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INTERACTION BETWEEN SUBBANDS

IN A QUASI-ONE-DIMENSIONAL SUPERCONDUCTOR

Yu. P. Chuburin∗ and T. S. Tinyukova†

In the framework of the Bogoliubov–de Gennes equation, we study the spinless p-wave superconductor in

an infinite strip in the presence of some impurity. We analytically determine the wave functions of stable

bound states with energies close to edge points of the energy gap. We prove that for a small impurity

potential, the contribution of the nearest subbands to the wave functions in the case of energy values

close to edge points is very small, and these energy levels are significantly closer to the gap edge than

in the one-dimensional case. We also study the bound states with nearly zero energy values; in contrast

to the one-dimensional case, they do not have the “particle–hole” symmetry. In the cases under study,

in addition to the bound states, there also exit resonance states related to them.
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1. Introduction

The topological superconductors and Andreev bound states (ABSs) with energies in the energy gap

(including Majorana bound states (MBSs), which are quasiparticles of “electron–hole” type, have zero

energy, and obey non-Abelian quantum statistics) have been actively investigated in the last 15 to 20 years.

The non-Abelian statistics of MBSs opens up prospects for their use in quantum computations (see, e.g.,

reviews [1]–[3]).

The existence of MBSs is related to the presence of a zero-bias conductance peak in the topologi-

cal phase [4]–[7]. However, such peaks can also be generated by ABSs with nearly zero energy, also in

the nontopological mode [8], [9]. In theoretical studies of ABSs and MBSs, one-dimensional models are

typically used, but when the nearest subbands are sufficiently populated, their influence must be taken

into account [10]. The interaction of subbands increases the value of the conductance peak [11], [12]; the

peak can then be caused by ABSs due to the repulsion of levels near the subbands [13]. The problem of

distinguishing between ABSs and MBSs is very important; its solution can be facilitated, in particular,

by theoretical studies of the localization of quasiparticles and of the presence of “particle–hole” symmetry

in them (the conjugation conditions in the spinless case, see (37) below) [13], [14].
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In this paper, the Bogoliubov–de Gennes (BdG) equation is used to investigate a model of a spinless

superconductor with p-wave order in an infinite strip in the presence of an impurity (cf. the finite model with

p-wave superconductivity studied in [15]). The energies and wave functions of ABSs arising in low-energy

subbands and interacting with each other due to the impurity potential are studied analytically. The most

interesting are the bound and associated resonance (decaying) states with energies near the edges of the

superconducting gap (cf. [16], [17]), as well as the states with nearly zero energy, among which, generally

speaking, there may be states close to Majorana states. We here prove that for a small potential, the

contribution of the nearest subbands to the wave functions in the case of energy values close to the gap

edge is very small, and these energy levels are significantly closer to the gap edge than in the one-dimensional

case. The ABSs with nearly zero energies, unlike in the one-dimensional case, do not have “particle–hole”

symmetry (cf. the numerical results in [13]), and the contribution from the nearest subbands to their wave

functions can be large. We show that in the topologically nontrivial phase, ABSs can turn into resonance

states as the system parameters change.

2. ABSs with energy values near the superconducting gap edges

In the case of a two-dimensional p-wave superconductor, the BdG Hamiltonian has the form [3], [18]

H =

(
−∂2x − ∂2y − μ Δ(−∂x + i∂y)

Δ(∂x + i∂y) ∂2x + ∂2y + μ

)
, (1)

where Δ is a real pairwise interaction strength and μ is the chemical potential. Hamiltonian (1) acts on

functions of the form

Ψ(x, y) = (ψe(x, y), ψh(x, y))
T,

where ψe(x, y) and ψh(x, y) are the electron and hole components and the superscript T denotes transpo-

sition. We assume that the function Ψ(x, y) is defined in the strip −∞ < x < ∞, 0 < y < l and satisfies

periodic boundary conditions in y:

Ψ(x, l) = Ψ(x, 0), ∂yΨ(x, l) = ∂yΨ(x, 0).

