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Parallel pipelined CG Algorithm on Heterogeneous

Platforms
Sergey Kopysov, Nikita Nedozhogin, and Leonid Tonkov.

Abstract—The article presents a parallel iterative solver for large
sparse linear systems which can be used on a heterogeneous platform.
Traditionally, the problem of solving linear systems does not scale
well on multi-CPU/multi-GPUs clusters. For example, most of the
attempts to implement the classical conjugate gradient method were
at best counted in the same amount of time as the problem was
enlarged. The paper proposes the pipelined variant of the conjugate
gradient method (PCG), a formulation that is potentially better
suited for hybrid CPU/GPU computing since it requires only one
synchronization point per one iteration, instead of two for standard
CG. The standard and pipelined CG methods needs the vector entries
generated by current GPU and other GPUs for matrix-vector product.
So the communication between GPUs becomes a major performance
bottleneck on miltiGPU cluster. The article presents an approach to
minimize the communications between parallel parts of algorithms.
Additionally, computation and communication can be overlapped
to reduce the impact of data exchange. Using pipelined version
of the CG method with one synchronization point, the possibility
of asynchronous calculations and communications, load balancing
between the CPU and GPU for solving the large linear systems allows
for scalability. The algorithm is implemented with the combined use
of technologies: MPI, OpenMP and CUDA. We show that almost
optimum speed up on 8-CPU/2GPU may be reached (relatively to a
one GPU execution). The parallelized solver achieves a speedup of
up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to a one
GPU.

Keywords—Conjugate Gradient, GPU, parallel programming,
pipelined algorithm.

I. INTRODUCTION

H IGHLY heterogeneous HPC platforms, where multicore

processors are coupled with graphics processing units

(GPUs), have been widely used in high performance comput-

ing as one approach to continuing performance improvement

while managing the new challenge of energy efficiency [1]. Al-

though some software packages and programming languages

could be used directly, the introduction of multicore processors

in HPC resulted in redesign of some critical software packages

and significant refactoring of some existing parallel applica-

tions. Computing accelerators are contained in the computing

nodes of supercomputers and are used quite successfully in

solving many computing problems despite the fact that the

central processor (CPU) is idle after running the core functions

on the accelerator.

Each architecture of the CPU and GPU has unique features

and, accordingly, is focused on solving certain tasks for which

typical, for example, high performance or low latency. Hybrid

S. Kopysov, N. Nedozhogin and L. Tonkov is with the Institute of
Mathematics, Information Technologies and Physics, Udmurt State University,
Izhevsk, Russia, e-mail: s.kopysov@gmail.com, Nedozhogin07@gmail.com,
letonkov@mail.ru

CPU/GPU computing is one method of realizing performance

gains independent of the iterative method used. With hybrid

CPU/GPU computing, we focus on separating the compu-

tationally intensive portions of the program among several

workers, taking into account their different productivity.

Currently, many parallel algorithms have been proposed that

provide high performance and scalability when solving large

sparse systems of equations on modern multiprocessor with a

hierarchical architecture.

In [2] proposes a combination of a hybrid CPU-GPU and a

pure GPU software implementation of a direct algorithm for

solving shifted linear systems with a large number of complex

shifts and multiple right-hand sides.

In [2] proposes one of the implementations of the software

of a direct algorithm for solving shifting linear systems with

a large number of complex shifts and multiple right-hand

sides. This implementation combines hybrid CPU and GPU

and a pure GPU software implementation. The construction

of hybrid solvers with a combination of direct and iterative

methods for solving SLAE allows the use of several levels of

parallelism [3]–[7]. The separate steps of the CG algorithm

are executed on a CPU or GPU, such as a preconditioner [8].

In [9] task scheduling on Multi-CPUs/Multi-GPUs plat-

forms for the classical CG from the PARALUTION library

is executed in the StarPU. It’s unified runtime system for

heterogeneous multicore architectures which is developed in

the INRIA laboratory (France).

