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Dedicated to
Boris Nikolayevich Delaunay (1890–1980)
on the occasion
of his 130th birthday



Foreword

This volume presents the proceedings of the NUMGRID 2020/Delaunay 130
International Conference dedicated to the 130th birthday of B. N. Delaunay (1890–
1980). Since Boris Nikolayevich was my teacher, I will take this nice opportunity to
have another look at certain moments in the life and work of this unique personality.

Delaunay triangulation, Delaunay partition, and their theory is the most impor-
tant part of his research from an application point of view. This is, however, merely
one facet in his multifaceted work, a facet to which B. N. Delaunay came not
by chance. There is a deeper meaning in the fact that the name of Delaunay is
forever inscribed in science next to that of G. F. Voronoi, a prominent representative
of the St. Petersburg school of number theory. Even more so, because Georgy
Feodosievich was a close friend of the Delaunay family. As a teenager, Boris often
witnessed his father’s late evening conversations with Voronoi.

Voronoi was not and could not be Delaunay’s scientific supervisor: he died
unexpectedly in 1908, the year Boris entered university. Nevertheless, his influence
on Delaunay was considerable. Delaunay’s breakthrough results on the cubic
Diophantine equations, which are, by his own admission, his most outstanding
work, used the famous Voronoi algorithm for finding fundamental units in cubic
fields. This celebrated work of Voronoi once made a stunning impression on A. A.
Markov (Voronoi’s teacher) himself.

In the early 1920s, Delaunay was invited by A. A. Markov to the Petrograd1

University as a professor and wrote a remarkable paper revealing the geometrical
essence of the Voronoi algorithm. In the late 1920s, Delaunay published a
major work on 4-dimensional parallelohedra, where he continued the research
of H. Minkowski and G. Voronoi on the theory of parallelohedra. At the same
time, Delaunay elegantly introduced the important concepts of the (r, R)-system
and the L-partition corresponding to this system and published an extensive paper
“Geometry of positive quadratic forms”. The concepts laid down in Delaunay’s
works in the 1920s and 1930s, influenced by Voronoi’s work, proved to be useful

1The name of St. Petersburg in 1914–1924.
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viii Foreword

in computational geometry, crystallography, structural chemistry, biology, and other
fields. As for the terms (r, R)-system and L-partition, much later, in the second half
of the twentieth century, the professional community abandoned them in favor of
the terms Delaunay set and Delaunay partition, largely thanks to H. S. M. Coxeter
and C. A. Rogers.

As for the NUMGRID 2020 conference, I would like to acknowledge the high
professional level of the participants and thank its organizers Vladimir Garanzha,
Hang Si, and Lennard Kamenski.

Steklov Mathematical Institute RAS, Moscow, Russia Nikolay Dolbilin
February 2021



Preface

This volume presents a selection of papers presented at the 10th International
Conference on Numerical Geometry, Grid Generation, and Scientific Computing
celebrating the 130th anniversary of B. N. Delaunay (NUMGRID 2020/Delau-
nay 130), held November 25–27, 2020. The conference is bi-annual (since 2002)
and it is one of the well-known international conferences in the area of mesh
generation. The main topic of this conference, grid (mesh) generation, is about
how to create a geometric discretization of a given domain. It is an indispensable
tool for solving field problems in nearly all areas of applied mathematics.

The book includes an overview of the current progress in numerical geometry,
grid generation, and adaptation in terms of mathematical foundations, algorithm
and software development, and applications. In focus are the Voronoi-Delaunay
theory and algorithms for tilings and partitions, mesh deformation and optimization,
equidistribution principle, error analysis, discrete differential geometry, duality
in mathematical programming and numerical geometry, mesh-based optimization
and optimal control methods, iterative solvers for variational problems, as well as
algorithm and software development. The applications of the discussed methods
are multidisciplinary and include problems from mathematics, physics, biology,
chemistry, material science, and engineering.

The presented 25 papers were selected from 31 submissions. The main selection
criteria are based on the recommendations of anonymous peer reviews from experts
of the corresponding fields as well as the presentation of the paper at the conference.
All accepted papers are revised according to the comments of reviewers and the
program committee.