The spectrum of H is described by the inequality |E| � |μ| (see the Appendix).

The following representation holds for Ψ(x, y):

Ψ(x, y) =
1√
l

∞∑
n=−∞

Ψn(x)e
−2πiny/l, (2)

where

Ψn(x) = (ψ(n)
e (x), ψ

(n)
h (x))T =

1√
l

∫ l

0

Ψ(x, y)e2πiny/l dy.

The operator H in the nth subband, i.e., in the subspace of functions Ψ(x)e−2πiny/l, has the form

H(n) =

⎛
⎜⎜⎝
−∂2x +

(
2πn

l

)2
− μ Δ

(
−∂x + 2πn

l

)

Δ

(
∂x +

2πn

l

)
∂2x −

(
2πn

l

)2

+ μ

⎞
⎟⎟⎠ .

We further consider the perturbed Hamiltonian H + V , where V = V (x, y) is the impurity potential

V = Z

(
1 0

0 −1

)
(e−2πiy/l + e2πiy/l)δ(x), (3)
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where Z is a real parameter and δ(x) is the Dirac delta function. To obtain analytic results, we consider

only the low-energy subbands corresponding to the values n = 0,±1. We are interested in stable ABSs

with energies E that are close to edge points of the energy gap, and also in ABSs with nearly zero energy

(cf. the one-dimensional case [16] and the finite model with an MBS at the ends of the strip [15]). The wave

functions of the considered quasiparticles satisfy the BdG equation

(H + V )Ψ = EΨ. (4)

We use (1)–(3) to write Eq. (4) as

(H(0) − E)

(
ψ
(0)
e (x)

ψ
(0)
h (x)

)
= −Z

(
ψ
(1)
e (x) + ψ

(−1)
e (x)

−(ψ
(1)
h (x) + ψ

(−1)
h (x))

)
δ(x),

(H(±1) − E)

(
ψ
(±1)
e (x)

ψ
(±1)
h (x)

)
= −Z

(
ψ
(0)
e (x)

−ψ(0)
h (x)

)
δ(x).

(5)

The Green’s function G(0)(x−x′, E) of the Hamiltonian H(0), in other words, the kernel of the resolvent

(H(0) − E)−1, is (see [16])

G(0)(x− x′, E) =

⎛
⎜⎝−g(1)+ eip

(0)
+ |x−x′| − g

(2)
− eip

(0)
− |x−x′| Δ

4a
A sgn(x− x′)

−Δ

4a
A sgn(x− x′) g

(1)
− eip

(0)
+ |x−x′| + g

(2)
+ eip

(0)
− |x−x′|

⎞
⎟⎠ , (6)

where

A = eip
(0)
+ |x−x′| − eip

(0)
− |x−x′|, a =

√
E2 +

Δ4

4
− μΔ2, p

(0)
± =

√
μ± a− Δ2

2
,

g
(1)
± =

a−Δ2/2± E

4ip
(0)
+ a

, g
(2)
± =

a+Δ2/2± E

4ip
(0)
− a

(p
(0)
± coincides with p± in (A.7) for n = 0).

We first consider the case of a topologically nontrivial phase μ > 0 (see [1], [2]) and the energyE = μ−ε,
where 0 < ε � μ, near the upper edge of the gap. To calculate (H(±1) − E)−1 (see the Appendix),

we assume that |μ| � min{|Δ|,Δ2} and the quantities μ and 1/l have the same order of magnitude.

