

## РОССИЙСКАЯ АКАДЕМИЯ НАУК



## ИНСТИТУТ БИОЛОГИИ ВНУТРЕННИХ ВОД ИМ. И.Д. ПАПАНИНА РАН

## МАТЕРИАЛЫ

VII ВСЕРОССИЙСКОЙ КОНФЕРЕНЦИИ ПО ВОДНОЙ ЭКОТОКСИКОЛОГИИ, ПОСВЯЩЕННОЙ ПАМЯТИ Б.А. ФЛЕРОВА

## АНТРОПОГЕННОЕ ВЛИЯНИЕ НА ВОДНЫЕ ОРГАНИЗМЫ И ЭКОСИСТЕМЫ

### ШКОЛЫ-СЕМИНАРА

СОВРЕМЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ И ОЦЕНКИ КАЧЕСТВА ВОД, СОСТОЯНИЯ ВОДНЫХ ОРГАНИЗМОВ И ЭКОСИСТЕМ В УСЛОВИЯХ АНТРОПОГЕННОЙ НАГРУЗКИ

16-18 сентября 2020 г.

БОРОК, 2020

УДК 574.5(063): 504.4.054(063) ББК 28.081.4л6+28.082.1л6 A72

Антропогенное влияние на водные организмы и экосистемы : сборник материалов VII Всероссийской конференции по водной экотоксикологии, посвященной памяти д.б.н., проф. Б. А. Флерова. Современные методы исследования и оценки качества вод, состояния водных организмов и экосистем в условиях антропогенной нагрузки : материалы школы-семинара для молодых ученых, аспирантов и студентов (Борок, 16-19 сентября 2020 г.). - Ярославль : Филигрань. — 2020. — 238 с.

#### ISBN 978-5-6044920-1-7

Сборник материалов опубликован при финансовой поддержке фирмы "Luminex"®

В сборнике опубликованы материалы докладов конференции и школы-семинара по широкому кругу теоретических и практических вопросов водной экотоксикологии и охраны окружающей среды.

Рассматриваются судьба, биодоступность, биотрансформация, биоаккумуляция загрязняющих веществ; биохимические, физиологические поведенческие реакции гидробионтов на действие антропогенных факторов. Приведены методы и критерии оценки качества вод, состояния водных экосистем и водных объектов, проблемы регионального нормирования.

Для широкого круга специалистов: токсикологов, гидробиологов, экологов, гидрохимиков, ихтиологов, зоологов, альгологов.

Материалы сборника размещены на сайте ИБВВ РАН: http://www.ibiw.ru

Материалы печатаются в авторской редакции

Компьютерная верстка: Е. А. Заботкина, И. В. Чалова

Фото на обложке: на лицевой части – радуга над Онежским озером, лето 2019 г. автор Р.А. Ложкина, на обороте – шламонакопитель «Черная дыра» г. Дзержинск 2016 г., «АиФ НН».

УДК 574.47: 504.4.054(08) ББК 28.088.л6+28.082.1л6

### ISBN 978-5-6044920-1-7

- © Институт биологии внутренних вод им. И. Д. Папанина РАН, 2020
- © Р.А. Ложкина, фото на обложке, 2019;
- © «АиФ НН», фото на обложке, 2016.

шивание верхних слоев воды озера в определенные оттенки пурпурного цвета. Такие случаи в последние годы неоднократно отмечались на озере местными жителями из числа рыбаков.

#### Заключение

Состояние воды в озере Комсомольское, согласно классификатору качества вод Росгидромета, оценивалось как «слабо загрязненная» — «условно чистая». При этом экологическое состояние водоема в подледный период не было благополучным, поскольку, в условиях загрязненности сульфатами при недостатке растворенного кислорода, в придонном слое воды и, особенно в грунте, происходило активное развитие сульфатредукторов, и в результате, загрязнение сероводородом.

Также в подледный период в поверхностном слое воды создавались условия, подходящие для развития пурпурных и бесцветных серобактерий, главных потребителей сероводорода. Вероятно, наличие сероводорода и света в поверхностном слое воды крайне благоприятны для осуществления фотосинтеза пурпурными серобактериями. Для роста бесцветных серобактерий важным фактором было наличие достаточного количества растворенного кислорода, так как они развивались не только в поверхностном слое, но и в обогащенном кислородом придонном слое воды на мелководных участках озера.

В условиях дефицита кислорода и переизбытка сульфатов в гидроэкосистеме озера возможен активный рост сульфатредуцирующих бактерий, сильное загрязнение водоема сероводородом, а также, массовое развитие анаэробных пурпурных серобактерий, в результате может произойти изменение цветности верхних слоев воды и увеличение концентрации сульфатов, необходимых для развития сульфатредуцирующих бактерий.

Для экосистемы оз. Комсомольское в подледный период крайне важным является наличие достаточного количества растворенного кислорода, что будет способствовать созданию благоприятного гидрохимического режима и положительно отразится на структуре микробных сообществ.

Авторы выражают благодарность сотрудникам лаборатории эколого-аналитических измерений и мониторинга окружающей среды Н.В. Шурминой и Л.К. Мустафиной (ИПЭН АН РТ, г. Казань) за возможность использования в статье данных химико-аналитических измерений.

#### Список литературы

- 1. О причинах массовой гибели рыбы в озере Комсомольское (г. Казань) / Р.П. Токинова, А.С. Сергеев // «Чистая вода. Казань»: Сборник трудов X Специализ. выставки и Конгресса. Казань, 2019. С. 119–122.
- 2. Кузнецов С.И., Дубинина Г.А. Методы изучения водных микроорганизмов. М: Наука, 1989. 288 с.
- 3. РД 52.24.309-2016. Руководящий документ. Организация и проведение режимных наблюдений за загрязнением поверхностных вод суши. Ростов-на-Дону: Росгидромет. -2016. Взамен РД 52.24.309-2011; Введ. 03.04.2017. 100 с.
- 4. Дзюбан А.Н., Косолапов Д.Б., Кузнецова И.А. Микробиологические процессы в донных отложениях Рыбинского водохранилища и озера Плещеево как факторы формирования качества водной среды // Гидробиологический журнал. 2005. Т. 41, №4. С. 82–88.
- 5. Aguiar P., Beveridge T.J., Reysenbach A.L. *Sulfurihydrogenibium azorense* sp. nov., a thermophilic, hydrogenoxidizing microaerophile from terrestrial hot springs in the Azores // Int.J.Syst.Evol.Microbiol. 2004. V.54. P. 33–39.
- 6. Аноксигенные фототрофные бактерии стратифицированного озера Кисло-Сладкое (Кандалашский залив Белого моря) / О.Н. Лунина, А.С. Савичева, Б.Б. Кузнецов, и др. // Микробиология. 2014. Т.83; №1. с. 90–108.