The organizers would like to thank all who submitted papers and all who
helped to evaluate the contributions by providing reviews for the submissions. The

ix
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reviewers’ names are acknowledged in the following pages. The organizers would
like to thank all participants of NUMGRID for making it a successful and interesting
experience.

Moscow, Russia Vladimir A. Garanzha
Berlin, Germany Lennard Kamenski
Berlin, Germany Hang Si
February 2021
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Hexahedral Mesh Generation Using
Voxel Field Recovery

Alexander Sergeevich Karavaev and Sergey Petrovich Kopysov

Abstract We consider a modification of the previously developed voxel-based
mesh algorithm to generate models given by a triangular surface mesh format (STL).
Proposed hexahedral mesh generator belongs to the family of grid methods, and its
capable to use as source data both volume and surface types of model geometry
representation. To define the initial position of mesh nodes, a «signed distance
field» volume data file, obtained from the STL geometry, is used. A special
projection technique was developed to adapt constructed orthogonal mesh on the
models boundary. It provides an approximation of sharp edges and corners and
performs before running any other operations with the mesh. Finally, to improve the
mesh quality, additional procedures were implemented, including boundary layers
insertion, bad quality cells splitting, and optimization-based smoothing technique.

1 Introduction

The first step in the process of element mesh generation belongs to the description
of the initial model geometry. Surface representation is a set of faces describing
a model’s boundary. This description has become the main technique applied in
engineering calculations and it is widely used by the existing CAD software.

However, for some applications, such as medicine and biomodeling, the only
possible way is to use voxel data obtained by a CT, MRI, or MicroCT scanner [11].
Preserving geometric corners and edges is not so critical in the case of biological
tissues modeling. Usually, mesh algorithms for such problems are high performance
and robust. They are based on combining pairs of Cartesian voxels grid into
hexahedra followed by boundary nodes position adaptation.

At the same time, generation of hexahedral meshes of a given quality with an
accurate description of an arbitrary model geometry is not a completely solved

A. S. Karavaev (�) · S. P. Kopysov
Department of Computational Mechanics, Udmurt State University, Izhevsk, Russia
e-mail: karavaev-alexander@yandex.ru

© Springer Nature Switzerland AG 2021
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task [1, 8]. In comparison with tetrahedral meshes, there is no well-developed theory
and robust general-purpose software to solve the problem under discussion.

Specially for this, a sufficient number of algorithms have been developed with
their advantages and disadvantages.

For example, block decomposition approaches break the model into pieces that
are easier to mesh. They provide good quality cells but are semi-automatic, and
therefore time-consuming to construct complex geometries. It should be mentioned
that a lot of strategies have been developed to automate the block decomposi-
tion process, such as medial surface transformation, midpoint subdivision, and
singularity-restricted frame fields [1].

The advancing fronts methods (sweeping, paving, plastering, etc.) generate a
hex-mesh from the boundary of the surface mesh inward [9]. Such techniques
have issues with robustness, especially when two different fronts are merged during
processing. The same problems of reliability have the methods based on spatial twist
continuum concept which is a dual representation of an all hex-mesh that defines
the global connectivity constraints [6]. In recent years, many investigations have
been devoted to the indirect approaches. They convert a given tetrahedral mesh
to the hexahedral one by using a different type of combining techniques [3, 8].
Unfortunately, in many cases, the result meshes are hex-dominant while containing
a small number of irregular polyhedra.

The grid-based or octree family of methods are robust but tends to generate
poor quality elements at the boundary of the volume and to create hanging nodes
arising from size transitions [1, 10]. Also, these methods incline to produce a large
number of hexahedra and are highly dependent upon the orientation of the interior
orthogonal grid of hex elements. The recent attempts to quality hexahedral meshing
are either robust but lack the ability to align to the surface curvature and sharp
features [4, 7], or produce high quality meshes but are extremely fragile.