Our team considered one of the approaches a hybrid method

for solving systems of equations of Schur complement by

preconditioned iterative methods from Krylov subspaces was

built and implemented when used together the cores of cen-

tral (CPU) and graphic processing units (GPU) [10]. The

classical preconditioned conjugate gradient method(PCG) [11]

was applied for the block ordered matrix and the separation

of calculations in matrix operations between the CPU and

one or more GPUs, when the system of equations in Schur

complement was solved in parallel.

The Krylov subspace methods are some of the most effec-

tive options for solving large-scale linear algebra problems.

However, the classical Krylov subspace algorithms do not

scale well on modern architectures due to the bottleneck re-

lated to synchronization of computations. Pipeline methods of

the Krylov subspace [12] with hidden communications provide

high parallel scalability due to the global communications

overlapping with computing, performing matrix-vector and dot

products. The first work on reducing communications was

related to a variant of the conjugate gradient method, having

one communication at each iteration [13], using the three-term
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recurrence relations CG [14].

The next stage of development was the emergence of

s-step methods from Krylov subspaces [15], in which the

iterative process in the s-block uses various bases of Krylov

subspaces. As a result, it was possible to reduce the number of

synchronization points to one per s iterations. However, for a

large number of processors (cores), communications can still

take significantly longer than computing a single matrix-vector

product. In [16] it was proposed a CG algorithm using auxil-

iary vectors and transferring a sequential dependence between

the computing of matrix-vector product and scalar products

of vectors. In this approach, the latency of communications is

replaced by additional calculations.

In this paper, we consider the pipelined variant, which is

potentially better for heterogeneous multi-CPUs/multi-GPUs

computing, since it requires only one synchronization point

per iteration, instead of two for standard CG.

This paper presents a pipeline technique for conjugate

gradient method and discusses its parallel implementation on

multi-CPU/multi-GPU platform for solving large sparse linear

systems.Hybrid parallel computing approaches are adopted to

significantly improve performance of the solver. Specifically,

we introduce a hybrid solution by fully utilizing multi-core

nodes available through multi-threading techniques by means

of OpenMP, and exploit an access to massively parallel

hardware through GPU-offloading with CUDA, in which data

are transfered to the GPU for processing. The combination

of GPU-offloading and CPU-threading is explored through a

hybrid CPU/GPU compute implementation.

In our work, we modify the basic CG algorithm to minimize

the cost of collective communication. A modified but math-

ematically equal variant of the conjugate gradient algorithm

is employed to reduce the cost of global communication. By

using the modified algorithm, the three vector dot products

in each iteration can be done simultaneously with only one

nonblocking collective communication that can be further

overlapped with other operations.

II. PIPELINED ALGORITHM OF THE CONJUGATE GRADIENT

METHOD

We consider now the pipelined version of the conjugate

gradient method, which is mathematically equivalent to the

classical form of the preconditioned CG method and has the

same convergence rate.

In this algorithm, the modification of the vectors rj+1,

xj+1, sj+1, pj+1 and matrix-vector products provides pipeline

computations. The computation of dot products (line 4) can

be overlapped with the computation of the product by the

preconditioner (line 2) and the matrix-vector product (line 3).

However, the number of triads in the algorithm increases to

eight, in contrast to three for the classic version and four in

[15]. In this case, a parallel computation of triads and two

dot products at the beginning of the iterative process and one

synchronization point is possible.

The pipelined version CG presented in this work can be

used with any preconditioner. There are two ways to organize

computations in the preconditioned pipelined CG, which pro-

vide a compromise between scalability and the total number

Algorithm 1 Pipelined algorithm CGwO.

1 r = b−Ax
2 u = M−1r
3 w = Au
4 γ1 = (r, u)
5 δ = (w, u)
6 while ||r||2/||b||2 > ε do

7 m = M−1w ;

8 n = Am
9 if (j = 0) then

10 β = 0
11 else

12 β = γ1/γ0
13 end if

14 α = γ1/(δ − βγ1/α)
15 z = n+ βz; w = w − αz; s = w + βs; r = r − αs
16 p = u+ βp; x = x+ αp; q = m+ βq; u = u+ αq
17 γ0 = γ1
18 γ1 = (r, u); δ = (w, u)
19 end while

of operations. Thus, the CG pipeline scheme is characterized

by a different order of computations, the presence of global

communication, which can overlap with local computations,

such as matrix-vector product and operations with a pre-

conditioner, and the possibility of organizing asynchronous

communications.

