu(n−p)
m + Bp+1,mu(n−p−1)

m + . . . + Bnmum,

(17)

y1 = C11x + C21x
′ + . . . + Cp1x

(p−1), . . . ,

yk = C1kx + C2kx
′ + . . . + Cpkx

(p−1).
(18)

Here x ∈ Ks is a state variable, uα ∈ Ks are control variables, yβ ∈ Ks are output 
variables, Ai, Blα, Cνβ ∈ Ms(K), i = 1, n, l = p, n, ν = 1, p, α = 1,m, β = 1, k. Let us 
construct the vectors u = col(u1, . . . , um) ∈ Kms, y = col(y1, . . . , yk) ∈ Kks.

Suppose that the control in system (17), (18) has the form of linear static output 
feedback:

u = Qy. (19)

Here Q = {Qαβ} ∈ Mms,ks(K), Qαβ ∈ Ms(K), α = 1,m, β = 1, k. By (18), we have

yβ =
p∑

ν=1
Cνβx

(ν−1), β = 1, k.

Hence,

uα =
k∑

β=1

Qαβ

( p∑
ν=1

Cνβx
(ν−1)), α = 1,m.

The closed-loop system (17), (18), (19) take the form

x(n) +
n∑

i=1
Aix

(n−i) −
m∑

α=1

n∑
l=p

Blα

⎛⎝ k∑
β=1

Qαβ

( p∑
ν=1

Cνβx
(n−l+ν−1)

)⎞⎠ = 0. (20)

Definition 2. We say that system (17), (18) is AMESA by LSOF (19) if for any Γi ∈
Ms(K), i = 1, n, there exists a gain matrix Q ∈ Mms,ks(K) such that the closed-loop 
system (20) has the form (9).
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By using the replacement z1 = x, z2 = x′, . . . , zn = x(n−1), the closed-loop system 
(20) can be rewritten in the form of the big system (15) where r = ns, q = ms, d = ks.

Definition 3. System (17), (18) is called AESA by LSOF (19) if for any δi ∈ K, i = 1, ns, 
there exists a gain matrix Q ∈ Mms,ks(K) such that the characteristic polynomial of the 
matrix of the closed-loop big system (15) has the form (16).

For system (4), by reducing to the upper block Hessenberg form, AESA problem by 
state feedback was provided in [26]. For system (7), AESA problem by state feedback 
was studied in [27]. The eigenstructure assignment problem for system (7) was studied 
in [8]. For second order systems (7), AESA problems by LSSF were studied in [10,15,6], 
robust eigenvalue problems were studied in [13]. AESA problem by LSOF for system 
(17), (18), (19) with n = 2, s = 2, m = 1, k = 1, p = 1 was considered in [20]. AESA 
problem for system (17), (18) by LSOF (19) for any n ∈ N with p = n, m = 1, k = n

was studied in [37,38,36]. For system (17) with m = p = 1, the problem of a state-space 
realization in the descriptor system canonical form was studied in [9]. For system (17), 
(18), AESA problem by state feedback was studied in [44], and necessary and sufficient 
conditions for AESA have been obtained there in the terms of the so-called Sylvester 
mapping.

In this paper, we study the problem of matrix eigenvalue spectrum assignment for sys-
tem (17), (18) by LSOF (19). In general case, the problem of arbitrary matrix eigenvalue 
spectrum assignment for system (17), (18) by static output feedback (19), to the best of 
our knowledge, has not been considered. The main aim of the work is to obtain necessary 
and sufficient conditions of AMESA and sufficient conditions of AESA for system (17), 
(18) by LSOF (19) similarly to Propositions 1 and 2, and to extend Theorem 1 for the 
case s > 1.

2. Notations, definitions, and preliminary statements

Here and throughout, we suppose that the numbers s, n, m, k ∈ N, and p ∈ {1, n}
are fixed. Let us give necessary denotations and definitions. For any matrix H ∈ Mω, 
we suppose, by definition, H0 = I ∈ Mω. Denote by ⊗ the right Kronecker product of 
matrices G = {gij} ∈ Mω,ρ, i = 1, ω, j = 1, ρ, and H ∈ Mσ,τ [18, Ch. 12] defined by the 
formula

G⊗H :=

⎡⎢⎢⎣
g11H g12H . . . g1ρH
g21H g22H . . . g2ρH

...
...

...
gω1H gω2H . . . gωρH

⎤⎥⎥⎦ ∈ Mωσ,ρτ .

Denote J := J ⊗ I ∈ Mns where I ∈ Ms and J := {ϑij} ∈ Mn, ϑij = 1 for j = i + 1
and ϑij = 0 for j �= i + 1. We will use the mappings vecc, vecr that unroll a matrix 
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H = {hij} ∈ Mω,ρ(K), i = 1, ω, j = 1, ρ, column-by-column and row-by-row respectively 
into the column vector and the row vector respectively:

veccH = col(h11, . . . , hω1, . . . , h1ρ, . . . , hωρ) ∈ Mωρ,1(K),

vecrH = [h11, . . . , h1ρ, . . . , hω1, . . . , hωρ] ∈ M1,ωρ(K).

Lemma 1. If X ∈ Mω,ρ, Y ∈ Mρ,σ, Z ∈ Mσ,τ , then

vecc (XY Z) = (ZT ⊗X) veccY.

The proof is given in [18, Sect. 12.1, Proposition 4] for square matrices X, Z. The 
proof remains the same for arbitrary rectangular matrices X, Z.

Definition 4. For the fixed s ∈ N, let us introduce the operation of the block trace 
SPs : Mqs → Ms by the following rule: if H = {Hij} ∈ Mqs, Hij ∈ Ms, i, j = 1, q, then 

SPsH =
q∑

i=1
Hii.

Lemma 2. Suppose that X and Y are block matrices with s × s-blocks, there exist XY

and Y X, and the blocks of the matrix Y are scalar matrices, i.e.,

X = {Xij} ∈ Mqs,rs, Xij ∈ Ms, i = 1, q, j = 1, r;

Y = {Yji} ∈ Mrs,qs, Yji = yjiI, yji ∈ K, I ∈ Ms, j = 1, r, i = 1, q.

Then SPs(XY ) = SPs(Y X).

Proof.

SPs(XY ) =
q∑

i=1

r∑
j=1

XijYji =
q∑

i=1

r∑
j=1

XijyjiI =
q∑

i=1

r∑
j=1

Xijyji, (21)

SPs(Y X) =
r∑

j=1

q∑
i=1

YjiXij =
r∑

j=1

q∑
i=1

yjiIXij =
r∑

j=1

q∑
i=1

yjiXij . (22)

From (21) and (22) it follows the required. Q.E.D.

Lemma 3. Let D = {Dωρ} ∈ Mns, Dωρ ∈ Ms, ω, ρ = 1, n. Then

SPs(DJ i−1) = SPs(J i−1D) =
n−i+1∑
η=1

Dη+i−1,η, i = 1, n. (23)

Proof. The equality SPs(DJ i−1) = SPs(J i−1D) follows from Lemma 2 because, for any 
i = 1, n, the blocks of the matrix J i−1 are scalar. Let us prove the second equality in 
(23).
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For i = 1, we have J i−1 = I ∈ Mns. Therefore, (23) follows from the definition of 
SPs.