### БИОИНДИКАЦИЯ ЗАГРЯЗНЕНИЯ Р. УЗГИНКА (ЯКШУР-БОДЬИНСКИЙ РАЙОН УДМУРТСКОЙ РЕСПУБЛИКИ) ПО ОРГАНИЗМАМ МАКРОЗООБЕНТОСА

И.А. Мухин, Н.В. Холмогорова

ФГБОУ ВО «Удмуртский государственный университет», 426034 г. Ижевск, Россия, swagboy7@mail.ru

Проведена биоиндикация загрязнения реки Узгинка. Всего отмечено 95 видов макро-беспозвоночных. Показатели индекса сапробности менялись от 1.3 до 3.04, что соответствует олигосапробной,  $\beta$ - мезосапробной и  $\alpha$ - мезосапробной зонам. По результатам биоиндикации большая часть станций умеренно загрязнена, при этом некоторые участки загрязнены.

Малые реки – самые многочисленные среди водоемов и водотоков. Благодаря их небольшому размеру, развивающиеся в них сообщества очень чувствительны к изменению условий среды. Крупные реки из-за полноводности медленнее реагируют на изменения. Изучая малые реки, можно судить об экологической обстановке на водосборной территории, а также об антропогенной нагрузке [1].

Река Узгинка – является одной из малых рек Якшур-Бодьинского района Удмуртской Республики. Исток реки расположен в лесополосе вблизи деревни Порва. Она течёт на юг, вдоль железной дороги «Ижевск—Балезино». Впадает в реку Чур. Узгинка является притоком Камы третьего порядка. Протяжённость реки составляет 18 км. Ширина русла в верхнем течении до 3 метров, в среднем до 7 метров и в нижнем до 10 метров. Протекает, в основном, через леса.

Цель работы: оценить качество воды р. Узгинки с помощью биоиндикации по организмам макрозообентоса.

#### Задачи:

- определить видовой состав макрозообентоса реки;
- провести биоиндикацию загрязнения реки по организмам макрозообентоса;
- оценить экологическое состояние реки Узгинка.

На водосборе реки преобладает сельскохозяйственное загрязнение: пастбища крупного рогатого скота, «Первый сельскохозяйственный завод» - предприятие по выращиванию шампиньонов, населённые пункты и поля для сенокоса. Водоток пересекают множество автодорог и одна железнодорожная ветка.

Пробы донных отложений и макрозообентоса отбирали в летне-осенний период 2018-2019 гг с помощью гидробиологического скребка. Всего отобрано 48 количественных и 8 качественных проб на 10 проточных участках и двух прудах (Порвинский пруд, пруд возле станции Кекоран). Одновременно со сбором бентоса учитывали скорость течения, температуру, глубину и ширину русла, тип грунта.

В донных отложениях определяли долю органических веществ методом озоления в муфельной печи при температуре 900 °C. Определение видовой принадлежности макро-зообентоса вели по доступным определителям [2, 3]. Биомассу определяли на торсионных весах, с точностью до 1 мг.

Для оценки экологического состояния реки рассчитывали следующие показатели: численность, биомасса, число видов макрозообентоса, сапробность по Пантле и Букку, олигохетный индекс Гуднайта — Уитлея, ЕРТ- индекс (доля подёнок, веснянок и ручейников по численности), доли отдельных таксонов в сообществе [4].

Скорость течения на речных участках менялась от 0.04 до 0.6 м/сек. Доля органического вещества в донных отложениях менялась в интервале от 0.1% до 34.2%, она отрицательно коррелирует с глубиной русла ( $r_s$ = -0.52; n=48; p< 0.01) и положительно с шириной ( $r_s$ = 0.32; n=48; p< 0.05). В верхнем течении среднее содержание органических веществ составляло 6%, в среднем течении благодаря увеличению скорости течения немного снижалось -4.5%. В нижнем течении отмечена аккумуляция органических осадков на дне, что проявляется в увеличении средней доли органических веществ до 14.5%. Подобное распределение органических наносов характерно для большинства равнинных рек.

В составе макрозообентоса р. Узгинки зарегистрировано 95 видов живых организмов: 1 вид ракообразных, 2 вида клещей, 6 видов малощетинковых червей, 9 видов пиявок, 5 видов двустворчатых моллюсков, 13 видов брюхоногих моллюсков и 59 видов насекомых. Из насекомых по числу отмеченных видов преобладали личинки Diptera (14 видов), Trichoptera (14 видов) и Heteroptera (9 видов). Таксономический состав макрозообентоса представлен типичными видами Палеарктики.

На каждой станции отмечалось от 2-х до 18-ти видов, в среднем на одну пробу приходилось 9 видов беспозвоночных. На станциях 4 и 11, расположенных ниже прудов, отмечено резкое увеличение числа видов, за счет реофильных организмов (подёнки, веснянки, ручейники, жуки, двустворчатые моллюски).

Плотность менялась в пределах от 33 экз/м $^2$  до 7167 экз/м $^2$ . Отмечена положительная связь между температурой и общей плотностью макрозообентоса ( $r_s$ = 0.31; n=48; p< 0.05). Максимальная численность бентоса отмечалась на станции № 1 (истоки реки под подпором бобровой плотины), где массово развивались личинки комаров-звонцов (4200 экз/м $^2$ ). Минимальная плотность бентоса отмечалась в среднем течении на станциях 6 и 8 (рис. 1). Это может быть связано с отсутствием высшей водной растительности на данных участках.

Биомасса макрозообентоса имела широкий интервал от 0.283 г/м² до 128.067 г/м². Максимальная биомасса связана с массовым развитием двустворчатых моллюсков *Sphaerium corneum* ниже прудов или брюхоногих моллюсков рода *Lymnaea* в прудах и на участках с замедленным течением. Значительный рост плотности и биомассы двустворчатых моллюсков ниже плотин прудов отмечался также для других рек Удмуртии: Нечкинка, Иж, Лоза, Вотка [5, 6].

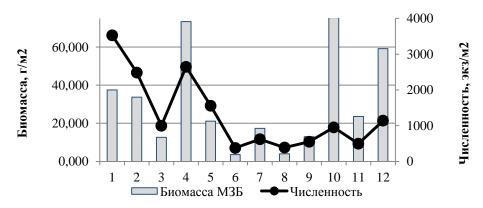



Рис. 1. Средние показатели численности и биомассы макрозообентоса реки Узгинки.

Доля личинок комаров-звонцов постепенно сокращалась от истоков к устью, а доля двустворчатых моллюсков наоборот постепенно возрастала. На долю хирономид в сообществе бентоса влияет размер частиц грунта, с уменьшением крупных фракций доля хирономид возрастает ( $r_s$ = -0.34; n=48; p< 0.05). На станциях 3 и 10, установленных на прудах, отмечена минимальная доля оксифильных личинок ручейников от 0 до 0.3% численности. Доля ручейников в сообществе зависит от скорости течения ( $r_s$ = 0.33; n=48; p< 0.05).