The two variants of the conjugate gradient method were

compared: the classical scheme and the pipelined one. Table I

presents the results of numerical experiments where the exe-

cution time of a sequential version of the classical CG and the

CGwO pipelined scheme (Algorithm 1) executed on the CPU

and GPU are shown. Note that in the variants for the GPU,

joint computation of all dot products of vectors in one kernel

function was implemented, independently of each other. For

this, when starting the CUDA kernel, the dimension of the

Grid hierarchy of CUDA threads was set in two-dimensional

form: 3 sets of blocks, each for performing computations on

its own pair of vectors. This allowed us to reduce the number

of exchanges between the CPU and GPU memory, combining

all the resulting scalars in one communication.

Matrices from the SuiteSparse Matrix Collection [17] were

used in the test computations. The right hand side vector was

formed as a row-wise sum of matrix elements. Thus, the solu-

tion of the system Ax = b, dimension N×N (with the number

of nonzero elements nnz) is a vector x = (1, 1, . . . , 1)T .

For systems of equations of small dimension, the solution

time on the CPU according to the classical CG scheme is

significantly less than the GPU execution time for the same

number of iterations (see Table I). For large systems, the costs

of synchronization and forwarding between the CPU and GPU

overlap with the speed of the GPU. In the pipelined version

of CGwO, the computational execution costs on the GPU are

reduced almost threefold for all the considered systems of

equations only due to the reduction of exchanges between the

GPU and the CPU in the computation of dot products.
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III. CG WITH THE COMBINED USE OF CPU AND GPU

Let us consider the application of the Algorithm 1 for

the parallel solution of super-large systems of equations on

computing nodes, each of which contains several CPUs and

GPUs. To solve SLAEs on several GPUs, we construct a

block pipelined algorithm for the conjugate gradient method.

On heterogeneous platform, data exchange between different

GPUs within the same computing node is carried out with

OpenMP technology, and the exchange between different

computing nodes is carried out by MPI technology.

For example, consider a node containing a central eight-

core processor and two graphics accelerators. The number of

OpenMP threads is selected by the number of available CPU

cores. The first two OpenMP threads are responsible for ex-

changing data and running on two GPUs. Threads 2–6 provide

computations on the CPU and can perform computations on

a block of the SLAE matrix. The last thread provides data

exchange with other computing nodes by MPI.

A. Matrix partitioning

To divide the matrix A into blocks, we construct the graph

GA(V,E), where V = {i} is the set of vertices associated

with the row index of the matrix (the number of vertices is

equal to the number of rows of the matrix A); E = {(i, j)}
is the set of edges. Two vertices i and j are considered to be

connected if the matrix A has a nonzero element with indices

i and j. The resulting graph is divided into subgraphs whose

number is d.

For example, to split a graph, you can use the [18] layer-

by-layer partitioning algorithm, which reduces communication

costs due to the need to exchange only with two neighboring

computing nodes.

After that, each vertex of the graph is assigned its own GPU

or CPU. On each computing unit, the vertices are divided into

internal and boundary. The latter are connected with at least

one vertex belonging to another subgraph.

After partitioning, each block Ak of the original matrix A
contains the following submatrices:

• A
[ik,ik]
k – matrix associated with the internal vertices;

• A
[ik,bk]
k , A

[bk,ik]
k – matrices associated with the internal

and boundary vertices;

• A
[bk,bl]
k – matrix associated with the boundary vertices of

the k-th and l-th blocks.

Then the matrix A can be written in the following form:

A =

















A
[i1,i1]
1 A

[i1,b1]
1 · · · 0 0

A
[b1,i1]
1 A

[b1,b1]
1 · · · 0 A

[b1,bd]
1

...
...

. . .
...

...

0 0 · · · A
[id,id]
d A

[id,bd]
d

0 A
[bd,b1]
d · · · A

[bd,id]
d A

[bd,bd]
d

















.