Next, we have J = {Gρω}nρ,ω=1 ∈ Mns, where Gρω = I ∈ Ms if ω = ρ +1, ρ = 1, n− 1, 
and Gρω = 0 ∈ Ms otherwise. Let us calculate the degrees of the matrix J . For any 
j = 1, n− 1, we have:

J j = {G(j)
ρω}nρ,ω=1 ∈ Mns, G

(j)
ρω =

{
I ∈ Ms, if ω = ρ + j, ρ = 1, n− j,

0 ∈ Ms, otherwise.
(24)

Therefore,

SPs(J jD) =
n∑

ρ=1

n∑
ω=1

G(j)
ρωDωρ =

n−j∑
ρ=1

Dρ+j,ρ.

Replacing j by i − 1 and ρ by η in the last equality, we obtain (23). Q.E.D.

Definition 5. Suppose that X and Y are block matrices with s × s-blocks such that the 
number of the (block) columns of X is equal to the number of the (block) rows of Y :

X = {Xij} ∈ Mqs,rs, Xij ∈ Ms, i = 1, q, j = 1, r;

Y = {Yjν} ∈ Mrs,ts, Yjν ∈ Ms, j = 1, r, ν = 1, t.

For the matrices X and Y , let us introduce the operation of the block multiplication by 
the following rule:

Z = X � Y := {Ziν}, Ziν :=
r∑

j=1
Xij ⊗ Yjν , i = 1, q, ν = 1, t.

We have Ziν ∈ Ms2 for all i = 1, q, ν = 1, t, therefore, Z := X � Y ∈ Mqs2,ts2 .

For convenience, so as not to write brackets, we assume

P � RS := P � (R · S), PR � S := (P ·R) � S

where matrices P, R, S have the corresponding dimensions.

Lemma 4. Let

X = {Xiρ} ∈ Mqs,ns, Xiρ ∈ Ms, i = 1, q, ρ = 1, n;

Y = {Yρν} ∈ Mns,rs, Yρν ∈ Ms, ρ = 1, n, ν = 1, r.

Then, for any j = 0, n− 1,
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XJ j � Y = X � J jY. (25)

Proof. For j = 0, we have J j = I ∈ Mns and, therefore, (25) is true.
Let j ∈ {1, n− 1}. Denote

XJ j =: V (j) = {V (j)
iρ } ∈ Mqs,ns, V

(j)
iρ ∈ Ms, i = 1, q, ρ = 1, n;

J jY =: W (j) = {W (j)
ρν } ∈ Mns,rs, W (j)

ρν ∈ Ms, ρ = 1, n, ν = 1, r.

Then, by (24), we have

V
(j)
iρ =

n∑
η=1

XiηG
(j)
ηρ =

{
Xi,ρ−j ∈ Ms, j + 1 ≤ ρ ≤ n,

0 ∈ Ms, 1 ≤ ρ ≤ j.
(26)

W (j)
ρν =

n∑
ω=1

G(j)
ρωYων =

{
Yρ+j,ν ∈ Ms, 1 ≤ ρ ≤ n− j,

0 ∈ Ms, n− j + 1 ≤ ρ ≤ n.
(27)

Thus, by Definition 5, taking into account (26) and (27), we have

(XJ j � Y )iν = (V (j) � Y )iν =
n∑

ρ=1
V

(j)
iρ ⊗ Yρν =

n∑
ρ=j+1

Xi,ρ−j ⊗ Yρν , (28)

(X � J jY )iν = (X �W (j))iν =
n∑

η=1
Xiη ⊗W (j)

ην =
n−j∑
η=1

Xiη ⊗ Yη+j,ν . (29)

By replacing ρ by η + j in (28), we obtain that (28) and (29) are coincident. Therefore, 
(25) is true. Q.E.D.

Definition 6. For the fixed s ∈ N, let us introduce the operation of the block transposition 
T by the following rule: if H = {Hij} ∈ Mqs,rs, Hij ∈ Ms, i = 1, q, j = 1, r, then

HT := G = {Gji} ∈ Mrs,qs, Gji := Hij , j = 1, r, i = 1, q.

Lemma 5. The following properties hold.
1. (HT )T = H.
2. If X and Y are block matrices with s × s-blocks, there exists XY , and the blocks of 

the matrix Y are scalar matrices, i.e.,

X = {Xij} ∈ Mqs,rs, Xij ∈ Ms, i = 1, q, j = 1, r;

Y = {Yjσ} ∈ Mrs,ts, Yjσ = yjσI, yjσ ∈ K, I ∈ Ms, j = 1, r, σ = 1, t,

then

(XY )T = Y T XT . (30)
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These properties can be checked directly.

Definition 7. Let X be a block matrix with s × s-blocks:

X = {Xij} ∈ Mqs,rs, Xij ∈ Ms, i = 1, q, j = 1, r.

Let us construct the mappings VECCRs, VECRRs : Mqs,rs → Ms,qrs that unroll the 
matrix X = {Xij} ∈ Mqs,rs by block columns and by block rows respectively into the 
block row with s × s-blocks:

VECCRs X = [X11, . . . , Xq1, . . . , X1r, . . . , Xqr],

VECRRs X = [X11, . . . , X1r, . . . , Xq1, . . . , Xqr],

and the mappings VECRCs, VECCCs : Mqs,rs → Mqrs,s that unroll the matrix X =
{Xij} ∈ Mqs,rs by block rows and by block columns respectively into the block column 
with s × s-blocks:

VECRCs X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11
...

X1r
...

Xq1
...

Xqr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, VECCCs X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11
...

Xq1
...

X1r
...

Xqr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The following equalities are clear:

VECCRs X = VECRRs (XT ), (31)

(VECRCs X)T = VECCRs (XT ). (32)

Lemma 6. If

X = {Xij} ∈ Mqs,rs, Xij ∈ Ms, i = 1, q, j = 1, r,

Y = {Yji} ∈ Mrs,qs, Yji ∈ Ms, j = 1, r, i = 1, q,

then

SPs(XY ) = VECRRsX · VECCCsY = (33)

= VECCRsX · VECRCsY. (34)

The proof follows directly from Definitions 4 and 7.
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Lemma 7. Let

F = {Flα} ∈ Mns,ms, Flα ∈ Ms, l = 1, n, α = 1,m;

Q = {Qαβ} ∈ Mms,ks, Qαβ ∈ Ms, α = 1,m, β = 1, k;

H = {Hlβ} ∈ Mns,ks, Hlβ ∈ Ms, l = 1, n, β = 1, k.

Suppose that R = SPs(FQHT ). Then

veccR = VECRRs2(HT � F ) · vecc (VECCRs Q). (35)

Proof. Denote

FQ =: W = {Wlβ} ∈ Mns,ks, Wlβ ∈ Ms, l = 1, n, β = 1, k.