Показатели индекса сапробности менялись от 1.3 до 3.04, однако средние показатели индекса на всех станциях соответствуют умеренно загрязненным водам, исключение составляет станция № 5 (обустроенный

родник в д. Порва), воды которой можно отнести к загрязненным (рис. 2). Это обусловлено подпором пруда, расположенного ниже по течению, а также антропогенным загрязнением (в этом месте жители д. Порва стирают ковры и пр. с применением различных моющих средств).

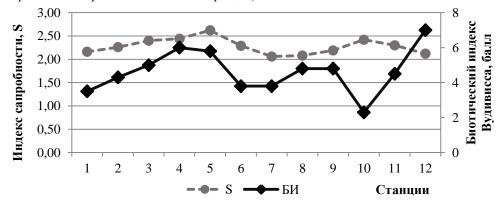



Рис. 2. Изменение индекса сапробности и биотического индекса на р. Узгинка.

На основе олигохетного индекса Гуднайт-Уитлея все станции относятся к очень чистым (I класс качества). Биотический индекс Вудивисса менялся от 2.3 до 7. Минимум наблюдался на станции № 10 (пруд возле ст. Кекоран), это связано с формированием пелофильных биоценозов и сокращением числа оксифильных организмов. Максимальный биотический индекс зафиксирован на станции № 12, расположенной ниже водопада, где сильное течение (0.52 м/с) и галечный грунт способствовал развитию литореофильного сообщества с большим числом ручейников и подёнок.

Максимальные величины ЕРТ-индекса отмечались на проточных участках — это станции 7 (18.23%), 8 (18.28%) и 12 (17.85%). Наименьшие показатели ЕРТ-индекса зарегистрированы на станции № 2 (подпор пруда в д. Порва, 2.08%) и на пруду станции Кекоран (0.68%).

Таким образом, река Узгинка умеренно загрязнена, но некоторые участки испытывают сильное антропогенное воздействие из-за таких факторов как попадание хозяйственно-бытовых и сельскохозяйственных стоков, поверхностный смыв загрязняющих веществ с жилых и промышленных территорий, автодорог и т.п. Пруды требуют очистки от ила и зарослей макрофитов.

#### Список литературы

- 1. Сенкевич В.А Зоопланктонные сообщества малых рек лесостепной зоны. М.: Материалы Всеросс. молодежной гидробиологической конф. «Перспективы и проблемы современной гидробиологии», пос. Борок, Ярославская область, 10-13 ноября 2016 г. / ИБВВ им. И.Д. Папанина РАН. Ярославль: Филигрань, 2016, С. 138–140.
- 2. Определитель пресноводных беспозвоночных России и сопредельных территорий. Т. 1-6 / под ред. С. Я. Цалолихина. СПб.: Наука, 1994–2004.
- 3. Определитель зоопланктона и зообентоса пресных вод Европейской России. В шести томах / Под ред. В.Р. Алексеева, С.Я. Цалолихина и др. М.: Товарищество научных изданий КМК, 2010. 495с.
- 4. Шитиков В.К. Количественная гидроэкология: методы, критерии, решения. Кн. 1 / В.К. Шитиков, Г.С. Розенберг, Т.Д Зинченко: Ин-т экологии Волж. бассейна. М.: Наука, 2005. 281 с.
- 5. Холмогорова Н.В. Трансформация фауны макрозообентоса малых рек Удмуртии под воздействием факторов нефтедобычи. Дисс. на соискание уч. степ. канд. биол. наук. Казань, 2009. 184 с.
- 6. Холмогорова Н.В. Макрозообентос реки Нечкинка (Удмуртская Республика) // Экосистемы малых рек: биоразнообразие, экология, охрана. Материалы лекций ІІ-й Всероссийской школы-конференции, 18 22 ноября 2014 г. / Институт биологии внутренних вод им. И. Д. Папанина. Том ІІ. Ярославль: Филигрань, 2014. С. 388—390.

## БИОТЕСТИРОВАНИЕ НАНОЧАСТИЦ МАГГЕМИТА С ИСПОЛЬЗОВАНИЕМ СТАНДАРТИЗИРОВАННЫХ МЕТОДИК

В.А. Полынов<sup>1</sup>, Е.Н. Максимова<sup>1</sup>, М.В. Журавлева<sup>1</sup>, Н.П. Щипцова<sup>1</sup>, А.П. Сафронов<sup>2,3</sup>, Г.В. Курляндская<sup>2</sup>

<sup>1</sup>Иркутский государственный университет, 664003, г. Иркутск, Россия, evgen\_max@list.ru

<sup>2</sup>Уральский федеральный университет, 620002, г. Екатеринбург, Россия, galinakurlyandskaya@urfu.ru

<sup>3</sup>Институт электрофизики УрО РАН, 620016, г. Екатеринбург, Россия, kurlyandskaya@gmail.com

В работе исследуется действие наночастиц  $\Gamma$ -Fe<sub>2</sub>O<sub>3</sub> на стандартизированные тест-объекты. Действие наночастиц оценено по степени подавления удельной скорости роста культуры относительно контроля в конце опыта. Показано действие маггемита на зеленые микроводоросли и дафнии в концентрациях 0.4 - 50.0 мг/л.

На сегодняшний день, магнитные наночастицы (МНЧ) являются важным продуктом нанотехнологии с широкими перспективами использования [1]. Но проблема безопасного внедрения нанопродукции в биологию, медицину, фармакологию и другие отрасли остается открытой. Несмотря на огромное число работ, посвященных изучению наноматериалов, собрано недостаточно информации о токсичности наночастиц в отношении