We divide the matrix-vector product n = Am into two

components by using the obtained partition:

nb
k = A

[bk,ik]
k mi

k+

l≤d
X

l=1

A
[bk,bl]
k mb

l , ni
k = A

[ik,ik]
k mi

k+A
[ik,bk]
k nb

k.

(1)

Here k corresponds to the computing device. The block

representation of the vectors involved in the algorithm is

inherited from the matrix partitioning. For example, the vector

m has the form mT =
!

mi
1,m

b
1, . . . ,m

i
k,m

b
k, . . . ,m

i
d,m

b
d

�

.

The implementation of the matrix-vector product reduces the

cost of communication between blocks at each iteration of

conjugate gradient method. To perform this operation, an

exchange of vectors mb
k is required, the size of which is less

than the dimension of the initial vector m.

The partitioning of the preconditioner M is carried out in

a similar way.

B. Block pipelined algorithm

The matrix blocks were mapped on the available CPU and

GPU with the block partitioning of the matrix and vectors. The

number and size of blocks let on to map the load in accordance

with the performance of the computing units, including the

allocation of several blocks to one.

Let us represent parallel block scheme of the method CGwO

that is performed each k-th computing unit in the form of

Algorithm 2. Two parallel branches of this algorithm are

executed accordingly on the CPU and CPU/GPU. Operations

performed in parallel are shown in one line of the algorithm.

Vector operations on each computing unit occur in two stages,

for internal and boundary nodes. The designations of the

internal and boundary nodes for vectors are omitted, with the

exception of the matrix-vector multiplication. Dot products are

performed independently by each computing unit on its parts

of vectors. The summation of intermediate scalars occurs in

parallel threads responsible for communication, which is the

synchronization point at each iteration of the algorithm.

In block CGwO, compared to Algorithm 1, the precondi-

tioning step has been moved (line 7 to line 20). This is done

in order to combine vector operations on the computing unit

and the assembly of the vector parts of the right hand side to

perform matrix-vector multiplication in preconditioning. The

31 line on the right uses the ternary operator: if j = 0, then

β = 0, in other cases β = γ1/γ0. The subscript h is used for

vectors that are stored only in CPU memory.

C. MPI+OpenMP+CUDA programming model

Numerical experiments on the Algorithm 2 were carried

out on heterogeneous platform with various configuration of

computing nodes containing several CPUs and GPUs. In the

general case, the parallel computing on several heterogeneous

computing nodes containing one or more CPUs and sev-

eral GPUs is implemented by the combination of several

technologies: MPI, OpenMP and CUDA. In this article, the

approach is to properly divide the computational workload

between the CPU and the GPU, so that the CPU can aid the

GPU in sharing the computational costs. Our programming

strategy is based on implementation strategy, where a hybrid

MPI+CUDA+OpenMP programming model is used to realize

concurrent CPU+GPU computations. The principal concept for

the strategy is to overlap computation with communication

using OpenMPs nested parallelism capability to generate two

independent groups of threads. The first thread group handles
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Algorithm 2 Block algorithm CGwO performed on k-th device

Require: Matrix partitioning into blocks A
[ik,ik]
k , A

[ik,bk]
k , A

[bk,ik]
k , A

[bk,bl]
k .

1 r = b
2 u = M−1r

Parallel algorithm branches

(CPU ∨ GPU)k
3 wi

k = A
[ik,ik]
k · ui

k +A
[ik,bk]
k · ub

k

4 wb
k = A

[bk,bk]
k · ub

k +A
[bk,ik]
k · ui

k

5 wb
k = wb

k + wb
h

6 m = M−1w
7 γ1k = (rk, uk); δk = (wk, uk)
8 while ||r||2/||b||2 > ε do

9 ni
k = A

[ik,ik]
k ·mi

k +A
[ik,bk]
k ·mb

k

10 nb
k = A

[bk,bk]
k ·mb

k +A
[bk,ik]
k ·mi

k

11 nb
k = nb

k + nb
h

12 z = n+ βz
13 w = w − αz
14 q = m+ βq
15 s = w + βs
16 p = u+ βp
17 x = x+ αp
18 r = r − αs
19 u = u+ αq
20 m = M−1w
21 γ0 = γ1
22 γ1k = (rk, uk); δk = (wk, uk)
23 end while