Using (6) and (A.9), we rewrite the first equation in (5) as

ψ(0)
e (x) =

Z

2|Δ|
(√

ε

2μ
e−

√
2με|x/Δ| − e−|Δx|

)
(ψ(1)

e (0) + ψ(−1)
e (0)) +

+
Z

2Δ

(
e−

√
2με|x/Δ| − e−|Δx|

)
sgn(x)(ψ

(1)
h (0) + ψ

(−1)
h (0)),

ψ
(0)
h (x) =

Z

2Δ

(
e−

√
2με|x/Δ| − e−|Δx|

)
sgn(x)(ψ(1)

e (0) + ψ(−1)
e (0)) +

+
Z

2|Δ|
(√

2μ

ε
e−

√
2με|x/Δ| − e−|Δx|

)
(ψ

(1)
h (0) + ψ

(−1)
h (0)).

(7)

We put x
(n)
e(h) = ψ

(n)
e(h)(0). From (7) with x = 0, we approximately derive the equations

x(0)e = − Z

2|Δ|(x
(1)
e + x(−1)

e ), x
(0)
h =

Z

2|Δ|

√
2μ

ε
(x

(1)
h + x

(−1)
h ). (8)
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Using (8) and (A.11), we write the second equation in (5) as

ψ(±1)
e (x) =

Z2 sgnΔ

4Δ2

(
sgn(Δ)e−|Δx|(x(1)e + x(−1)

e )±
√

2μ

ε
e−(2π/l)|x|(x(1)h + x

(−1)
h ) +

+

√
2μ

ε
(e−(2π/l)|x| − e−|Δx|)(x(1)h + x

(−1)
h ) sgn(x)

)
,

ψ
(±1)
h (x) =

Z2 sgnΔ

4Δ2

(
±e−(2π/l)|x|(x(1)e + x(−1)

e )−
√

2μ

ε
sgn(Δ)e−|Δx|(x(1)h + x

(−1)
h )−

− (e−(2π/l)|x| − e−|Δx|)(x(1)e + x(−1)
e ) sgn(x) +

√
2μ3/2

Δ
√
ε(π/l)

e−(2π/l)|x|(x(1)h + x
(−1)
h )

)
,

(9)

whence, for x = 0, we obtain

x(±1)
e =

Z2

4|Δ|
(
sgn(Δ)(x(1)e + x(−1)

e )±
√

2μ

ε
(x

(1)
h + x

(−1)
h )

)
,

x
(±1)
h =

Z2

4|Δ|
(
±(x(1)e + x(−1)

e )−
√

2μ

ε
sgn(Δ)(x

(1)
h + x

(−1)
h ) +

√
2μ3/2

Δ
√
ε(π/l)

(x
(1)
h + x

(−1)
h )

)
.

(10)

We now approximately rewrite (10) as the system

x(±1)
e = ±Z

2 sgn(Δ)

4Δ2

√
2μ

ε
(x

(1)
h + x

(−1)
h ),

x
(±1)
h =

Z2

4Δ2

√
2μ

ε

(
μ

|Δ|(π/l) − 1

)
(x

(1)
h + x

(−1)
h ).

(11)

We put

σ =
Z2

4Δ2

√
2μ

ε

(
μ

|Δ|(π/l) − 1

)
,

then the second equation in (11) becomes(
1− σ −σ
−σ 1− σ

)(
x
(1)
h

x
(−1)
h

)
= 0, (12)

whence we obtain the existence condition for the solution of this equation: σ = 1/2. Thus, we have

x
(1)
h = x

(−1)
h = C = const. From the first equation in (11), we derive

x(±1)
e = ±CZ

2 sgn(Δ)

2Δ2

√
2μ

ε
. (13)

The relation σ = 1/2, which means that there are ABSs with energy close to the upper edge of the

superconducting gap, can be written in the form that shows the dependence of the level on the system

parameters:
√
ε =

Z2
√
2μ

2Δ2

(
μ

|Δ|(π/l) − 1

)
. (14)

In particular, a bound state exists only if |Δ| < μ/(π/l) (see below for the case |Δ| > μ/(π/l)).