Then Wlβ =
m∑

α=1
FlαQαβ . Therefore,

R = SPs(WHT ) =
n∑

l=1

k∑
β=1

WlβHlβ =
n∑

l=1

k∑
β=1

m∑
α=1

FlαQαβHlβ . (36)

By applying Lemma 1 to matrices FlαQαβHlβ for every l = 1, n, β = 1, k, α = 1,m, we 
obtain from (36) that

veccR =
n∑

l=1

k∑
β=1

m∑
α=1

((
Hlβ

)T ⊗ Flα

)
· veccQαβ . (37)

Denote Z := HT � F . Since HT ∈ Mks,ns, F ∈ Mns,ms, hence, Z ∈ Mks2,ms2 . We have 
Z = {Zβα}, Zβα ∈ Ms2 , β = 1, k, α = 1,m, and the matrix Zβα, by Definition 5, has 
the form

Zβα =
n∑

l=1

(Hlβ)T ⊗ Flα. (38)

By definition,

VECRRs2Z = [Z11, . . . , Z1m, . . . , Zk1, . . . , Zkm] ∈ Ms2,kms2 . (39)

Next,

vecc(VECCRsQ) = vecc [Q11, . . . , Qm1, . . . , Q1k, . . . , Qmk] =

= col (veccQ , . . . , veccQ , . . . , veccQ , . . . , veccQ ) ∈ Kkms2 .
(40)
11 m1 1k mk
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By multiplying (39) by (40) and taking into account (38), we obtain that the right-hand 
side of (35) has the form

VECRRs2(HT � F ) · vecc (VECCRs Q) =

= Z11 · veccQ11 + . . . + Z1m · veccQm1 + . . . + Zk1 · veccQ1k + . . . + Zkm · veccQmk =

=
k∑

β=1

m∑
α=1

Zβα · veccQαβ =
k∑

β=1

m∑
α=1

n∑
l=1

((
Hlβ

)T ⊗ Flα

)
· veccQαβ .

(41)

From (37) and (41) it follows (35). Q.E.D.

3. Necessary and sufficient conditions for AMESA by LSOF

On the basis of system (17), (18), let us construct the block matrices B ∈ Mns,ms, 
C ∈ Mns,ks (where 0 ∈ Ms):

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
...

...
0 . . . 0

Bp1 . . . Bpm

...
...

Bn1 . . . Bnm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C11 . . . C1k
...

...
Cp1 . . . Cpk

0 . . . 0
...

...
0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (42)

Theorem 2. System (17), (18) is AMESA by LSOF (19) if and only if for any Γi ∈
Ms(K), i = 1, n, there exists a matrix Q ∈ Mms,ks(K) such that the following equalities 
hold:

Γi = Ai − SPs(J i−1BQCT ), i = 1, n. (43)

Proof. Let matrices Γi ∈ Ms(K), i = 1, n, be given. One needs to construct a matrix 
Q = {Qαβ} ∈ Mms,ks, Qαβ ∈ Ms, α = 1,m, β = 1, k, such that the closed-loop system 
(20) has the form (9).

System (20) can be written in the form

x(n) + A1x
(n−1) + . . . + Anx− Δ = 0, (44)

where

Δ =
m∑

α=1

k∑
β=1

n∑
l=p

p∑
ν=1

BlαQαβCνβx
(n−l+ν−1). (45)

Let us replace the summation index ν by i = l− ν + 1 in (45). Since ν ranges from 1 to 
p, hence, i ranges from l − p + 1 to l. So,
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Δ =
m∑

α=1

k∑
β=1

n∑
l=p

l∑
i=l−p+1

BlαQαβCl+1−i,βx
(n−i).

If i ∈ {1, l − p}, then l + 1 − i ≥ p + 1, hence, Cl+1−i,β = 0. Thus,

Δ =
m∑

α=1

k∑
β=1

n∑
l=p

l∑
i=1

BlαQαβCl+1−i,βx
(n−i).

If l ∈ {1, p− 1}, then Blα = 0, hence,

Δ =
m∑

α=1

k∑
β=1

n∑
l=1

l∑
i=1

BlαQαβCl+1−i,βx
(n−i).

Let us change the summation order: we replace 
n∑

l=1

l∑
i=1

by 
n∑

i=1

n∑
l=i

; then we obtain

Δ =
m∑

α=1

k∑
β=1

n∑
i=1

n∑
l=i

BlαQαβCl+1−i,βx
(n−i). (46)

Let us construct D = BQCT . Then D = {Dωρ} ∈ Mns, Dωρ ∈ Ms, ω, ρ = 1, n, and, by 
construction,

Dωρ =
m∑

α=1

k∑
β=1

BωαQαβCρβ . (47)

By using Lemma 3, equality (47), and replacing the summation variable l = η + i − 1, 
we obtain

SPs(J i−1D) =
n−i+1∑
η=1

Dη+i−1,η =
n−i+1∑
η=1

m∑
α=1

k∑
β=1

Bη+i−1,αQαβCηβ

=
n∑
l=i

m∑
α=1

k∑
β=1

BlαQαβCl+1−i,β .

(48)

It follows from (46) and (48) that

Δ =
n∑

i=1
SPs(J i−1D)x(n−i). (49)

Substituting (49) in (44), we obtain that the closed-loop system has the form



V. Zaitsev, I. Kim / Linear Algebra and its Applications 613 (2021) 115–150 129
x(n) +
n∑

i=1

(
Ai − SPs(J i−1BQCT )

)
x(n−i) = 0. (50)

System (50) is coinciding with (9) iff equalities (43) hold. Q.E.D.

Remark 2. By Lemma 3, equalities (43) are equivalent to

Γi = Ai − SPs(BQCT J i−1), i = 1, n.

Equalities (43) represent a system of linear equations with respect to the coefficients 
of the matrix Q. Let us find conditions for solvability of this system.

Consider the matrices

CT � B, CT � JB, . . . , CT � J n−1B.

We have CT ∈ Mks,ns, B ∈ Mns,ms, hence, CT � J i−1B ∈ Mks2,ms2 for all i = 1, n. Let 
us construct the matrices VECRRs2(CT � J i−1B) ∈ Ms2,kms2 , i = 1, n, and the matrix

Θ =

⎡⎢⎣ VECRRs2(CT � B)
VECRRs2(CT � JB)
. . . . . . . . . . . . . . . . . . . . .

VECRRs2(CT � J n−1B)

⎤⎥⎦ ∈ Mns2,kms2 . (51)

Theorem 3. System (17), (18) is AMESA by LSOF (19) if and only if

rank Θ = ns2. (52)

Proof. Let us apply the mapping vecc to equalities (43) and apply Lemma 7 to the 
matrices F = J i−1B, H = C. Then (43) takes the form

vecc (Ai − Γi) = VECRRs2(CT � J i−1B) · vecc (VECCRsQ), i = 1, n. (53)

Denote

v := vecc (VECCRsQ) ∈ Kkms2 ,

w := col
(
vecc (A1 − Γ1), . . . , vecc (An − Γn)

)
∈ Kns2 . (54)

Then systems (53) can be rewritten in the form

Θv = w. (55)

The condition (52) is equivalent to solvability of system (55) with respect to v for any 
Γi ∈ Ms(K), i = 1, n, and hence, to arbitrary matrix eigenvalue spectrum assignability 
for system (17), (18) by feedback (19). In particular, system (55) has the solution
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v = ΘT (ΘΘT )−1w. (56)

The required matrix Q can be found from the equality

Q = VECCR−1
s (vecc−1v). (57)

Theorem 3 is proved. Q.E.D.