CPU

24 Assembly of the vectors ub
k

25 wb
h =

Pl≤d
l=1,l6=k A

[bk,bl]
k · ub

k

26 Copying wb
h on the GPUk

27 Assembly of the vectors mb
k

28 Assembly δ =
P

k δk; γ1 =
P

k γ1k

29 nb
h =

Pl≤d

l=1,l6=k A
[bk,bl]
k ·mb

k

30 Copying nb
h on the GPUk

31 β = ((j = 0) ? 0 : γ1/γ0)
32 α = γ1/(δ − βγ1/α)

33 Assembly of the vectors wb
k

34 Assembly vectors mb
k

35 Assembly δ =
P

k δk; γ1 =
P

k γ1k

the CUDA, MPI communication and computation of the halo

boundary points on the CPU using OpenMP threads. The

second thread group computes the interior points on the CPU.

Let us consider the software organization of computations

using as example some cluster, which includes two computing

nodes (8-CPU cores and 2-GPUs). Each computing node is

associated with a parallel MPI process. In a parallel process,

9 parallel OpenMP threads are generated, which is one more

than the available CPU cores. The eighth OpenMP thread

is responsible for communications between different com-

puting nodes (using MPI technology, vector assembly using

the Allgatherv function, adding scalars Allreduce) and

various GPUs. In the 2 Algorithm, the operations performed

by this thread are presented to the right. Zero and first

OpenMP threads are the host threads for one of the available

GPU devices and are responsible for transfer data between

the GPU/CPU (calls to asynchronous copying functions) and

auxiliary computations. Each available GPU device (further

considered as a computing unit) is associated with one of the

parallel OpenMP threads, which is responsible for transfer-

ring data between the GPU and CPU (calls to asynchronous

copy functions) and participates with the eighth treads in

matrix-vector product on boundary vertices (lines 25, 29 right

column). The remaining parallel threads (second to seventh)

perform the calculations as a separate computing unit for their

matrix block. The operations performed by computing units in

the 2 Algorithm are shown on the left.

The preconditioning in lines 2, 6 and 20 implies the use of

block matrix-vector multiplication of the form (1) considered

above.

IV. NUMERIC RESULTS

To evaluate the presented algorithm, two series of tests were

carried out: on synthetically generated matrices from HPCG

test [19] and matrices takes from the University of Florida

Sparse Matrix Collection [20].

A. Benchmarking with HPCG Matrices

The High Performance Conjugate Gradient (HPCG) [19] is

a benchmark program that solves a sparse linear system arising

in solving a three-dimensional heat diffusion problem. HPCG

intends to solve the linear system generated from the finite

difference discretization of the Poisson equation: − △ u =
b , with homogeneous Dirichlet boundary conditions applied

along the boundary of a three-dimensional cubic domain Ω.

Based on a semistructured mesh with equidistant mesh spaces

in the x, y and z directions, respectively, the discretization

employed in HPCG leads to a second-order accurate 27-point

stencil.

The resulting sparse linear system has the following prop-

erties: A — sparse matrix with 27 nonzero entries per row for
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Fig. 1. Scalability of the block algorithms CGwO by CPU and GPU

interior equations and 7 to 18 nonzero terms for boundary

equations; A — symmetric, positive definite, nonsingular

linear operator.

We generate a synthetic symmetric positive definite (SPD)

matrix A using an array-of-pointers-style compressed sparse

row format, an exact solution vector of all 1.0 values, a

corresponding right-hand-side vector b, and initial guess for x

of all 0.0 values. The sparsity pattern of the synthetic matrix

is really a regular 27-point 3-dimensional stencil pattern.