# СОДЕРЖАНИЕ

| Абрамова К.И., Токинова Р.П., Бердник С.В. ВЛИЯНИЕ АБИОТИЧЕСКИХ ФАКТОРОВ НА                                                                               |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| СТРУКТУРУ ФИТОПЛАНКТОНА УСТЬЕВОГО УЧАСТКА РЕКИ                                                                                                            | 5   |
| Авалян Р.Э., Агаджанян Э.А., Атоянц А.Л., Арутюнян Р.М. ИЗУЧЕНИЕ КЛАСТОГЕННОЙ АК-                                                                         |     |
| ТИВНОСТИ ГЛУБИННЫХ ВОД ОЗ. СЕВАН С ПРИМЕНЕНИЕМ МОДЕЛЬНОЙ ТЕСТ- СИСТЕМЫ                                                                                    | 7   |
| Афонина Е.Ю., Куклин А.П., Ташлыкова Н.А., Цыбекмитова Г.Ц., Афонин А.В., Базарова Б.Б.,                                                                  |     |
| Матафонов П.В., Матвеева М.О. ГИДРОХИМИЧЕСКАЯ И ГИДРОБИОЛОГИЧЕСКАЯ ХАРАКТЕ-                                                                               |     |
| РИСТИКА ВОДНЫХ ОБЪЕКТОВ В РАЙОНЕ ХАРАНОРСКОЙ ГРЭС (ПО ДАННЫМ 2019 Г.)                                                                                     | 8   |
| Афонина Е.Ю., Ташлыкова Н.А. ПЛАНКТОННЫЕ СООБЩЕСТВА ВОДОЕМА-ОХЛАДИТЕЛЯ                                                                                    |     |
| XAPAHOPCKOЙ ГРЭС                                                                                                                                          | 12  |
| Беспалова К.В. ОПРЕДЕЛЕНИЕ ДИФФУЗНОГО ЗАГРЯЗНЕНИЯ САРАТОВСКОГО ВОДОХРА-                                                                                   | 1.5 |
| НИЛИЩА  Ватимата CA CEROUMAG HUMAAMUWA ROOFFUTOCA D ROME DHAGUNG WOTH CVOЙ ARC                                                                            | 15  |
| <b>Валькова С.А.</b> СЕЗОННАЯ ДИНАМИКА ЗООБЕНТОСА В ЗОНЕ ВЛИЯНИЯ КОЛЬСКОЙ АЭС (МУРМАНСКАЯ ОБЛАСТЬ)                                                        | 18  |
| Вахрамеева Е.А., Кокрятская Н.М. РАСПРЕДЕЛЕНИЕ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В                                                                              | 20  |
| ПОЧВЕ И ДОННЫХ ОТЛОЖЕНИЯХ ПОД ВЛИЯНИЕМ ЛЕСОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ                                                                                      | 20  |
| Вельямидова А.В., Колпакова Е.С., Кокрятская Н.М., Орлов А.С. СТОЙКИЕ ОРГАНИЧЕСКИЕ                                                                        | 22  |
| ЗАГРЯЗНИТЕЛИ В ВЕРХОВЫХ ТОРФЯНИКАХ АРХАНГЕЛЬСКОЙ ОБЛАСТИ                                                                                                  | 23  |
| Воробьев Д.С., Перминова В.В., Франк Ю.А., Чибриков О.В., Калиновская Е.А., Копылов Е.О.,                                                                 |     |
| <b>Стрюк К.В.</b> ВОССТАНОВЛЕНИЕ ДОННОЙ ФАУНЫ ОЗЕР ПОСЛЕ ОЧИСТКИ ДНА ОТ НЕФТИ ТЕХНОЛОГИЕЙ «АЭРОЩУП»                                                       | 25  |
| Габдуллина Р.И., Ипатова В.И. ОТВЕТНАЯ РЕАКЦИЯ КУЛЬТУРЫ ВОДОРОСЛИ                                                                                         | 23  |
| SCENEDESMUS QUADRICAUDA НА ПРИСУТСТВИЕ МОЛИБДЕНА И ФТОРА В СРЕДЕ                                                                                          | 26  |
| Гашкина Н.А. АДАПТАЦИЯ РЫБ К СНИЖЕНИЮ АНТРОПОГЕННОЙ НАГРУЗКИ НА СУБАР-                                                                                    | -0  |
| ТИЧЕСКОЕ ОЗ. ИМАНДРА                                                                                                                                      | 29  |
| Герман А.В., Мамонтов А.А., Шелепчиков А.А., Бродский Е.С. ПОЛИХЛОРИРОВАННЫЕ БИФЕ-                                                                        |     |
| НИЛЫ В ВОЛЖСКОМ ПЛЕСЕ РЫБИНСКОГО ВОДОХРАНИЛИЩА                                                                                                            | 33  |
| Голованова И.Л., Аминов А.И. ФИЗИОЛОГО-БИОХИМИЧЕСКИЙ СТАТУС РЫБ ПРИ ДЕСТВИИ                                                                               |     |
| ГЛИФОСАТСОДЕРЖАЩИХ ГЕРБИЦИДОВ                                                                                                                             | 36  |
| <b>Григорьев Ю.С., Лазукова А.С.</b> ВОДОРОСЛЬ ХЛОРЕЛЛА В КОМПЛЕКСНОЙ ОЦЕНКЕ КАЧЕ-<br>СТВА ПРИРОДНЫХ И СТОЧНЫХ ВОД                                        | 39  |
| Григорьева И.Л., Чекмарева Е.А. МИКРОЭЛЕМЕНТНЫЙ СОСТАВ ДОННЫХ ОТЛОЖЕНИЙ                                                                                   | 39  |
| ИВАНЬКОВСКОГО ВОДОХРАНИЛИЩА                                                                                                                               | 43  |
| Губин А.С., Кушнир А.А., Суханов П.Т. МОНИТОРИНГ ЗАГРЯЗНЕНИЯ РЕК ВОРОНЕЖСКОЙ                                                                              | 43  |
| ОБЛАСТИ ПРИОРИТЕТНЫМИ ОРГАНИЧЕСКИМИ ЗАГРЯЗНИТЕЛЯМИ И ЛЕКАРСТВЕННЫМИ                                                                                       |     |
| ПРЕПАРАТАМИ                                                                                                                                               | 46  |
| Данилов-Данильян В.И., Веницианов Е.В., Беляев С.Д. ИЕРАРХИЧЕСКИЙ ПОДХОД ПРИ ПЛА-                                                                         | ••  |
| НИРОВАНИИ МЕРОПРИЯТИЙ ПО СНИЖЕНИЮ ДИФФУЗНОГО ЗАГРЯЗНЕНИЯ ВОДНЫХ ОБЪ-                                                                                      |     |
| ЕКТОВ                                                                                                                                                     | 49  |
| Денисова Т.П., Симонова Е.В., Максимова Е.Н., Хандуханов Р.Т., Сафронов А.П., Курляндская Г.В. ИЗУЧЕНИЕ ТОКСИЧЕСКОГО ДЕЙСТВИЯ НАНОЧАСТИЦ ОКСИДА ЖЕЛЕЗА НА | • • |
| ДРОЖЖИ                                                                                                                                                    | 52  |
| Дмитриева О.А., Семенова А.С., Гусев А.А., Поддуева Е.А., Рудинская Л.В., Родюк Г.Н., Шух-                                                                | 34  |
| галтер О.А., Чукалова Н.Н., Васюкевич Т.А., Пьянов Д.С. КОМПЛЕКСНЫЙ БИОМОНИТОРИНГ                                                                         |     |
| И ОЦЕНКА ЭКОТОКСИКОЛОГИЧЕСКОГО СОСТОЯНИЯ ЭКОСИСТЕМЫ ПРАВДИНСКОГО ВО-                                                                                      |     |
| ДОХРАНИЛИЩА КАЛИНИНГРАДСКОЙ ОБЛАСТИ В 2017—2019 ГГ.                                                                                                       | 55  |
| Донец М.М., Цыганков В.Ю., Боярова М.Д., Гумовский А.Н., Гумовская Ю.П., Литвиненко А.В.,                                                                 |     |
| Ковальчук М.В., Христофорова Н.К. СТОЙКИЕ ОРГАНИЧЕСКИЕ ЗАГРЯЗНЯЮЩИЕ ВЕЩЕСТВА                                                                              |     |
| В ТИХООКЕАНСКИХ ЛОСОСЯХ ОХОТСКОГО МОРЯ: САНИТАРНЫЕ НОРМЫ И ЭКОЛОГИЧЕ-                                                                                     |     |
| СКИЙ РИСК                                                                                                                                                 | 59  |
| <b>Евсеева А.А., Яныгина Л.В.</b> ФАУНА РУЧЕЙНИКОВ (TRICHOPTERA) ВОДОТОКОВ БАССЕЙНА                                                                       |     |
| ВЕРХНЕГО ИРТЫША И ИХ ЗНАЧЕНИЕ В БИОИНДИКАЦИИ                                                                                                              | 61  |
| Заботкина Е.А., Голованова И.Л., Белевич А.С., Беренев Ю.В., Крылов В.В. РЕАКЦИЯ НЕКОТО-                                                                  |     |
| РЫХ ГЕМАТОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ МОЛОДИ ПЛОТВЫ НА ДЕЙСТВИЕ СУБЛЕТАЛЬ-                                                                                     |     |
| НОЙ КОНЦЕНТРАЦИИ ИОНОВ МЕДИ ПРИ ИЗМЕНЕНИИ ФИЗИЧЕСКИХ ФАКТОРОВ СРЕДЫ                                                                                       | 65  |
| Зайцева Т.Б., Руссу А.Д., Медведева Н.Г. СТРЕССОВЫЕ ОТВЕТЫ ЦИАНОБАКТЕРИЙ НА ВОЗ-                                                                          |     |
| ДЕЙСТВИЕ АЛКИЛФЕНОЛОВ                                                                                                                                     | 68  |
| Запруднова Р.А. ИЗМЕНЕНИЕ ИОННОЙ РЕГУЛЯЦИИ У РЫБ В МЕСТАХ ПОВЫШЕННОЙ АН-                                                                                  |     |
| ТРОПОГЕННОЙ НАГРУЗКИ (НА ПРИМЕРЕ ЛЕЩА ВОЛЖСКОГО БАССЕЙНА)                                                                                                 | 71  |
| Запруднова Р.А. МЕТОДЫ ИССЛЕДОВАНИЯ СОСТОЯНИЯ РЫБ ПО ИОННЫМ ПОКАЗАТЕЛЯМ                                                                                   |     |
| В УСЛОВИЯХ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ                                                                                                                     | 75  |