Remark 3. By Lemma 4, the matrices CT �J i−1B in (51) can be replaced by CTJ i−1�B, 
i = 1, n.

Remark 4. Theorem 3 is an analogue of Proposition 1 for AMESA problem by LSOF.

Remark 5. Note that the condition mk ≥ n is necessary for (52).

4. Sufficient conditions for AESA by LSOF

Consider system (9). Denote Γ = [Γ1, . . . , Γn] ∈ Ms,ns. Construct the matrix charac-
teristic polynomial for system (9):

Υ(Γ;λ) = Iλn + Γ1λ
n−1 + . . . + Γn.

Here λ ∈ K, Υ(Γ; λ) ∈ Ms(K). From system (9), construct the big system with the block 
companion matrix:

ż = Φz, z ∈ Kns,

Φ = Φ(Γ) =

⎡⎢⎢⎢⎢⎣
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
−Γn −Γn−1 −Γn−2 . . . −Γ1

⎤⎥⎥⎥⎥⎦ .
(58)

Denote by χ(Φ; λ) the characteristic polynomial of the matrix of system (58), i.e., 
χ(Φ; λ) = det(λI − Φ). The following theorem holds [12, Theorem 1.1].

Theorem 4. detΥ(Γ; λ) = χ(Φ; λ).

Let us prove the following theorem.

Theorem 5. For any numbers δi ∈ K, i = 1, ns, there exist matrices Γj ∈ Ms(K), 
j = 1, n, such that

χ(Φ(Γ);λ) = λns + δ1λ
ns−1 + δ2λ

ns−2 + . . . + δns. (59)
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Proof. Suppose that δi ∈ K, i = 1, ns, are given. Let us construct the matrices Γj ∈
Ms(K), j = 1, n, as follows: for j = 1, n− 1, we set

Γj =

⎡⎢⎢⎣
δj 0 . . . 0

δn+j 0 . . . 0
...

...
...

δ(s−1)n+j 0 . . . 0

⎤⎥⎥⎦ ;

for j = n, we set

Γn =

⎡⎢⎢⎢⎢⎣
δn −1 0 . . . 0
δ2n 0 −1 . . . 0
...

...
...

. . .
...

δ(s−1)n 0 0 . . . −1
δsn 0 0 . . . 0

⎤⎥⎥⎥⎥⎦ .

Then

Υ(Γ;λ) =

⎡⎢⎢⎢⎢⎢⎢⎣

λn + δ1λ
n−1 + δ2λ

n−2 + . . . + δn −1 0 . . . 0
δn+1λ

n−1 + δn+2λ
n−2 + . . . + δ2n λn −1 . . . 0

...
...

...
. . .

...
δ(s−2)n+1λ

n−1 + δ(s−2)n+2λ
n−2 + . . . + δ(s−1)n 0 0 . . . −1

δ(s−1)n+1λ
n−1 + δ(s−1)n+2λ

n−2 + . . . + δsn 0 0 . . . λn

⎤⎥⎥⎥⎥⎥⎥⎦ .

Calculating the determinant of Υ(Γ; λ), by using the expansion by the first column, we 
obtain

detΥ(Γ;λ) = (λn + δ1λ
n−1 + δ2λ

n−2 + . . . + δn)λn(s−1) +

+ (δn+1λ
n−1 + δn+2λ

n−2 + . . . + δ2n)λn(s−2) + . . . + (δ(s−1)n+1λ
n−1 + . . . + δsn).

(60)
From (60) and Theorem 4, it follows (59). Q.E.D.

Theorem 6. If system (17), (18) is AMESA by LSOF (19) then system (17), (18) is 
AESA by LSOF (19).

Theorem 6 follows from Theorem 5.

Theorem 7. If rank Θ = ns2 then system (17), (18) is AESA by LSOF (19).

Theorem 7 follows from Theorem 3 and Theorem 6.

Remark 6. Theorem 3 is an analogue of Proposition 2 for AESA problem by LSOF.
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Remark 7. Condition rank Θ = ns2 in Theorem 7 is only sufficient but not necessary 
(as in Proposition 2). Let us show it. Suppose that s = 2, n = 3, m = k = p = 2, 
Ai = 0 ∈ M2, i = 1, 2, 3, B21 = B32 = C11 = I ∈ M2, B22 = B31 = C12 = C21 = 0 ∈ M2, 

C22 =
[
1 0
0 0

]
. Constructing the matrix (51), we obtain

Θ =

⎡⎢⎢⎢⎢⎣
0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0
I 0 0 0 0 0 I 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0

⎤⎥⎥⎥⎥⎦ ∈ M12,16,

where 0 ∈ M2, I ∈ M2. Hence, rank Θ = 10 < 12 = ns2, i.e., condition (52) does not 
hold. Let us prove that this system is AESA by LSOF. Suppose that arbitrary δi ∈ K, 
i = 1, 6, are given. Let us construct the gain matrix

Q =
[
Q11 Q12

Q21 Q22

]
∈ M4, Q11 =

[−δ2 0
−δ5 0

]
, Q12 =

[−δ1 0
−δ4 0

]
,

Q21 =
[−δ3 1
−δ6 0

]
, Q22 =

[
0 0
0 0

]
.

The closed-loop system (20) has the form

x′′′ + Γ1x
′′ + Γ2x

′ + Γ3x = 0,

where the matrices Γj (according to the proof of Theorem 2) have the form

Γ1 = −SPs(BQCT ), Γ2 = −SPs(JBQCT ), Γ3 = −SPs(J 2BQCT ). (61)

Calculating (61), we obtain that

Γ1 =
[
δ1 0
δ4 0

]
, Γ2 =

[
δ2 0
δ5 0

]
, Γ3 =

[
δ3 −1
δ6 0

]
.

Hence,

Υ(Γ;λ) =
[
λ3 + δ1λ

2 + δ2λ + δ3 −1
δ4λ

2 + δ5λ + δ6 λ3

]
.

Calculating detΥ(Γ; λ) and using Theorem 4, we obtain that χ(Φ(Γ); λ) = λ6 +∑6
i=1 δiλ

6−i, what is required.
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5. Special cases

5.1. Blocks of C are scalar matrices

Suppose that the blocks of the matrix C are scalar matrices, i.e.,

C = {Cνβ} ∈ Mns,ks,

Cνβ = cνβI, cνβ ∈ K, I ∈ Ms, ν = 1, n, β = 1, k,

cνβ = 0, ν = p + 1, n, β = 1, k.

(62)

Then

CT = CT . (63)

By applying Lemma 2 to X = J i−1BQ, Y = CT , we obtain

SPs(J i−1BQCT ) = SP (CT J i−1BQ). (64)

By (33),

SPs(CT J i−1BQ) = VECRRs(CT J i−1B) · VECCCsQ. (65)

Taking into account (63), (64), (65), one can rewrite system (43) with respect to coeffi-
cients of Q in the following form:

Ω · V = W. (66)

Here

Ω :=

⎡⎢⎣ VECRRs(CTB)
VECRRs(CTJB)
. . . . . . . . . . . . . . . . . .

VECRRs(CTJ n−1B)

⎤⎥⎦ ∈ Mns,kms, (67)

W := col (A1 − Γ1, . . . , An − Γn) ∈ Mns,s(K), (68)

V := VECCCs Q ∈ Mkms,s.