We tested one CPU performance on the Uran cluster based

on three typical data sizes, including:

1) 125× 125× 160, nnz = 66503662;

2) 160× 160× 201, nnz = 137318884;

3) 200× 200× 250, nnz = 267487792;

4) 250× 250× 310, nnz = 519219712;

5) 310× 310× 390, nnz = 1005862912;

6) 390× 390× 485, nnz = 1986735009;

In all variants, the pipelined version of CG converged in 43

iterations with ε equal to 10−6. For example, the solving time

of the first three data sizes on one OpenMP thread were 8.39,

17.41, 33.22 seconds, respectively. We were able to obtain the

result only for the first two sizes: 1.33, 2.72 when using single

GPU. The remaining data sizes is not placed in the memory

of one graphics accelerator. These results allow us to estimate

that the performance of one OpenMP thread is approximately

6.5 times lower than the performance of single GPU for the

linear system solving by the conjugate gradient method.

Performance metrices are executed and compared through

scalability studies and absolute runtime results. To estimate

the computational performance and the impact of MPI and

OpenMP communications, our numerical experiments were

executed with different numbers of CPUs and GPUs. The

results are shown in the diagrams 1 and 2. Each diagram

corresponds to the number of cluster nodes (n-CPU) involved

in the computations and the number of graphics accelerators

on each node (m-GPU).

The 3 diagram shows the results by subdomains for the

case when 2 GPUs are used per computational node. Here,

the matrix size of the linear system is approximately doubled.

It can be noted that, starting from a size equal to 10,000,000,

there is a good scalability of the algorithm. The problem

execution time remains practically unchanged by doubling the

problem size and doubling the number of subdomains.
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Fig. 2. Scalability of the block algorithms CGwO by CPU and GPU(continue)
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B. Benchmarking on the SuiteSparse Matrix Collection

The results of comparing two algorithms of the conjugate

gradient method on SLAEs containing test matrices [19] are

considered. The problems range from small matrices, used as

counter-examples to hypotheses in sparse matrix research, to

large test cases arising in large-scale computation.

In the standard PCG algorithm, three dot products need to be

done per iteration, with each one requiring a global collective

communication that may substantially degrade the scalability

at scale. In order to reduce the global communication over-

head, we employ a reformulated but mathematically equivalent

variant of the basic PCG algorithm, the pipelined Block PCG.

As shown in Algorithm 2, the pipelined PCG method has

two advantages. First, only one global reduction is required for

each iteration. Second, the global reduction can be overlapped

with the matrix-vector product and with the application of the

preconditioner.

Figure 4 presents the results of accelerating the block

algorithms of the conjugate gradient method, when divided

Inline_1 Fault_639 thermal2 Quenn_4147

2

4

6

Matrices

S
p
ee

d
u
p

8 CG 8 CGwO

12 CG 12 CGwO

16 CG 16 CGwO

Fig. 4. Speedup of the block algorithms CG and CGwO
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into a larger number of blocks, accordingly 8, 12 and 16. To

compute the speedup, parallel application was run repeatedly

with different mapping of subdomains to several CPUs and

GPUs. For example, in the case of 12 subdomains, variants

were considered: 2 CPUs with 6 GPUs, 3 CPUs with 4 GPUs,

6 CPUs with 2 GPUs. The best time is shown.

The results of comparing two algorithms of the conjugate

gradient method on SLAEs containing test matrices are pre-

sented in Table I. The results are given for several types of

computing nodes using a single graphics accelerator.

The matrices are ordered by increasing the order of the

system of equations (N ) and the number of nonzero elements

(nnz). Bold indicates the best time to solve the system in

each case. The pipelined algorithm CGwO showed a reduction

in execution time on small SLAEs which are characterized

by a small computing load, due to which a reduction in

communications provides less time. Note that the classic CG

algorithm was implemented based on CUBLAS, while the

CGwO variant uses matrix and vector operations of its own

GPU implementation.

For systems Inline_1 and Fault_639, the execution

time of the pipelined algorithm is 10 and 13.5% longer than the

block version of CG, which is associated with additional vector

operations that are not blocked by reduced communications.

With a decrease in the number of iterations, for example,

for solving a large system with G3_circuit) with an

approximately equal number of equations with thermal2,

the execution time of the CG and CGwO algorithms on

one GPU increases slightly. For the system (thermal2 and

G3_circuit) the increase in costs becomes more significant.