Taking into account that the norm ||e−2με|x/Δ||| in the space L2(−∞,∞) of square integrable functions

on the real axis, which is proportional to ε−1/2, is much greater than the norm ||e−|Δx||| for small ε, from (7)

we approximately obtain

ψ(0)
e (x) =

CZ

Δ
e−

√
2με|x/Δ| sgn(x), ψ

(0)
h (x) =

CZ

|Δ|

√
2μ

ε
e−

√
2με|x/Δ|. (15)
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Taking (13) and the inequality ||e−|Δx||| � ||e−(2π/l)|x||| into account, from (9) for small ε, we have

ψ(±1)
e (x) =

CZ2 sgn(Δ)

2Δ2

√
2μ

ε
(sgn(Δ)± 1)e−(2π/l)|x|,

ψ
(±1)
h (x) =

CZ2μ sgn(Δ)

2(π/l)Δ3

√
2μ

ε
e−(2π/l)|x|.

(16)

Using (2), (15), and (16), we determine the form of the wave function

Ψ(x, y) =

(
0

1

)
e−

√
2με |x/Δ| +

Z

2Δ

((
2θ(x)

μ/(Δ(π/l))

)
e−2πiy/l +

+

(
−2θ(−x)
μ/(Δ(π/l))

)
e2πiy/l

)
e−(2π/l)|x|. (17)

Similarly, using (A.12), we study the case E = −μ+ ε; the existence condition for ABSs then coincides

with (14) and the wave function becomes

Φ(x, y) =

(
1

0

)
e−

√
2με |x/Δ| +

Z

2Δ

((
μ/(Δ(π/l))

−2θ(−x)

)
e−2πiy/l +

+

(
μ/(Δ(π/l))

2θ(x)

)
e2πiy/l

)
e−(2π/l)|x|. (18)

We now consider the case of a topologically trivial phase μ < 0 (see [1], [2]); for the energies close to

the upper edge of the gap, we then have E = |μ|− ε = −μ− ε, where 0 < ε� |μ|, and it is necessary to use

Eqs. (A.12) (instead of (A.11) in the case μ > 0; we use (A.11) for E = −|μ| + ε = μ + ε). We write the

ABS existence condition
√
ε =

Z2
√
2|μ|

2Δ2

( |μ|
|Δ|(π/l) + 1

)
(19)

and the wave function

Ψ(x, y) = −
(
1

0

)
e−

√
2με |x/Δ| +

Z

2Δ

((
|μ|/(Δ(π/l))

2θ(−x)

)
e−2πiy/l +

+

(
|μ|/(Δ(π/l))

−2θ(x)

)
e2πiy/l

)
e−(2π/l)|x|. (20)

For E = μ + ε ≈ −|μ|, the existence condition for an ABS coincides with (19), and the wave function

becomes

Φ(x, y) = −
(
0

1

)
e−

√
2με |x/Δ| +

Z

2Δ

((
−2θ(x)

|μ|/(Δ(π/l))

)
e−2πiy/l +

+

(
2θ(−x)

|μ|/(Δ(π/l))

)
e2πiy/l

)
e−(2π/l)|x|. (21)
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We next consider the case μ > 0 and, for example, E = μ−ε. Then up to factors, the Green’s function

of the one-dimensional BdG Hamiltonian contains the Green’s function of the Hamiltonian −∂2x of the form√
2μ/ε e−

√
2με|x/Δ| (see (7)), where ε is the energy of a quasiparticle referenced to the gap edge. In the

transition to the second (“nonphysical”) sheet of the Riemann surface of the square root
√
ε (or, which is

the same, the Green’s function (6)), the sign of the square root is reversed, and relation (14) is satisfied

for |Δ| > μ/(π/l). Simultaneously, by (7), the wave function becomes exponentially increasing (in the

stationary approach), i.e., describes a resonance state. At the time of transition to the second sheet, ε = 0

and hence E = μ. Thus, when the level corresponding to an ABS reflects from the gap edge, it is already

a resonance state (a similar effect occurs in the one-dimensional case when Z changes sign [17]). The life

time of the considered resonance state is inversely proportional to
√
2με/|Δ| [19] and is therefore large.