System (66) is solvable with respect to V for any Γi ∈ Ms(K), i = 1, n, iff

rank Ω = ns. (69)

In particular, system (66) has the solution

V = ΩT (ΩΩT )−1W. (70)



134 V. Zaitsev, I. Kim / Linear Algebra and its Applications 613 (2021) 115–150
The required matrix Q can be found from the equality

Q = VECCC−1
s V. (71)

Thus, the following theorem holds.

Theorem 8. Suppose that the blocks of the matrix C are scalar matrices. Then system 
(17), (18) is AMESA by LSOF (19) if and only if (69) holds.

Corollary 1. Suppose that the blocks of the matrix C are scalar matrices. Then system 
(17), (18) is AESA by LSOF (19) if (69) holds.

Corollary 1 follows from Theorem 8 and Theorem 6.

Remark 8. Note that the condition mk ≥ n is necessary for (69).

Remark 9. Condition (69) in Corollary 1 is only sufficient but not necessary. Let us 
show it. Suppose that s = 2, n = 3, m = k = p = 2, Ai = 0 ∈ M2, i = 1, 2, 3, 

B32 = C11 = C22 = I ∈ M2, B22 = B31 = C12 = C21 = 0 ∈ M2, B21 =
[
0 0
0 1

]
. 

Constructing the matrix (67), we obtain

Ω =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎦ ∈ M6,8.

Hence, rank Θ = 5 < 6 = ns, i.e., condition (69) does not hold. Let us prove that this 
system is AESA by LSOF. Suppose that arbitrary δi ∈ K, i = 1, 6, are given. Let us 
construct the gain matrix

Q =
[
Q11 Q12
Q21 Q22

]
∈ M4, Q11 =

[
0 0
0 0

]
, Q12 =

[
0 0

−δ4 −δ1

]
,

Q21 =
[

0 1
−δ6 −δ3

]
, Q22 =

[
0 0

−δ5 −δ2

]
.

The closed-loop system (20) has the form

x′′′ + Γ1x
′′ + Γ2x

′ + Γ3x = 0,

where the matrices Γj (according to the proof of Theorem 2) have the form

Γ1 = −SPs(BQCT ), Γ2 = −SPs(JBQCT ), Γ3 = −SPs(J 2BQCT ). (72)
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Calculating (72), we obtain that

Γ1 =
[

0 0
δ4 δ1

]
, Γ2 =

[
0 0
δ5 δ2

]
, Γ3 =

[
0 −1
δ6 δ3

]
.

Hence,

Υ(Γ;λ) =
[

λ3 −1
δ4λ

2 + δ5λ + δ6 λ3 + δ1λ
2 + δ2λ + δ3

]
.

Calculating detΥ(Γ; λ) and using Theorem 4, we obtain that χ(Φ(Γ); λ) = λ6 +∑6
i=1 δiλ

6−i, what is required.

Remark 10. Suppose that m = 1, p = n, k = n, and C = I ∈ Mns. Hence, B =
col (0, . . . , 0, B̂) ∈ Mns,s (0 ∈ Ms), and system (17), (18), (19) is coinciding with (7), (9)
where B1 = B̂. Constructing (67), we obtain that

Ω =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 B̂

0 0 . . . B̂ 0
...

...
...

...
0 B̂ . . . 0 0
B̂ 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎦ .

Condition (69) is equivalent to rank B̂ = s, i.e., det B̂ �= 0. Thus, Theorem 8 coincides 
with Proposition 1, and Corollary 1 coincides with Proposition 2. So, Theorem 8 and 
Corollary 1 are generalization of Propositions 1 and 2 to systems with static output 
feedback.

5.2. Blocks of B are scalar matrices

Suppose that the blocks of the matrix B are scalar matrices, i.e.,

B = {Blα} ∈ Mns,ms,

Blα = blαI, blα ∈ K, I ∈ Ms, l = 1, n, α = 1,m,

blα = 0, l = 1, p− 1, α = 1,m.

(73)

Then, for any i = 1, n, the blocks of the matrices J i−1B are scalar also. Hence,

(J i−1B)T = (J i−1B)T . (74)

By applying Lemma 2 to X = QCT , Y = J i−1B, we obtain

SPs(J i−1BQCT ) = SPs(QCT J i−1B). (75)
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By (34),

SPs(QCT J i−1B) = VECCRsQ · VECRCs(CT J i−1B). (76)

Taking into account (75), (76), one can rewrite system (43) with respect to coefficients 
of Q in the following form:

X · Ξ = Y. (77)

Here

Ξ :=
[
VECRCs(CT B), . . . ,VECRCs(CT J n−1B)

]
∈ Mmks,ns, (78)

Y := [A1 − Γ1, . . . , An − Γn] ∈ Ms,ns, (79)

X := VECCRs Q ∈ Ms,mks.

System (77) is solvable with respect to X for any Γi ∈ Ms(K), i = 1, n, iff rank Ξ = ns. 
In particular, system (77) has the solution

X = Y (ΞTΞ)−1ΞT . (80)

The required matrix Q can be found from the equality

Q = VECCR−1
s X. (81)

Let us rewrite system (77) in the form

ΞT ·XT = Y T .

Consider the matrix

ΞT =

⎡⎢⎢⎢⎣
[
VECRCs(CT B)

]T[
VECRCs(CT JB)

]T
. . . . . . . . . . . . . . . . . . . . .[

VECRCs(CT J n−1B)
]T

⎤⎥⎥⎥⎦ ∈ Mns,mks. (82)

For any i = 1, n, by (32), we have

[
VECRCs(CT J i−1B)

]T = VECCRs

(
(CT J i−1B)T

)
. (83)

By (31),

VECCRs

(
(CT J i−1B)T

)
= VECRRs

((
(CT J i−1B)T

)T )
. (84)
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By (74),

(CT J i−1B)T = (J i−1B)T (CT )T = (J i−1B)T (CT )T . (85)

By (30),

(J i−1B)T (CT )T = (CTJ i−1B)T . (86)

It follows from (85), (86), and assertion 1 of Lemma 5 that

(
(CT J i−1B)T

)T =
(
(CTJ i−1B)T

)T = CTJ i−1B. (87)

It follows from (83), (84), and (87) that the matrix (82) has the form

ΞT =

⎡⎢⎣ VECRRs(CTB)
VECRRs(CTJB)

. . . . . . . . . . . . . . . . . . . . .
VECRRs(CTJ n−1B)

⎤⎥⎦ ∈ Mns,mks,

that is the matrix ΞT is coinciding with (67). Thus, the following theorem holds.

Theorem 9. Suppose that the blocks of the matrix B are scalar matrices. Then system 
(17), (18) is AMESA by LSOF (19) if and only if (69) holds.

Corollary 2. Suppose that the blocks of the matrix B are scalar matrices. Then system 
(17), (18) is AESA by LSOF if (69) holds.

Corollary 2 follows from Theorem 9 and Theorem 6.

Remark 11. Condition (69) in Corollary 2 is only sufficient but not necessary. Let us 
show it. Consider the example in Remark 7. In this example, the blocks of the matrix B
are scalar matrices. Constructing the matrix (67), we obtain

Ω =

⎡⎢⎢⎢⎢⎣
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎦ ∈ M6,8.