Table II presents the results of the block variant of the

algorithms for computing on several computing nodes for

systems with small dimension matrices. Here are the results

for 2 and 3 subdomains. Each subdomain was considered on

a separate computing node. Communications were carried out

using MPI technology. A significant influence of network char-

acteristics on the performance of block methods can be seen

in Table II for system of equations with matrix 1138_bus.

Computations for these SLAEs were performed at various

computing nodes with different throughput and latency of

the network. In numerical experiments on the CNs (partition

“debug”) connected by a Gigabit network, communication

costs significantly increase the execution time of the CG

algorithm. For example, in the variant 1138_bus on the

cluster partition “debug”, the execution time of the pipeline

algorithm is 3.6 times less (the line “debug” in Table II and any

row in Table I). Using the Infiniband 20 Gb/s communication

network reduces the execution time for all presented systems

of equations (lines “M2090” and “K40m”).

When reducing the computational load, a decrease in the

number of synchronization points and the consolidation of

transfers per transaction is more pronounced. This shows a

comparison of systems with matrices Kuu and Muu. Both

systems have an equal number of equations and nonzero ele-

ments, but the conditionality of these matrices is significantly

different and, as a consequence, the number of iterations in

the conjugate gradient method is different. Table I shows

that using the pipeline algorithm for the matrix Muu gives

speedup by 70 times, compared with the matrix Kuu, where

the speedup is only 2.8.

The speedup was considered relative to the option on one

GPU from Table I. An application that implements this algo-

rithm was executed in the exclusive mode of the computing

node but not of the network.

As can be seen from the presented results, the pipelined

CG shows the speedup greater than the classic version of

conjugate gradient method. Wherein, for the largest of the

considered matrices Quenn_4147, the speedup achieves 5.49

times, while the classical version gives 3.92 as maximum. For

the strongly sparse matrix thermal2, block algorithms don’t

give high speedup (maximum is 1.56), since the computational

load depends mainly on the number of the nonzero elements.

An analysis of the results showed that reducing the data size

due to the matrix partitioning and reducing the synchronization

points slightly decrease the impact of communication costs on

the total algorithm performance. Only the use of computing

nodes connected by Infiniband allowed us to get speedup

when computing on several computing nodes. The matrix

partitioning into blocks allowed to decrease the execution

time of the pipelined block algorithm in comparison with the

conjugate gradients on one node on the matrices Inline_1,

Fault_639 by reducing the computational load on one GPU.

Large systems thermal2, G3_circuit, solved by the

block of the CGwO algorithm, as well as the reduction

in communications costs and synchronization points, do not

overlap the increasing costs of additional vector operations.

V. CONCLUSION

The heterogeneous computing platforms containing and

sharing CPU + GPUs provide an effective solution to a wider

range of problems with high energy efficiency when CPU and

GPUs are uniformly loaded.

The parallel implementation of the solution of systems

of linear algebraic equations on a heterogeneous platform

was considered. The performance of parallel algorithms for

classical conjugate gradient method is significantly limited

by synchronization points when using the CPU and GPU

together. A pipelined algorithm of the conjugate gradient

method with one synchronization point was proposed. Also,

it is provided the possibility of asynchronous computations,

load balancing between several GPUs located both on the

same computing node and for a GPU cluster when solving

systems of large-dimensional equations. To further increase the

efficiency of calculations, it is supposed to study not only the

communication load of the algorithms but also the distributing

of the computational load between the CPU and GPU. To

obtain more reliable evaluation of communications costs, it is

necessary to conduct a series of computational experiments on

supercomputer with a completely exclusive mode of operation

and a large number of heterogeneous nodes.

The following conclusions can be drawn from the analysis

of data obtained during numerical experiments: the use of a

pipeline algorithm reduces communication costs, but increases

computational ones. For systems of small sizes or with a small

number of iterations, this reduces the execution time of the
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TABLE I
STATISTICS OF THE TEST PROBLEMS. PROBLEM NAMES, DIMENSIONS (N ), NUMBER OF NONZEROS (nnz), DEVICE TYPE (DT) AND PROBLEM ANALYSIS

IN TERMS OF THE TIMING IN SECONDS.