In this article, we propose an algorithm that provides good compromise between
robustness and quality meshing. We consider a modification of previously devel-
oped voxel mesh generator which was originally intended to work with volume
(tomograthic) data representation [5]. Figure 1 shows the result of the algorithm for
construction a multicomponent head model. Here, the boundary is reconstructed
with the «Dual Contouring» algorithm [5, 11]. This approach is widely used to
render tomographic images with a surface quadrangular mesh. It allows to restore
the sharp features of the model contour to a certain degree. Unfortunately, in the
case of STL geometry, the accuracy of the «Dual Contouring» algorithm is not
sufficient. Therefore, additional options have to be considered to build hexahedral
meshes of models given in STL format.

Our approach belongs to the family of grid methods. It utilizes initial surface
representations and «signed distance fields» voxel data format obtained from
STL file.
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Fig. 1 Human head model with three materials. Hexahedral mesh constructed from tomograthic
data by the authors’ algorithm [5]

2 Initial Data Representation

As mentioned before, the proposed method can generate meshes from both surface
and volumetric types of model representation.

In literature, volumetric (voxel) data V is defined as scalar values of an implicit
function F on a Cartesian coordinate grid V = F (i, j, k), where i, j, k are indexes
in the form of x, y, z coordinates of Cartesian grid. The isosurface (surface of equal
values) corresponding to the value α represents points of a constant value within a
volume IF (α) = { (x, y, z) | F (x, y, z) = α }.

Volumetric data may be viewed by extracting isosurfaces from the volume and
rendering them as polygonal meshes or by rendering the volume directly as a block
of data.

For now, the algorithm takes a standard DICOM volumetric data file obtained
from tomography scans to construct meshes of biological tissues. In the case of
STL-models, the «signed distance fields» (SDF) data structure is used.

Each voxel in a SDF file contains a positive or a negative shortest distance to the
model surface according to its relative position. Therefore, a border of the model is
set by the isosurface of value α = 0.

Let the model � be bounded by a surface triangular mesh T . Then, for an
arbitrary voxel ν, the function F could be written as

F (ν) = ST (ν)× min
t∈T d(t, ν), ST (ν) =

{
+1, if ν ⊆ �,

−1, if ν 	⊂ �,

where d(t, ν) denotes the minimal distance between a triangle t ∈ T and a voxel
ν ∈ V.
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The initial SDF voxel array is constructed from a given STL geometry by a
straightforward («brute force») conversion technique. For every voxel ν ∈ V it
calculates the distance to all triangles of T and takes the minimal one. Because
of this, the execution time is a little bit high and it is efficient to use parallel
computations. On the other hand, this method calculates the accurate Euclidean
distance field without errors and has a simple implementation.

The obtained volume data file implicitly contains all information about an
orthogonal hexahedral grid covering the model. Thus, a result of the mesh
generation directly depends on the accuracy of voxels values in V.

3 Hexahedral Mesh Generation

According to Schneider [10], the mesh of the model should fulfill the following
requirements: each point of the model is covered by the mesh point; each edge of
the model is covered by a sequence of mesh edges.

To overcome this problem, we construct the set � of «characteristic» edges and
nodes. The set � is considered to be a «frame» of the model which preserves all
its sharp features. The resulting hexahedral mesh T has to cover the elements of �
with a continuous chain of its edges and nodes.

To construct � we follow Schneider’s idea and don’t take into account edges of
triangular mesh T whose adjacent faces enclose a dihedral angle of about 180°.

In Fig. 2a and b we can see the STL geometry of a half part of the metal sleeve
and its set � with 10 «characteristic» nodes and 15 «characteristic» edges.

The second step of mesh generation is the construction of the orthogonal
structured grid with size h (Fig. 2c). The grid size h is chosen in advance, and it
defines an interval (span) between voxels that will be taken to form mesh nodes.
This size determines the number of cells in the resulting mesh and thus a final
accuracy of the model description. The minimal value of h is 1, and it means that
all voxels of V taking into account during mesh generation.

For every 8 neighboring voxels with γ = 4 or more positive values a new cell is
constructed.