| Иванова Е.С., Комов В.Т., Ельцова Л.С., Борисов М.Я., Тропин Н.Я. СОДЕРЖАНИЕ РТУТИ В                                                                            |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| РЫБЕ ИЗ ВОДОЕМОВ И ВОДОТОКОВ ВОЛОГОДСКОЙ ОБЛАСТИ И РАСЧЕТ БЕЗОПАСНЫХ                                                                                            |     |
| ДЛЯ ЗДОРОВЬЯ ДОЗ МЕТАЛЛА В РАЦИОНЕ ПИТАНИЯ ВЗРОСЛЫХ И ДЕТЕЙ <b>Иванчева Е.Ю., Иванчев В.П.</b> ВЛИЯНИЕ МЕЛИОРАТИВНЫХ МЕРОПРИЯТИЙ НА РЫБНОЕ                      | 77  |
| НАСЕЛЕНИЕ ВОДОТОКОВ                                                                                                                                             | 80  |
| <b>Игуменцева О.В., Ходоровская Н.И.</b> ХАРАКТЕРИСТИКА И ДИНАМИКА РАЗВИТИЯ ФИТО-<br>ПЛАНКТОННОГО СООБЩЕСТВА ШЕРШНЕВСКОГО ВОДОХРАНИЛИЩА В 2019 Г.               | 84  |
| Камардин Н.Н., Козминский Е.ПОЛИМОРФИЗМ ОКРАСКИ РАКОВИН (LITTORINA OBTUSATA,                                                                                    | ٠.  |
| BRADIBAENA FRUTICUM, LIMECOLA BALTICA) И НАКОПЛЕНИЕ ТМ                                                                                                          | 87  |
| <b>Каргапольцева И.А., Холмогорова Н.В., Сырых И.В.</b> ОЦЕНКА ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ РЕКИ КАРЛУТКИ Г. ИЖЕВСКА                                                | 90  |
| <b>Ковековдова Л.Т., Симоконь М.В., Наревич И.С.</b> БИОАККУМУЛЯЦИЯ ТОКСИЧНЫХ ЭЛЕМЕНТОВ ПРОМЫСЛОВЫМИ КРЕВЕТКАМИ ЯПОНСКОГО МОРЯ                                  | 93  |
| Корнева Л.Г., Соловьева В.В., Макарова О.С. ЭКОЛОГИЧЕСКОЕ СОСТОЯНИЕ ШЕКСНИНСКОГО ПЛЕСА РЫБИНСКОГО ВОДОХРАНИЛИЩА ПО ФИТОПЛАНКТОНУ                                | 95  |
| <b>Королева И.М., Терентьев П.М.</b> ВИДОСПЕЦИФИЧНОСТЬ НАКОПЛЕНИЯ НЕКОТОРЫХ ТЯЖЕЛЫХ МЕТАЛЛОВ В РЫБАХ ВНУТРЕННИХ ВОДОЕМОВ МУРМАНСКОЙ ОБЛАСТИ                     | 98  |
| <b>Котегов Б.Г.</b> ИЗМЕНЕНИЕ СОСТАВА И СТРУКТУРЫ РЫБНОЙ ЧАСТИ СООБЩЕСТВА МАЛЫХ ПРУДОВ УДМУРТИИ В УСЛОВИЯХ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ МИНЕРАЛЬНЫМ               | 102 |
| АЗОТОМ <b>Крупина М.В.</b> ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ДЕЙСТВИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ НА                                                                              | 102 |
| ГИДРОБИОНТОВ В ЦЕЛЯХ ПРОГНОСТИЧЕСКОГО МОНИТОРИНГА ЗАГРЯЗНЕНИЯ МОРСКОЙ СРЕДЫ                                                                                     | 103 |
| Крылова Ю.В., Светашова Е.С., Екимова С.Б., Пономаренко А.М., Курашов Е.А., Синяко-                                                                             | 100 |
| ва М.А., Ляшенко Г.Ф., Колосовская Е.В., Фисак Е.М., Ходонович В.В., Явид Е.Я., Аршаница Н.М., Романов А.Ю. ОЦЕНКА СОВРЕМЕННОГО ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ ЛАДОЖ- |     |
| СКОГО ОЗЕРА ПО ТОКСИКОЛОГИЧЕСКМИМ И ГИДРОХИМИЧЕСКИМ ПОКАЗАТЕЛЯМ                                                                                                 | 106 |
| Кузикова И.Л., Руссу А.Д., Медведева Н.Г. АДАПТАЦИОННЫЕ МЕХАНИЗМЫ ТЕРРИГЕННЫХ                                                                                   |     |
| ГРИБОВ ДОННЫХ ОСАДКОВ К ВОЗДЕЙСТВИЮ ГОРМОНОПОДОБНЫХ КСЕНОБИОТИКОВ                                                                                               | 109 |
| <b>Кузнецова Т.В., Холодкевич С.В., Манвелова А.Б.</b> ПОИСК РЕФЕРЕНТНЫХ МЕСТ И РЕФЕРЕНТНЫХ ФУНКЦИОНАЛЬНЫХ ПОКАЗАТЕЛЕЙ ДЛЯ СРАВНИТЕЛЬНОЙ ОЦЕНКИ ЭКОЛО-          |     |
| ГИЧЕСКОГО СОСТОЯНИЯ АКВАТОРИЙ НА ОСНОВЕ ПОКАЗАТЕЛЕЙ СЕРДЕЧНОГО РИТМА                                                                                            |     |
| ДВУСТВОРЧАТЫХ МОЛЛЮСКОВ СЕМ. UNIONIDAE (BIVALVES, MOLLUSCA) И РАКООБРАЗ-                                                                                        |     |
| НЫХ (CRUSTACEA, DECAPODA)                                                                                                                                       | 112 |
| Курашов Е.А., Барбашова М.А., Дудакова Д.С., Русанов А.Г., Трифонова М.С., Родионова Н.В.,                                                                      |     |
| <b>Дудаков М.О., Ляховская А.К.</b> ПОСЛЕДСТВИЯ БИОЛОГИЧЕСКОГО ЗАГРЯЗНЕНИЯ ДЛЯ ЭКО-<br>СИСТЕМЫ ЛАДОЖСКОГО ОЗЕРА                                                 | 116 |
| <b>Лазарева А.М., Ипатова В.И.</b> ВЛИЯНИЕ ВРЕМЕНИ СУТОК В МОМЕНТ ДОБАВКИ ТОКСИКАНТА НА РЕЗУЛЬТАТЫ БИОТЕСТИРОВАНИЯ                                              | 119 |
| Лазарева Г.А., Шахова Н.А., Анисимова О.В., Ковалева О.И. ОЦЕНКА ВКЛАДА ПОВЕРХНОСТ-                                                                             | 119 |
| НОГО СТОКА С СЕЛИТЕБНЫХ ТЕРРИТОРИЙ НА ЗАГРЯЗНЕННОСТЬ ВОД УГЛИЧСКОГО ВО-<br>ДОХРАНИЛИЩА                                                                          | 122 |
| Лапирова Т.Б. ВЛИЯНИЕ ПОЛИХЛОРИРОВАННЫХ БИФЕНИЛОВ НА ФИЗИОЛОГО-БИО-                                                                                             |     |
| ХИМИЧЕСКИЕ ПОКАЗАТЕЛИ МОЛОДИ КАРПОВЫХ РЫБ ПРИ РАЗЛИЧНЫХ ПУТЯХ ПОСТУП-<br>ЛЕНИЯ В ОРГАНИЗМ                                                                       | 126 |
| Морозова О.В., Токинова Р.П. ОСОБЕННОСТИ РАЗВИТИЯ БАКТЕРИОПЛАНКТОНА И БАКТЕ-                                                                                    | 120 |
| РИОБЕНТОСА В ГОРОДСКОМ ПРУДУ В ОСЕННЕ-ЗИМНИЙ ПЕРИОД                                                                                                             | 129 |
| <b>Мухин И.А., Холмогорова Н.В.</b> БИОИНДИКАЦИЯ ЗАГРЯЗНЕНИЯ Р. УЗГИНКА (ЯКШУР-БОДЬИНСКИЙ РАЙОН УДМУРТСКОЙ РЕСПУБЛИКИ) ПО ОРГАНИЗМАМ МАКРОЗООБЕНТОСА            | 132 |
| Полынов В.А., Максимова Е.Н., Журавлева М.В., Щипцова Н.П., Сафронов А.П., Кур-                                                                                 | 132 |
| ляндская Г.В. БИОТЕСТИРОВАНИЕ НАНОЧАСТИЦ МАГГЕМИТА С ИСПОЛЬЗОВАНИЕМ СТАНДАРТИЗИРОВАННЫХ МЕТОДИК                                                                 | 134 |
| Польнов В.А., Максимова Е.Н., Зайко А.А., Богданов А.В., Дармаева Л.Б. СРАВНИТЕЛЬНАЯ                                                                            |     |
| ОЦЕНКА ЧУВСТВИТЕЛЬНОСТИ СТАНДАРТИЗИРОВАННЫХ АЛЬГОБИОТЕСТОВ НА ОСНОВЕ ЗЕЛЕНЫХ ВОДОРОСЛЕЙ К ДЕЙСТВИЮ «МОДЕЛЬНОГО» ТОКСИКАНТА                                      | 137 |
| <b>Поповичев В.Н.</b> БИОТИЧЕСКИЙ ОБМЕН МИНЕРАЛЬНОГО ФОСФОРА В ЭВФОТИЧЕСКОЙ ЗОНЕ ЧЕРНОГО МОРЯ                                                                   | 140 |
| Поповичев В.Н., Стецюк А.П. ВЗВЕШЕННОЕ ВЕЩЕСТВО В АКВАТОРИЯХ ЧЕРНОГО И АЗОВ-                                                                                    | 140 |
| СКОГО МОРЕЙ ВБЛИЗИ КРЫМСКОГО ПОЛУОСТРОВА (ПО МАТЕРИАЛАМ РЕЙСОВ НИС                                                                                              |     |
| «ПРОФЕССОР ВОДЯНИЦКИЙ» В 2016-2019 ГГ.)                                                                                                                         | 143 |