Matrix N nnz # iter. DT
Time, s

CG CGwO

Plat362 362 5786 991 M2090 6.88E-01 3.07E-01
K40m 4.13E-01 3.12E-01

1138_bus 1138 4054 717 M2090 3.81E-01 1.84E-01
K40m 5.31E-01 2.01E-01
debug 6.82E-01 1.90E-01

Muu 7102 170134 12 M2090 2.64E-01 4.68E-03
K40m 3.31E-01 4.55E-03

Kuu 7102 340200 378 M2090 4.31E-01 1.31E-01
K40m 4.39E-01 1.35E-01

Pres_Poisson 14822 715804 661 M2090 6.72E-01 3.13E-01
K40m 6.346E-01 2.73E-01

Inline_1 503712 36816342 5642 M2090 4.74E+01 5.17E+01
K40m 3.06E+01 3.37E+01

Fault_639 638802 28614564 4444 M2090 3.83E+01 4.32E+01
K40m 2.44E+01 2.77E+01
debug 2.44E+01 2.77E+01

thermal2 1228045 8580313 2493 M2090 1.35E+01 1.82E+01
K40m 8.33E+00 1.18E+01

G3_circuit 1585478 7660826 592 M2090 3.43E+00 4.32E+00
K40m 1.94E+00 2.92E+00

Quenn_4147 4147110 399499284 8257 M2090 5.46E+02 5.78E+02
K40m 3.55E+02 3.75E+02

TABLE II
TIME OF SOLVING BY THE BLOCK ALGORITHMS CG AND CGWO ON CPU/GPU, S.

Matrix/DT
CG/#blocks CGwO/#blocks

2 3 2 3

Plat362/M2090 1.55E+00 1.22E+00
/K40m 1.92E+00 1.56E+00 1.28E+00 1.31E+00

1138_bus/M2090 1.84E+00 9.28E-01
/K40m 1.90E+00 1.85E+00 1.03E+00 1.04E+00
/debug 1.25E+01 5.36E+00

Muu/M2090 6.12E-01 2.29E-01
/K40m 6.59E-01 5.64E-01 2.89E-01 2.88E-01

Kuu/M2090 1.30E+00 6.43E-01
/K40m 1.29E+00 1.36E+00 6.81E-01 7.95E-01

Pres_Poisson/M2090 1.55E+00 9.57E-01
/K40m 1.60E+00 1.66E+00 1.02E+00 1.19E+00

G3_circuit/M2090 4.27E+00 3.99E+00
/K40m 4.04E+00 3.510E+00 3.27E+00 2.77E+00

algorithm when using a single GPU. For systems of large

dimensions, a reduction in execution time, in comparison with

CG, is possible only with a sufficiently small partition of the

matrix into blocks, in which the increased computing costs

overlap the communication decrease.

The proposed block algorithms, in addition to reducing the

execution time, allow solving large linear systems that requires

memory resources not provided by one GPU or computing

node. At the same time, the pipelined block algorithm reduces

the overall execution time by reducing synchronization points

and combining communications into one message.

ACKNOWLEDGMENT

The research was performed using computing resources of

the collective use center of IMM UB RAS ”Supercomputer

center of IMM UB RAS”.

This research was funded by the Ministry of Science and

Higher Education of the Russian Federation in the framework

of state assignment No. 075-00928-21-01, project FEWS-

2020-0010.

REFERENCES

[1] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous
computing techniques,” ACM Comput. Surv., vol. 47, no. 4, Jul. 2015.
[Online]. Available: https://doi.org/10.1145/2788396

[2] N. Bosner, Z. Bujanovi, and Z. Drma, “Parallel solver for shifted
systems in a hybrid CPU–GPU framework,” SIAM Journal on Scientific
Computing, vol. 40, no. 4, pp. C605–C633, 2018.

[3] E. Agullo, L. Giraud, A. Guermouche, and J. Roman, “Parallel hierar-
chical hybrid linear solvers for emerging computing platforms,” Comptes

Rendus Mecanique, vol. 339, no. 2, pp. 96–103, Feb. 2011.
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