We note that as follows from (14), the topological phase transition, i.e., a decrease in μ to negative values,

results in the change of the sign of ε. This means that the resonance state turns into a continuous spectrum.

In the trivial phase, μ < 0 for small Z, there always exist ABSs with energy values close to the edge.

3. ABSs with nearly zero energy values

Under the same conditions as above, we consider the case of small energies E = ε, |ε| � |μ|. In the

case of a topologically nontrivial phase μ > 0, using (6) and (A.9), we write the first equation in (5) in

the form

ψ(0)
e (x) =

Z

2|Δ|
(√

μ− ε

μ+ ε
e(−

√
μ2−E2/|Δ|)|x| − e−|Δx|

)
(x(1)e + x(−1)

e ) +

+
Z

2Δ
(e−|μx/Δ| − e−|Δx|) sgn(x)(x(1)h + x

(−1)
h ),

ψ
(0)
h (x) =

Z

2Δ
(e−|μx/Δ| − e−|Δx|) sgn(x)(x(1)e + x(−1)

e ) +

+
Z

2|Δ|
(√

μ+ ε

μ− ε
e(−

√
μ2−E2/|Δ|)|x| − e−|Δx|

)
(x

(1)
h + x

(−1)
h ).

(22)

From (22) for x = 0, using the approximate relation

√
μ∓ ε

μ± ε
= 1∓ ε

μ
, (23)

we derive the equations

x(0)e = − εZ

2|Δ|μ(x
(1)
e + x(−1)

e ), x
(0)
h =

εZ

2|Δ|μ (x
(1)
h + x

(−1)
h ). (24)

Using (A.13) and (24), from the second equation in (5), we obtain

ψ(±1)
e (x) =

εZ2 sgn(Δ)

4Δ2μ

(
sgn(Δ)e−|Δx|(x(1)e + x(−1)

e )± e−(2π/l)|x|(x(1)h + x
(−1)
h )−

− μ

2Δ(π/l)
e−(2π/l)|x|(x(1)e + x(−1)

e ) + (e−(2π/l)|x| − e−|Δx|)(x(1)h + x
(−1)
h ) sgn(x)

)
,

ψ
(±1)
h (x) =

εZ2 sgn(Δ)

4Δ2μ

(
− sgn(Δ)e−|Δx|(x(1)h + x

(−1)
h )± e−(2π/l)|x|(x(1)e + x(−1)

e ) +

+
μ

2Δ(π/l)
e−(2π/l)|x|(x(1)h + x

(−1)
h )− (e−(2π/l)|x| − e−|Δx|)(x(1)e + x(−1)

e ) sgn(x)

)
.

(25)

We put

σ1 =
εZ2 sgn(Δ)

4Δ2μ
, σ2 = σ1

(
μ

2Δ(π/l)
− sgn(Δ)

)
. (26)
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From (25) and (26), we have

x(±1)
e = −σ2(x(1)e + x(−1)

e )± σ1(x
(1)
h + x

(−1)
h ),

x
(±1)
h = σ2(x

(1)
h + x

(−1)
h )± σ1(x

(1)
e + x(−1)

e )

or ⎛
⎜⎜⎜⎝
1 + σ2 σ2 −σ1 −σ1
σ2 1 + σ2 σ1 σ1

−σ1 −σ1 1− σ2 −σ2
σ1 σ1 −σ2 1− σ2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
x
(1)
e

x
(−1)
e

x
(1)
h

x
(−1)
h

⎞
⎟⎟⎟⎟⎠ = 0. (27)

System (27) has a nonzero solution if σ2 = ±1/2 or

ε = ± 4μ|Δ|3(π/l)
Z2(μ− 2|Δ|(π/l)) , (28)

and in this case,

σ1 = ± Δ(π/l)

μ− 2|Δ|(π/l) . (29)