Let dimz × dimy × dimx be the dimension of SDF voxel array V and

sgn(x,y,z)F is a signum function of voxel value with indexes (x, y, z), sgn(x,y,z)F =
sgn
(
F
(
ν(x,y,z)

))
, then the above process can be written as following:

“Algorithm 1”.
In addition to number γ = 4 of positive voxels, we also require that they have to

belong to one quadrangle of a hexahedron. Such choice provides a situation when
every face of a cell has at least 2 points inside the model. From tests, we established
that such value γ = 4 is optimal because of a less number of additional hexahedra
(in comparison with the case γ < 4, see Fig. 3a and b) and uniform size of boundary
and inner cells (that is not provided in the case of γ > 4, see Fig. 3c and d).

It should be mentioned that the number of positive voxels is not strict and can be
lower than 4. Also, there is an option to add any other conditions, such as acceptable
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(a) (b)

(c) (d)

Fig. 2 Hexahedral mesh construction. (a) STL-geometry. (b) Model’s «frame». (c) Structured
hex-grid (with background STL surface). (d) Grid projected to the model’s «frame»

Algorithm 1 Orthogonal structured grid generation
1: for z = 1; z < dimz /h; z + + do
2: for y = 1; y < dimy /h; y + + do
3: for x = 1; x < dimx /h; x + + do
4: if sgn(x,y,z)F + sgn(x+h,y,z)F + sgn(x+h,y+h,z)F + sgn(x,y+h,z)F + sgn(x,y,z+h)F +

sgn(x+h,y,z+h)F + sgn(x+h,y+h,z+h)F + sgn(x,y+h,z+h)F � γ then
5: end if
6: Create hexagon c from the voxels

{
ν(x+i,y+j,z+k)

}
i,j,k=0,h

7: end for
8: end for
9: end for

distance of voxels to the surface. For example, the cell c is not constructed if
∃ν ′ ∈ {

ν(x+i,y+j,z+k)
}
, i, j, k = 0, h such that F

(
ν′) < ε0 < 0, where ε0 is

some threshold value defined by the user.
The third step is the projection of the orthogonal grid onto the set � to provide

an approximation of «characteristic» edges and nodes of the model. This procedure
is slightly different from the isomorphism technique proposed by Schneiders [10].
In our case, the adaptation is performed before running any smoothing or topologi-
cal operations with the mesh, and it can be divided into 3 main steps:
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Fig. 3 The choice of the number γ of positive voxels in a cell during structured grid generation:
(a, b) additional hexahedra (in frame) in the case of γ < 4 in comparison with γ = 4; (c, d) lack
of uniform cell size (large ones in frame) in the case of γ > 4 in comparison with γ = 4

(1) At first on each «characteristic» node η an appropriate grid node x is projected.
Usually, x is taken as the nearest one to η, but sometimes other rules can be
adopted. For example, if two or more nodes have the closest distance to η, the
node which is connected to all of them should be chosen.

(2) The next step is the covering «characteristic» edges of the model. At first,
all boundary nodes with distance to the «characteristic» edges less than some
threshold ε1 ≈ 0.1 × h are projected onto them.

(3) The remaining uncovered sections of � is handling with sequential nodes
projection procedure. It starts from every node x which is already projected onto
�. The next candidate x′ is selected from boundary neighbors of x according to
proposed priority criteria which work in the following way:

– The neighboring nodes, which have two or more boundary inverted quads
after projection, are not considered.

– The nodes with 3 adjacent boundary quads are more preferable than others.
– Among the nodes with the previous two conditions are fulfilled, the one with

the shortest distance to the «characteristic» edge should be taken.

Figure 2d demonstrates the result of the described operation. It should be
mentioned that every selected node x′ ∈ T is projected to the nearest edge e ∈ E�,
and this position typically doesn’t coincide with vertices of the triangular mesh T .