| Поповичев В.Н., Стецюк А.П. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ВОЗДЕЙСТВИЯ                                                                                |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| РТУТИ НА ФОТОСИНТЕЗ МИКРО- И МАКРОФИТОВ СЕВАСТОПОЛЬСКИХ БУХТ                                                                                          | 146 |
| Рагимова Н.Г., Юсифова С.Л. ВЛИЯНИЕ СУБЛЕТАЛЬНЫХ КОНЦЕНТРАЦИЙ ИНСЕКТИЦИДА                                                                             |     |
| MOSTAR 20SP НА ЖАБРЫ САЗАНА <i>CYPRINUS CARPIO</i> L.                                                                                                 | 150 |
| Рахманин Ю.А., Михайлова Р.И., Загайнова А.В., Артемова Т.З. УСТРОЙСТВА ГРАНДЕРА КАК                                                                  |     |
| СРЕДСТВА ИНТЕНСИФИКАЦИИ ОЧИСТКИ ВОДЫ ОТ АНТРОПОГЕННОГО ЗАГРЯЗНЕНИЯ                                                                                    | 152 |
| Руднева И.И., Залевская И.Н., Шайда В.Г. ОТКЛИК МОРСКОЙ БИОТЫ НА АНТРОПОГЕННОЕ                                                                        |     |
| ЗАГРЯЗНЕНИЕ: РОЛЬ АНТИОКСИДАНТНОЙ СИСТЕМЫ                                                                                                             | 153 |
| <b>Сараева А.Е., Михайлова А.В., Зуев Б.К., Линник В.Г.</b> ВОЗМОЖНОСТИ МЕТОДА ОКСИТЕРМО-<br>ГРАФИИ ДЛЯ КОНТРОЛЯ ОКИСЛЯЕМОСТИ ВОДЫ И ДОННЫХ ОТЛОЖЕНИЙ | 156 |
| Светашева Д.Р., Татарников В.О., Азмухамбетова Д.Х., Даирова Д.С., Радованова И.Г., Гаври-                                                            |     |
| лова <b>Е.В.</b> ПРОСТРАНСТВЕННАЯ И ВРЕМЕННАЯ ДИНАМИКА ГХЦГ В ВОДАХ НИЖНЕЙ ВОЛ-ГИ (1985-2018 ГГ.)                                                     | 159 |
| Светашева Д.Р., Татарников В.О., Азмухамбетова Д.Х., Даирова Д.С., Радованова И.Г., Гаври-                                                            | 13) |
| лова Е.В. ПРОСТРАНСТВЕННАЯ И ВРЕМЕННАЯ ДИНАМИКА СОДЕРЖАНИЯ НЕСТОЙКИХ                                                                                  |     |
| ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ВОДАХ НИЖНЕЙ ВОЛГИ (1978-2018 ГГ.)                                                                                          | 161 |
| Селезнев В.А. ВОЗДЕЙСТВИЕ ТОЧЕЧНЫХ И ДИФФУЗНЫХ ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ НА                                                                              | 101 |
| ФОРМИРОВАНИЕ КАЧЕСТВА ВОДЫ РЕКИ ВОЛГА                                                                                                                 | 164 |
| Селезнева А.В. ОЦЕНКА ТЕХНОГЕННОЙ НАГРУЗКИ НА ВОДНЫЕ ЭКОСИСТЕМЫ                                                                                       | 166 |
| Семенова А.С., Поддуева Е.А., Дмитриева О.А. БИОТЕСТИРОВАНИЕ ВОДЫ КУРШСКОГО ЗА-                                                                       |     |
| ЛИВА С ИСПОЛЬЗОВАНИЕМ ПЛАНКТОННЫХ РАКООБРАЗНЫХ В 2017-2019 ГГ.                                                                                        | 169 |
| Серпокрылов Н.С., Журавлев П.В., Рахманин Ю.А., Вильсон Е.В., Грибова О.А., Пригодин А.В.,                                                            |     |
| Андреев В.П. ОБОСНОВАНИЕ АППАРАТНО-РЕАГЕНТНЫХ КОМПЛЕКСОВ ИНГИБИРОВАНИЯ                                                                                |     |
| БИОХИМИЧЕСКОГО ЗАГРЯЗНЕНИЯ СТОЧНЫХ ВОД В ПРОЦЕССЕ ИХ ТРАНСПОРТИРОВАНИЯ                                                                                |     |
| В ВОДНЫЕ ОБЪЕКТЫ                                                                                                                                      | 173 |
| Симонова Е.В., Денисова Т.П. ПРОБЛЕМА ЗАГРЯЗНЕНИЯ ОЗ. БАЙКАЛ ЛИГНИНОМ, СКЛАДИ-                                                                        |     |
| РОВАННЫМ В ЗОЛОШЛАМ-НАКОПИТЕЛЯХ ОАО БАЙКАЛЬСКОГО ЦБК                                                                                                  | 177 |
| Сладкова С.В., Любимцев В.А., Холодкевич С.В. ИССЛЕДОВАНИЕ ВОЗДЕЙСТВИЯ БИОЛОГИ-                                                                       |     |
| ЧЕСКИ ОЧИЩЕННЫХ СТОЧНЫХ ВОД, СБРАСЫВАЕМЫХ В НЕВСКУЮ ГУБУ, НА ФУНК-                                                                                    |     |
| ЦИОНАЛЬНОЕ СОСТОЯНИЕ РАКООБРАЗНЫХ                                                                                                                     | 180 |
| Сонина Е.Э., Джаяни Е.А., Гузеева Л.В., Зотова Е.А., Малинина Ю.А., Макаров С.Н., Пудовки-                                                            |     |