For definiteness, let σ2 = 1/2 (for σ2 = −1/2, the sign of ε is reversed); it then follows from (27) that

x
(1)
e = −x(−1)

e = 2σ1x
(1)
h and x

(−1)
h = x

(1)
h = C, where C is an arbitrary constant. Because the condition

ε � μ must be satisfied, we assume that Z is sufficiently large. Let C = 1. From (22) and (25), we

approximately obtain the wave function in the form

Ψ(x, y) =

(
sgn(x)

sgn(Δ)

)
e−|μx/Δ| +

εZ

2|Δ|μ

((
2θ(x)

μ/(2Δ(π/l))

)
e−2πiy/l +

(
−2θ(−x)

μ/(2Δ(π/l))

)
e2πiy/l

)
e−(2π/l)|x|.

(30)

It follows from this and from (28) and (29) that the contribution of the subbands with numbers n = ±1 is

generally not small.

In the case of a topologically trivial phase, i.e., for μ < 0, we similarly obtain

x(0)e = − Z

2|Δ|
(
2− ε

μ

)
(x(1)e + x(−1)

e ),

x
(0)
h = − Z

2|Δ|
(
2 +

ε

μ

)
(x

(1)
h + x

(−1)
h ).

(31)

From the second equation in (5), (31), and (A.13), we have

ψ(±1)
e (x) =

Z2 sgn(Δ)

4Δ2

(
− μ

2Δ(π/l)

(
2− ε

μ

)
(x(1)e + x(−1)

e )e−(2π/l)|x| +

+ sgn(Δ)

(
2− ε

μ

)
(x(1)e + x(−1)

e )e−|Δx| −
(
2 +

ε

μ

)
(x

(1)
h + x

(−1)
h )×

× (e−(2π/l)|x| − e−|Δx|) sgn(x) ∓
(
2 +

ε

μ

)
(x

(1)
h + x

(−1)
h )e−(2π/l)|x|

)
,

ψ
(±1)
h (x) =

Z2 sgn(Δ)

4Δ2

(
− μ

2Δ(π/l)

(
2 +

ε

μ

)
(x

(1)
h + x

(−1)
h )e−(2π/l)|x| +

+ sgn(Δ)

(
2 +

ε

μ

)
(x

(1)
h + x

(−1)
h )e−|Δ||x| ±

(
2− ε

μ

)
(x(1)e + x(−1)

e )×

× e−(2π/l)|x| −
(
2− ε

μ

)
(x(1)e + x(−1)

e )(e−(2π/l)|x| − e−|Δx|) sgn(x)
)
.

(32)
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From (32), introducing the notation

σ3 =
Z2 sgn(Δ)

4Δ2
, σ4 = σ3

(
μ

2Δ(π/l)
− sgn(Δ)

)
,

we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + σ4

(
2− ε

μ

)
σ4

(
2− ε

μ

)
σ3

(
2 +

ε

μ

)
σ3

(
2 +

ε

μ

)

σ4

(
2− ε

μ

)
1 + σ4

(
2− ε

μ

)
−σ3

(
2 +

ε

μ

)
−σ3

(
2 +

ε

μ

)

−σ3
(
2− ε

μ

)
−σ3

(
2− ε

μ

)
1 + σ4

(
2 +

ε

μ

)
σ4

(
2 +

ε

μ

)

σ3

(
2− ε

μ

)
σ3

(
2− ε

μ

)
σ4

(
2 +

ε

μ

)
1 + σ4

(
2 +

ε

μ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
x
(1)
e

x
(−1)
e

x
(1)
h

x
(−1)
h

⎞
⎟⎟⎟⎟⎠ = 0. (33)

The determinant of system (33) is equal to

d =

(
1 + 2σ4

(
2− ε

μ

))(
1 + 2σ4

(
2 +

ε

μ

))
. (34)

Thus, system (33) has a nonzero solution if σ4 = −1/2(2± ε/μ), i.e.,

ε = ±2μ

(
1− Δ2

Z2(1 − μ/(2|Δ|(π/l)))
)
. (35)

The following condition must be satisfied to ensure the smallness of ε:

Z2 ≈ Δ2

1− μ/(2|Δ|(π/l)) .