After the set � has been constructed, the remaining boundary nodes are projected
to the surface of the model. Here we use two different techniques: the well-known
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ray-tracing method and a special iterative movement through the volume of SDF
data field described in [11]. The first procedure is more accurate, but the latter
one has better performance in the case of STL geometries with a high number of
triangles. Such STL meshes are often required to describe models with curvilinear
surfaces. Each iterative movement consists of 2 steps:

– Check an approximation of node x to the iso-surface IF (α). If the value F (x) is
close enough to α, e.g. |F (x)− α| ≈ 10−4 × h, then it can be assumed that x
locates on the surface and further iterations are not needed.

– Define new coordinates of node by moving it in a small distance x+ = x + δn,
where n is the normal of vertex x and δ the size of iteration step.

In the case of SDF data format, the boundary of the model is set with zero iso-
surface of value α = 0.

According to our tests, in most cases, the implementation of these procedures
allows to fully describe the model so that each «characteristic» node is assigned to
one corresponding mesh node, and each «characteristic» edge is completely covered
by mesh edges.

As one can see from Fig. 4a, the projection of remaining nodes to the surface
allows to fully described initial STL model with sufficient accuracy.

Fig. 4 Removing inverted boundary hexahedra and quads (in frames) with: (a, b) volume layer
insertion and splitting procedures; (c, d) surface layer insertion along a «characteristic» edge
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4 Mesh Quality Improvement

To improve the mesh quality, a Laplacian smoothing procedure is applied. Unfor-
tunately, this operation is not enough to get rid of invalid mesh elements along the
model boundary. This is because of hexahedra may have two or three faces to be
projected on the same plane, and surface quads may have two edges to be projected
on the same sharp line.

To resolve these issues, three standard procedures for grid type meshes are used.
First, a volume layer of hexahedra is inserted around the constructed mesh so

that new boundary elements have only one face to be projected on the real geometry
(Fig. 4a and b). The shape of boundary quads with angle �180° (two are marked
with rectangular frames in Fig. 4a) are significantly improved after the volume layer
of hexahedra has been inserted (Fig. 4b).

It should be mentioned, that sometimes for better mesh quality it is useful to skip
the insertion of volume layer along surfaces which are orthogonal to the Cartesian
axes. For instance, for the final mesh displayed in Fig. 4d, bottom, front, and
back boundary surfaces stay unchanged, and only for the top curvilinear surface
an additional layer of cells was added.

Likewise, a second layer of hexahedra is inserted along the set of «characteristic»
edges, if the solid angle alongside them is sufficiently smaller than 180°. Also, an-
other restriction exists, the operation is not allowed if the number of «characteristic»
edges adjacent to a «characteristic» point does not equal 2 or 3.

An application of this optimization step is demonstrated in Fig. 4c and d. All
hexahedra with flat angles (two are marked in frames) have been removed.

The remaining degenerate elements are removed by a splitting procedure (one
is marked with circular frame in Fig. 4c) proposed in [10]. All hexahedra with an
inverted face are split into four new ones by specific template (Fig. 4d), thus, the
degenerate boundary quad along «characteristic» edge has vanished. To maintain
the conformity of the mesh, the neighbor elements are also split up (Fig. 4d).

Finally, to improve the mesh quality, a smoothing procedure is applied. We use
different types of Laplacian smoothing weighted by the edges length, quads areas,
and volume of hexahedra. It should be mentioned that often a simple Laplacian
technique is not enough to get properly shaped cells.

One of the options is to use the optimization-based smoothing method proposed
in [2]. In our algorithm, we apply a modification of this method for the case of
hexahedral cells. This approach is an iterative one and could improve the value of
any hexahedra quality measure q which varies in the interval [−1; 1].

The algorithm works with three quality criteria for hexahedra cells, among which
are scaled Jacobian, inverse aspect ratio, and skew metric. Also, we propose a
normalized measure for a warping angle ! of a quadrilateral face q! = (π−!)/π .

Since the optimization-based technique is time-consuming, it is often applied
to the nodes with poor quality cells. In other cases, various types of Laplacian
smoothing are used [2].
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5 Test Examples

In this section, the results of the algorithm on three types of STL geometry and one
volumetric data representation are shown.