Hence, rank Ω = 5 < 6 = ns, i.e., condition (69) does not hold. However, as it is shown 
in Remark 7, this system is AESA by LSOF.
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5.3. Blocks of B and C are scalar matrices

Suppose that the blocks of the matrices B and C are scalar matrices, i.e., the matrices 
(42) have the form (62), (73). Denote

B0 = {biα} ∈ Mn,m, C0 = {ciβ} ∈ Mn,k, i = 1, n, α = 1,m, β = 1, k.

Then

B = B0 ⊗ I, C = C0 ⊗ I, I ∈ Ms. (88)

Due to the properties of the Kronecker product, for all i = 1, n, we have

VECRRs(CTJ i−1B) = VECRRs

(
(CT

0 ⊗ I)(J i−1 ⊗ I)(B0 ⊗ I)
)

=

VECRRs

(
(CT

0 J i−1B0) ⊗ I
)

=
(
vecr (CT

0 J i−1B0)
)
⊗ I.

Thus, the matrix (67) has the form

Ω =

⎡⎢⎢⎢⎢⎣
(
vecr (CT

0 B0)
)
⊗ I(

vecr (CT
0 JB0)

)
⊗ I

. . . . . . . . . . . . . . . . . . . . .(
vecr (CT

0 Jn−1B0)
)
⊗ I

⎤⎥⎥⎥⎥⎦ = P ⊗ I,

where

P =

⎡⎢⎣ vecr (CT
0 B0)

vecr (CT
0 JB0)

. . . . . . . . . . . . . . .
vecr (CT

0 Jn−1B0)

⎤⎥⎦ ∈ Mn,km.

Since rank (X ⊗ Y ) = rankX · rank Y , we obtain that rank Ω = ns iff rankP = n. This 
condition is equivalent to linear independence of matrices

CT
0 B0, CT

0 JB0, . . . , CT
0 Jn−1B0. (89)

Thus, from Theorem 8, it follows the theorem.

Theorem 10. Suppose that the blocks of the matrices B and C are scalar matrices, i.e., 
B and C have the form (88). Then system (17), (18) is AMESA by LSOF (19) if and 
only if the matrices (89) are linearly independent.

Corollary 3. Suppose that the blocks of the matrices B and C are scalar matrices, i.e., B
and C have the form (88). Then system (17), (18) is AESA by LSOF (19) if the matrices 
(89) are linearly independent.
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Corollary 3 follows from Theorem 10 and Theorem 6.

Remark 12. The converse assertion to Corollary 3 is not true, in general case. We give 
the proof of this below in Example 1.

Example 1. Here we prove that the converse assertion to Corollary 3 is not true, in 
general case. Suppose that K = C, s = 2, n = 4, m = 1, k = 4, p = 4, Ai = 0 ∈ M2, 
i = 1, 4,

B0 =

⎡⎢⎣0
0
0
1

⎤⎥⎦ , C0 =

⎡⎢⎣1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤⎥⎦ .

We have CT
0 JB0 = 0 ∈ M4,1, hence, matrices (89) are linearly dependent. Let us show 

that this system is AESA by LSOF. Suppose that arbitrary δi ∈ C, i = 1, 8, are given. 
Let Q = {Qαβ} ∈ Mms,ks have the form

Q = [Q11 Q12 Q13 Q14 ] ∈ M2,8, Q1β =
[
ρβ ηβ
ξβ ωβ

]
, β = 1, 4.

The closed-loop system (20) has the form

x′′′′ + Γ1x
′′′ + Γ2x

′′ + Γ3x
′ + Γ4x = 0,

where the matrices Γi (according to the proof of Theorem 2) have the form (43). Calcu-
lating (43), we obtain

Γ1 = −Q14, Γ2 = 0 ∈ M2, Γ3 = −Q12, Γ4 = −Q11.

Therefore, we have

Υ(Γ;λ) =
[
λ4 − ρ4λ

3 − ρ2λ− ρ1 −η4λ
3 − η2λ− η1

−ξ4λ
3 − ξ2λ− ξ1 λ4 − ω4λ

3 − ω2λ− ω1

]
.

One needs to construct ρi, ηi, ξi, ωi, i = 1, 2, 4, such that

detΥ(Γ;λ) = λ8 +
8∑

i=1
δiλ

n−i. (90)

Set ξ1 := 1, ξ2 := 0, ξ4 := 0, ρ1 := 0. Calculating detΥ(Γ; λ), we obtain

detΥ(Γ;λ) = λ8 − (ρ4 + ω4)λ7 + ρ4ω4λ
6 − (ρ2 + ω2)λ5 +

+ (ρ2ω4 + ρ4ω2 − ω1)λ4 + (ρ4ω1 − η4)λ3 + ρ2ω2λ
2 + (ρ2ω1 − η2)λ− η1.
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Equality (90) holds iff the following equalities are fulfilled:

−(ρ4 + ω4) = δ1, ρ4ω1 − η4 = δ5,

ρ4ω4 = δ2, ρ2ω2 = δ6,

−(ρ2 + ω2) = δ3, ρ2ω1 − η2 = δ7,

ρ2ω4 + ρ4ω2 − ω1 = δ4, −η1 = δ8.

(91)

The problem of AESA is resolvable if the system of nonlinear equations (91) is resolvable 
for arbitrary δ1, . . . , δ8. It is clear that system (91) is resolvable. In fact, from the first 
and second equations of (91), we find ρ4 and ω4, namely,

ρ4, ω4 =
(
−δ1 ±

√
δ2
1 − 4δ2

)/
2. (92)

From the third and sixth equations of (91), we find ρ2 and ω2, namely,

ρ2, ω2 =
(
−δ3 ±

√
δ2
3 − 4δ6

)/
2. (93)

Substituting (92) and (93) into the fourth equation of (91), we find

ω1 = ρ2ω4 + ρ4ω2 − δ4. (94)

Substituting (92), (93), and (94) into the fifth and seventh equation of (91), we find

η4 = ρ4ω1 − δ5, η2 = ρ2ω1 − δ7.

Finally, η1 = −δ8. So, the system is AESA.

Remark 13. Similar examples can be constructed for any n ≥ 4. This can be proved 
by induction. If s ≥ 3 then the construction of the corresponding examples becomes 
very complicated. For n ≤ 3 (for any s), such examples cannot be constructed, both 
for K = C and K = R. This can be proven by sequentially parsing cases. Thus, for 
n ≤ 3, the converse assertion to Corollary 3 is true. We omit the rigorous proofs of 
this.

Remark 14. The presented example is not valid for the case K = R because, due to (92)
and (93), the coefficients of the matrices Qαβ are complex, in general case, even if δi ∈ R. 
Is it possible to construct similar examples for the case K = R and n ≥ 4? The answer 
to this question is open.
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Remark 15. Suppose that s = 1. Then B = B0, C = C0, and the properties AMESA 
and AESA are coincident. In this case, the converse to Corollary 3 is true (by The-
orem 10), and Theorem 10 is coinciding with Theorem 1. So, Theorem 10 and more 
general Theorems 9, 8, and 3 are generalizations of Theorem 1 for the case s > 1.