| на А.С., Филинова Е.И. ВЛИЯНИЕ СТОЧНЫХ ВОД НА ВОДНЫЕ БИОРЕСУРСЫ САРАТОВСКОГО                                                                          |     |
| ВОДОХРАНИЛИЩА И МЕТОДИЧЕСКИЕ ПОДХОДЫ К ОПРЕДЕЛЕНИЮ ВЕЛИЧИНЫ УЩЕРБА                                                                                    | 183 |
| Старосила Е.В. СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ БАКТЕРИО-                                                                                  |     |
| ПЛАНКТОНА И БАКТЕРИБЕНТОСА ВОДНЫХ ЭКОСИСТЕМ В УСЛОВИЯХ АНТРОПОГЕННОЙ                                                                                  | 40= |
| HAFPY3KU                                                                                                                                              | 185 |
| <b>Стецюк А.П., Поповичев В.Н., Родионова Н.Ю.</b> СОСТАВ ВЗВЕСИ И КОНЦЕНТРАЦИЯ РТУТИ В ВОДНОЙ ТОЛЩЕ БУХТЫ ЛАСПИ                                      | 189 |
| <b>Тарлева А.Ф., Кузьмина В.В.</b> ВЛИЯНИЕ ФЕНОЛА И РАУНДАПА НА АКТИВНОСТЬ ПЕПТИДАЗ                                                                   | 109 |
| КИШЕЧНИКА У РЫБ РАЗНЫХ ВИДОВ                                                                                                                          | 192 |
| Татарников В.О., Светашева Д.Р. ГЛОБАЛЬНОЕ ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ ХЛО-                                                                          | 172 |
| РОРГАНИЧЕСКИМИ ПЕСТИЦИДАМИ И ИХ ДИНАМИКА В ВОДЕ ДЕЛЬТЫ ВОЛГИ                                                                                          | 195 |
| Тележникова Т.А., Гремячих В.А., Комов В.Т., Северов Ю.А., Сайфуллин Р.Р. СОДЕРЖАНИЕ                                                                  | 1,0 |
| РТУТИ В МЫШЦАХ РЕЧНОГО ОКУНЯ PERCA FLUVIATILIS L., 1758 (PERCIFORMES, PERCIDAE)                                                                       |     |
| КУЙБЫШЕВСКОГО ВОДОХРАНИЛИЩА                                                                                                                           | 198 |
| Терентьев А.С., Михайлов В.В. ИЗМЕНЕНИЕ ТРОФИЧЕСКОЙ СТРУКТУРЫ ЗООБЕНТОСА МИ-                                                                          |     |
| ДИЙНО-УСТРИЧНОГО ХОЗЯЙСТВА В ВЕРХОВЬЯХ ОЗ. ДОНУЗЛАВ                                                                                                   | 200 |
| Терещенко В.Г., Решетников Ю.С. ДИНАМИКА РАЗНООБРАЗИЯ РЫБНОГО НАСЕЛЕНИЯ ОЗЕР                                                                          |     |
| ПРИ ПОСТОЯННО НАРАСТАЮЩЕМ ЭВТРОФИРОВАНИИ, ТОКСИЧЕСКОМ И ТЕПЛОВОМ ЗА-                                                                                  |     |
| ГРЯЗНЕНИИ                                                                                                                                             | 201 |
| Уланова Т.С., Нурисламова Т.В., Мальцева О.А. ИДЕНТИФИКАЦИЯ ХИМИЧЕСКОГО СОСТА-                                                                        |     |
| ВА ВОДЫ ОТКРЫТЫХ ВОДОЁМОВ ДЛЯ ХОЗЯЙСТВЕННО-ПИТЬЕВЫХ НУЖД                                                                                              | 204 |
| Филиппов А.А., Голованова И.Л., Чеботарева Ю.В., Крылов В.В. ВЛИЯНИЕ ЭЛЕКТРОМАГ-                                                                      |     |
| НИТНОГО ПОЛЯ И МЕДИ НА АКТИВНОСТЬ ГЛИКОЗИДАЗ В КИШЕЧНИКЕ СЕГОЛЕТКОВ                                                                                   |     |
| ПЛОТВЫ                                                                                                                                                | 206 |
| Франк Ю.А., Воробьев Е.Д., Зубарев А.А., Кулиничева К.С., Трифонов А.А., Воробьев Д.С. АК-                                                            |     |
| КУМУЛЯЦИЯ МИКРОПЛАСТИКА В ДОННЫХ ОТЛОЖЕНИЯХ И ПУТИ ЕГО ИЗВЛЕЧЕНИЯ                                                                                     | 209 |
| Харитонов С.Л., Щеголькова Н.М., Рыбка К.Ю., Basyal I. ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКОЙ                                                                        |     |
| СХЕМЫ ФИТО-ОЧИСТНЫХ СООРУЖЕНИЙ НА ЭФФЕКТИВНОСТЬ УДАЛЕНИЯ ЗАГРЯЗНЯЮ-                                                                                   |     |
| ЩИХ ВЕЩЕСТВ В ТРОПИЧЕСКОЙ И СУБТРОПИЧЕСКОЙ КЛИМАТИЧЕСКИХ ЗОНАХ                                                                                        | 211 |
| Хижняк Т.В., Брюханов А.Л. ОСОБЕННОСТИ ТРАНСФОРМАЦИИ ТОКСИЧНЫХ ХРОМАТОВ                                                                               |     |
| БАКТЕРИЯМИ РОДОВ HALOMONAS И DESULFOVIBRIO                                                                                                            | 214 |