All demonstrated hexahedral meshes do not contain inverted cells. The measure
of the minimum scaled Jacobian has a value of QJ � 0.2, which is acceptable for
finite element algorithms. This quality metric was chosen as an objective function
for the optimization-based smoothing technique. Meshes quality characteristics can
be viewed in Table 1.

Figure 5a demonstrates a cut view of the metal sleeve model with a cylindrical
inclusion, the result hexahedral mesh contains N = 15,930 nodes and C = 13,842
cells. A relatively large value of maximal aspect ratio Qa = 33.8 emerges in the
boundary layer cells around inclusion.

Maximal skew metric of cells in the star model is Qs = 0.84. Though, all
boundaries of the model are flat, the maximal warp angle of the inner quads of
the mesh equals !w = 61.1°. This is because the only scaled Jacobian value was
optimized, and other metrics were not taken into account.

Due to the small number of «characterictic» features (only edges and no nodes),
the mesh of the spring model has better values of scaled jacobian QJ = 0.4 and
aspect ratio Qa = 4.2. The most optimal skew value Qs = 0.63 was obtained for a
cube model containing 13 elliptic inclusions.

The human head model (Fig. 1) was generated from a DICOM volume data file.
Hounsfield scale values (or the values of extracted isosurfaces) for each material
were the following: soft tissue α = −720, brain α = 1, skull α = 172. In addition
to scaled Jacobian, a warping angle of quadrangles was also improved. Quality
measures of the resulting mesh can also be seen in Table 1.

Table 1 Meshes characteristics

Characteristic Sleeve Star Spring Cube Head

Dim 70 × 129 × 129 129 × 129 × 28 86 × 151 × 86 653 10293

h 4 4 1 1 2

N 15,930 3894 239,757 288,152 1,363,369

C 13,842 2860 195,904 276,003 1,308,341

!w 73.6° 61.1° 54.3° 57.1° 37°

QJ 0.22 0.29 0.4 0.4 0.2

Qa 33.8 20.7 4.2 4.9 15.9

Qs 0.84 0.84 0.8 0.63 0.85
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(a) (b)

(c) (d)

Fig. 5 Unstructured hexahedral mesh examples. (a) Sleeve with inclusion. (b) Star. (c) Spring.
(d) Cube with inclusions

6 Conclusions

This paper presented a further modification of early developed volume hexahedral
mesh generator as applied to the models described by STL geometry.

The main developments of new functionality are the following:

– Obtaining from the original STL geometry a set � of «characteristic» edges and
nodes, which positions should be saved in the resulting hexahedral mesh T . The
set � is considered to be a «frame» of the model, which preserves all its sharp
angles and faces.

– Construction and mapping the part of boundary nodes of T onto the set � to
provide an approximation of boundary contour. The procedure is based on a
sequential node projection at every element of �. Here is the most suitable nodes
are selected according to proposed priority criteria, which evaluate adjacent
hexahedra number, quality measures of cells and faces, and the distance to the
elements of �.

– Removing degenerated cells of T emerging along «characteristic» edges. The
operation includes insertion of an additional surface layer of hexahedra along
the edges and splitting inverted cells into four new ones according to the template
described in [10].
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Implementation of the new procedures allows to generate a uniform mesh
accurately describing the original geometry of an arbitrary STL-model.

Generation of multicomponent models for the case of voxel data is carried out
by a sequential mesh construction for each isosurface value in descending order.

In the case of a surface representation, the application of such an approach seems
difficult, since the SDF file obtained from the STL-geometry contains only one
isosurface value α = 0. Thus, the SDF file stores information about only one
material of the model.

Using one file in the SDF format allows to solve a specific case when the model
contains areas with inclusions located entirely inside, or on one level with the
orthogonal plane (Fig. 5a and d).

To implement the general case it is necessary to use a set of SDF files, generated
for every specific material. Then all orthogonal meshes, obtained from each SDF
file, should be assembled in one.

At the moment, an integration of the described technique to the algorithm just
like an implementation of adaptive hexahedral mesh generation are questions of
further research.
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