6. On properties of systems with AMESA

The property of AMESA (by LSSF or LSOF) is sufficient for AESA (Theorem 5) but 
is not necessary (see Remarks 1 and 7). The AMESA property is quite conservative and 
is far from the AESA property. Indeed, the AMESA property allows us to assign ns2

coefficients of the matrices Γj , j = 1, n, and the AESA property allows us to assign ns
coefficients of the characteristic polynomial (59). These properties are coinciding only if 
s = 1 in general.

The condition mk ≥ n is necessary for AMESA by LSOF (Remark 5). This is clear 
because if mk < n, then the number mks2 of coefficients of the gain matrix Q in (19) is 
less than the number ns2 of coefficients of matrices Γj , j = 1, n, that we have to assign, 
and, in this case, the arbitrary assignability is impossible. This can be compared with 
the result of Wang [31] for the problem of AESA by LSOF for system (15) but there is 
no direct relationship between the results presented here and Wang’s results.

The AMESA property is much stronger than the AESA property. In particular, it 
allows us to assign not only eigenvalues for the closed-loop system but also eigenvectors 
with a high degree of freedom. The problem of the simultaneous assignment of the 
eigenvalue spectrum together with the eigenvectors is one of the important problems of 
the theory of eigenvalue placement. As an example, we present the following property 
that systems with AMESA have.

Theorem 11. For any different λξ ∈ R, ξ = 1, ns, and for any linear independent vectors 
h1, . . . , hs ∈ Rs there exist matrices Γj ∈ Ms(R), j = 1, n, such that the general solution 
of system (9) has the form

x = C1h1 exp(λ1t) + C2h2 exp(λ2t) + . . . + Cshs exp(λst)

+ Cs+1h1 exp(λs+1t) + . . . + C2shs exp(λ2st) + . . .

+ C(n−1)s+1h1 exp(λ(n−1)s+1t) + . . . + Cnshs exp(λnst).

(95)

Proof. Let different λξ ∈ R, ξ = 1, ns, and linear independent vectors h1, . . . , hs ∈ Rs

be given. Construct S := [h1, . . . , hs] ∈ Ms(R). Then detS �= 0. Set

N1 := diag {λ1, . . . , λs}, N2 := diag {λs+1, . . . , λ2s}, . . . ,

Nn := diag {λ(n−1)s+1, . . . , λns}.
(96)

Then the matrices Nj , j = 1, n, are commuting. Construct
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L1 := SN1S
−1, . . . , Ln := SNnS

−1. (97)

Then Lj , j = 1, n, are commuting as well. Let

(λI − L1)(λI − L2) · · · (λI − Ln) =: Iλn + Γ1λ
n−1 + . . . + Γn, (98)

i.e., Γ1 := −(L1 + . . .+Ln), . . . , Γn := (−1)nL1 · . . . ·Ln. Then the matrices Γj ∈ Ms(R), 
j = 1, n, are required.

In fact, let us show that the vector-function xj,i(t) = hi exp(λ(j−1)s+it) is a solution of 
system (9) for every j = 1, n and i = 1, s. It follows from (97) that LjS = SNj , j = 1, n. 
Then, it follows from (96) that

Ljhi = λ(j−1)s+ihi ∀j = 1, n ∀i = 1, s. (99)

It follows from (98) that

x(n) + Γ1x
(n−1) + . . . + Γnx =

(
d

dt
− L1

)(
d

dt
− L2

)
. . .

(
d

dt
− Ln

)
x. (100)

Moreover, the operators in the right-hand side of (100) are commuting. Let the operator (
d

dt
− Lj

)
in the right-hand side of (100) be repositioned to the most right position. 

We have (
d

dt
− Lj

)
xj,i(t) =

(
d

dt
− Lj

)
hi exp(λ(j−1)s+it)

= (λ(j−1)s+ihi − Ljhi) exp(λ(j−1)s+it) = 0

due to (99). Thus, by (100), xj,i(t) is a solution of (9) for every j = 1, n and i = 1, s.
Since all λξ, ξ = 1, ns, are different, the vector-functions xj,i(t), j = 1, n, i = 1, s, 

are linearly independent. Therefore, formula (95) gives a general solution of system (9). 
Q.E.D.

Remark 16. The condition of Theorem 11 that all λξ are different can be weakened to 
the condition that all the vector-functions xj,i(t) are linearly independent.

Remark 17. One can derive other properties for a closed-loop system from the AMESA 
property. The AMESA property is poorly studied. The study of this property can be the 
subject of further research.

7. Examples

Example 2. Let K = R, n = 3, m = k = p = s = 2, and the matrices of system (17), 
(18) have the form
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A1 =
[
−1 0
0 1

]
, A2 =

[
1 0
1 1

]
, A3 =

[
−1 0
0 −1

]
, (101)

B21 =
[
1 0
0 −1

]
, B22 =

[
0 1
1 −1

]
, B31 =

[
0 1
1 0

]
, B32 =

[
−1 0
0 1

]
, (102)

C11 =
[
−1 0
0 1

]
, C12 =

[
1 −1
0 1

]
, C21 =

[
1 0
0 −1

]
, C22 =

[
1 0
−1 1

]
. (103)

Let us construct matrices (42):

B =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 1
0 −1 1 −1
0 1 −1 0
1 0 0 1

⎤⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎣
−1 0 1 −1
0 1 0 1
1 0 1 0
0 −1 −1 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ .

Construct

CT � B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0
0 −1 0 0 1 −1 0 0
0 0 −1 0 0 0 0 −1
0 0 0 1 0 0 −1 1
1 0 −1 0 0 1 0 −1
0 −1 0 1 1 −1 −1 1
0 0 1 0 0 0 0 1
0 0 0 −1 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

CT � JB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 −1 −1 0 0
1 1 0 0 −1 2 0 0
0 0 1 −1 0 0 1 1
0 0 −1 −1 0 0 1 −2
1 1 0 −1 −1 1 1 0
1 −1 −1 0 1 0 0 −1
−1 0 1 1 0 −1 −1 1
0 1 1 −1 −1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

CT � J 2B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 1 0 0 0
−1 0 0 0 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 1
0 1 0 0 −1 0 0 0
1 0 0 0 0 1 0 0
0 −1 0 1 1 0 −1 0
−1 0 1 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Construct (51):
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Θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0 1 0 −1 0 0 1 0 −1
0 −1 0 0 1 −1 0 0 0 −1 0 1 1 −1 −1 1
0 0 −1 0 0 0 0 −1 0 0 1 0 0 0 0 1
0 0 0 1 0 0 −1 1 0 0 0 −1 0 0 1 −1

−1 1 0 0 −1 −1 0 0 1 1 0 −1 −1 1 1 0
1 1 0 0 −1 2 0 0 1 −1 −1 0 1 0 0 −1
0 0 1 −1 0 0 1 1 −1 0 1 1 0 −1 −1 1
0 0 −1 −1 0 0 1 −2 0 1 1 −1 −1 1 1 0
0 −1 0 0 1 0 0 0 0 1 0 0 −1 0 0 0

−1 0 0 0 0 −1 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 −1 0 0 −1 0 1 1 0 −1 0
0 0 1 0 0 0 0 1 −1 0 1 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We have rank Θ = 12, hence, by Theorem 3 system (17), (18) is AMESA by LSOF (19). 
Let us construct this feedback control. Suppose, for example, that

Γ1 =
[
3 0
0 1

]
, Γ2 =

[
1 0
0 −1

]
, Γ3 =

[
1 0
0 3

]
. (104)

Constructing w by formula (54), we obtain

w = col (−4, 0, 0, 0, 0, 1, 0, 2,−2, 0, 0,−4).