| Холодкевич С.В., Рудакова О.А., Кузнецова Т.В., Манвелова А.Б., Суслопарова О.Н. РАНЖИРО- |     |
|-------------------------------------------------------------------------------------------|-----|
| ВАНИЕ СОСТОЯНИЯ ЭКОСИСТЕМ АКВАТОРИЙ НА ОСНОВЕ ОПЕРАТИВНОГО ТЕСТИРОВА-                     |     |
| НИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ОБИТАЮЩИХ В НИХ ДВУСТВОРЧАТЫХ МОЛ-                          |     |
| ЛЮСКОВ (НА ПРИМЕРЕ РЕКРЕАЦИОННЫХ АКВАТОРИЙ КУРОРТНОГО РАЙОНА САНКТ-                       |     |
| ПЕТЕРБУРГА)                                                                               | 216 |
| Цыганков В.Ю., Боярова М.Д., Христофорова Н.К., Гумовский А.Н., Донец М.М., Гумов-        |     |
| ская Ю.П. ЗАГРЯЗНЕНИЕ ЭКОСИСТЕМ ДАЛЬНЕВОСТОЧНЫХ МОРЕЙ РОССИИ: ХЛОРОРГА-                   |     |
| НИЧЕСКИЕ ПЕСТИЦИДЫ И ПОЛИХЛОРИРОВАННЫЕ БИФЕНИЛЫ                                           | 219 |
| Черкашин С.А., Даниленко С.А., Пряжевская Т.С. БИОМОНИТОРИНГ ЭКОТОКСИКОЛОГИЧЕС-           |     |
| КОГО СОСТОЯНИЯ ЗАЛИВА ПЕТРА ВЕЛИКОГО ЯПОНСКОГО МОРЯ                                       | 221 |
| Чуйко Г.М., Гапеева М.В., Ложкина Р.А., Законнов В.В., Томилина И.И., Алексеева М.А.,     |     |
| Урванцева Г.А. КОМПЛЕКСНАЯ ОЦЕНКА ЭКОТОКСИКОЛОГИЧЕСКОГО СОСТОЯНИЯ ВОДО-                   |     |
| ХРАНИЛИЩ СРЕДНЕЙ И НИЖНЕЙ ВОЛГИ МЕТОДОМ БИОДИАГНОСТИКИ И АНАЛИЗА СО-                      |     |
| ДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ДОННЫХ ОТЛОЖЕНИЯХ                                             | 224 |
| Шашуловская Е.А., Мосияш С.А. ОСОБЕННОСТИ МИНЕРАЛЬНОГО СОСТАВА ВОДЫ ИРИ-                  |     |
| КЛИНСКОГО ВОДОХРАНИЛИЩА И ПРИЛЕГАЮЩИХ УЧАСТКОВ р. УРАЛ                                    | 227 |
| Pugsley H.R., Alderete B.E. HIGH RESOLUTION IMAGING FLOW CYTOMETRY PROVIDES COM-          |     |
| PREHENSIVE ANALYSIS OF LIVE MIXED ALGAE CULTURES AND ASSESSES HIGH VALUE                  |     |
| COMMODITIES IN ALGAL BIOMASS                                                              | 230 |
| СОДЕРЖАНИЕ                                                                                | 235 |