Calculating v by formula (56), we obtain

v = col (−3, 1,−3,−1,−1,−1, 1,−1, 0, 0, 1, 1, 0,−4,−1,−5).

From (57), we obtain

Q =

⎡⎢⎣−3 −3 0 1
1 −1 0 1
−1 1 0 −1
−1 −1 −4 −5

⎤⎥⎦ . (105)

Feedback control (19) with (105) reduces the system (17), (18) with (101), (102), (103)
to the system

x′′′ + Γ1x
′′ + Γ2x

′ + Γ3x = 0

with (104).

Example 3. Let K = R, n = 3, m = k = p = s = 2, and the matrices of system (17), 
(18) have the form
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A1 =
[
−1 0
0 1

]
, A2 =

[
1 0
1 1

]
, A3 =

[
−1 0
0 −1

]
, (106)

B21 =
[
1 0
0 −1

]
, B22 =

[
0 1
1 −1

]
, B31 =

[
0 1
1 0

]
, B32 =

[
−1 0
0 1

]
, (107)

C11 =
[
1 0
0 1

]
, C12 =

[
1 0
0 1

]
, C21 =

[
−1 0
0 −1

]
, C22 =

[
−2 0
0 −2

]
. (108)

Let us construct matrices (42):

B =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 1
0 −1 1 −1
0 1 −1 0
1 0 0 1

⎤⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎣
1 0 1 0
0 1 0 1
−1 0 −2 0
0 −1 0 −2
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ .

Blocks of C are scalar matrices. Construct

CTB =

⎡⎢⎣−1 0 0 −1
0 1 −1 1
−2 0 0 −2
0 2 −2 2

⎤⎥⎦ , CTJB =

⎡⎢⎣ 1 −1 1 1
−1 −1 1 −2
1 −2 2 1
−2 −1 1 −3

⎤⎥⎦ ,

CTJ 2B =

⎡⎢⎣0 1 −1 0
1 0 0 1
0 1 −1 0
1 0 0 1

⎤⎥⎦ .

Construct (67):

Ω =

⎡⎢⎢⎢⎢⎣
−1 0 0 −1 −2 0 0 −2
0 1 −1 1 0 2 −2 2
1 −1 1 1 1 −2 2 1
−1 −1 1 −2 −2 −1 1 −3
0 1 −1 0 0 1 −1 0
1 0 0 1 1 0 0 1

⎤⎥⎥⎥⎥⎦ .

We have rank Ω = 6, hence, by Theorem 8, system (17), (18) is AMESA by LSOF (19). 
Let us construct this feedback control. Suppose, for example, that

Γ1 =
[
−1 1
1 1

]
, Γ2 =

[
1 0
1 0

]
, Γ3 =

[
−1 2
0 1

]
. (109)

Constructing W by formula (68), we obtain

W =

⎡⎢⎢⎢⎢⎣
0 −1
−1 0
0 0
0 1
0 −2

⎤⎥⎥⎥⎥⎦ .
0 −2
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Calculating V by formula (70), we obtain

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −3
0 −1
0 1
1 −2
1 1
0 0
0 0
−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From (71), we get

Q =

⎡⎢⎣−1 −3 1 1
0 −1 0 0
0 1 0 0
1 −2 −1 2

⎤⎥⎦ . (110)

Feedback control (19) with (110) reduces the system (17), (18) with (106), (107), (108)
to the system

x′′′ + Γ1x
′′ + Γ2x

′ + Γ3x = 0

with (109).

Example 4. Let K = R, n = 3, m = k = p = s = 2, and the matrices of system (17), 
(18) have the form

A1 =
[
−1 0
2 1

]
, A2 =

[
1 0
1 1

]
, A3 =

[
−1 0
0 −1

]
, (111)

B21 =
[
1 0
0 1

]
, B22 =

[
−1 0
0 −1

]
, B31 =

[
1 0
0 1

]
, B32 =

[
1 0
0 1

]
, (112)

C11 =
[
1 −1
1 0

]
, C12 =

[
−1 0
0 0

]
, C21 =

[
0 0
1 −1

]
, C22 =

[
−1 0
0 0

]
. (113)

Let us construct matrices (42):

B =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

⎤⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎣
1 −1 −1 0
1 0 0 0
0 0 −1 0
1 −1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ .

Blocks of B are scalar matrices. Construct
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CT B =

⎡⎢⎣ 0 0 0 0
1 −1 −1 1
−1 0 1 0
0 0 0 0

⎤⎥⎦ , CT JB =

⎡⎢⎣ 1 −1 −1 1
2 −1 0 −1
−2 0 0 0
0 0 0 0

⎤⎥⎦ ,

CT J 2B =

⎡⎢⎣ 1 −1 1 −1
1 0 1 0
−1 0 −1 0
0 0 0 0

⎤⎥⎦ .

Construct (78):

Ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −1 1 −1
1 −1 2 −1 1 0
0 0 −1 1 1 −1
−1 1 0 −1 1 0
−1 0 −2 0 −1 0
0 0 0 0 0 0
1 0 0 0 −1 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We have rank Ω = rank ΞT = 6, hence, by Theorem 9, system (17), (18) is AMESA 
by LSOF (19). Let us construct this feedback control. Suppose, for example, that

Γ1 =
[
−1 0
0 1

]
, Γ2 =

[
1 0
1 3

]
, Γ3 =

[
−1 2
0 1

]
. (114)

Constructing Y by formula (79) we obtain

Y =
[
0 0 0 0 0 −2
2 0 0 −2 0 −2

]
.

Calculating X by formula (80), we obtain

X =
[
2 −1 0 −1 0 0 0 0
1 1 1 1 1 0 3 0

]
.

From (81), we get

Q =

⎡⎢⎣2 −1 0 0
1 1 1 0
0 −1 0 0
1 1 3 0

⎤⎥⎦ . (115)

Feedback control (19) with (115) reduces the system (17), (18) with (111), (112), (113)
to the system

x′′′ + Γ1x
′′ + Γ2x

′ + Γ3x = 0

with (114).
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8. Conclusion

In this paper we have studied the problem of arbitrary matrix eigenvalue spectrum 
assignment by linear static output feedback for a control system defined by a linear 
time-invariant differential equation of the n-th order with the s-dimensional state, input 
and output. We have obtained necessary and sufficient conditions for AMESA by LSOF. 
These conditions are expressed in terms of system coefficients and do not depend on 
coefficients Ai of the free system. Particular cases have been studied when the system 
has block scalar matrix coefficients. The results extend the known results on AESA by 
LSOF obtained for s = 1 and on AMESA by LSSF. It is proved that AMESA by LSOF 
implies AESA by LSOF. As corollaries, sufficient conditions for AESA by LSOF have 
been obtained. It has been shown that these sufficient conditions are not necessary, in 
general case, if s > 1. Illustrative examples are presented.

A further development of these results may be their extension to block systems of 
more general form and more detailed study of the AMESA property.
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