For example, let σ4 = −1/2(2 + ε/μ). We can then write system (33) as

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0

0 1 −σ3
(
2 +

ε

μ

)
−σ3

(
2 +

ε

μ

)

0 0
1

2
−1

2
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
x
(1)
e

x
(−1)
e

x
(1)
h

x
(−1)
h

⎞
⎟⎟⎟⎟⎠ = 0.

Therefore,

x(1)e = −x(−1)
e = −2σ3

(
2 +

ε

μ

)
x
(1)
h , x

(1)
h = x

(−1)
h = C.

Let C = 1. Then

Φ(x, y) =

(
sgn(x)

− sgn(Δ)

)
e−|μx/Δ| −

− Z

|Δ|

((
2θ(x)

μ/(2Δ(π/l))

)
e−2πiy/l +

(
−2θ(−x)

μ/(2Δ(π/l))

)
e2πiy/l

)
e−(2π/l)|x|. (36)

405



In contrast to the one-dimensional case [16], the conjugation conditions for ABSs with nearly zero

energy, which have the form [18], [20]

(ψe(x, y))
∗ = ψh(x, y) (37)

in the spinless quasi-one-dimensional case (and are typical for MBSs), are not satisfied.

In the case E = ε ≈ 0, up to factors, the Green’s function (6), (22) contains two Green’s functions of

the Hamiltonian −∂2x of the form
1√
μ± ε

e−(
√
μ/|Δ|)√μ±ε|x|.

As above, the change in the sign of the square root
√
μ± ε means the transition of the (shifted) energy to

the second sheet of the Riemann surface of the function G(0)(x− x′, E), i.e., the transformation of a bound

state into a resonance state. In the case under study, as is easy to see, this transformation means that

quantities (23) and the exponent (−
√
μ2 − E2/|Δ|)|x| are multiplied by −1 in key equations (22). In the

transition to the second sheet, instead of (24), we have (31), and conversely. Thus, taking both bound and

resonance states into account, we obtain a symmetric picture.

4. Conclusion

In this paper, we use the BdG equation to investigate the model of a spinless superconductor with

p-wave order in an infinite strip in the presence of an impurity. We analytically study the wave functions

of ABSs generated by the impurity with energies close to the edges of the superconducting gap. We prove

the existence of both ABSs and resonance states related to them. For such energies, the contribution of

the nearest subbands to the wave functions is very small. In this case, the energies close to the edge are

significantly closer to the gap edge than in the one-dimensional case. We also study ABSs with nearly zero

energies. In contrast to the one-dimensional case, they do not have the “particle–hole” symmetry (cf. the

numerical results obtained in [13]), and the contribution of the nearest subbands can be large.

Appendix

To determine the Green’s function of the Hamiltonian H(n), we solve the equation

(H(n) − E)Ψ(n) = Φ(n) (A.1)

for Ψ(n). Using (1), we rewrite Eq. (A.1) as

⎛
⎜⎜⎝
−∂2x +

(
2πn

l

)2

− μ− E Δ

(−∂x + 2πn

l

)

Δ

(
∂x +

2πn

l

)
∂2x −

(
2πn

l

)2

+ μ− E

⎞
⎟⎟⎠
(
ψ
(n)
e (x)

ψ
(n)
h (x)

)
=

(
ϕ
(n)
e (x)

ϕ
(n)
h (x)

)
, (A.2)

n = 0,±1, . . . . After the Fourier transformation with respect to x, Eq. (A.2) becomes

⎛
⎜⎜⎝
p2 +

(
2πn

l

)2

− μ− E Δ

(
−ip+ 2πn

l

)

Δ

(
ip+

2πn

l

)
−p2 −

(
2πn

l

)2

+ μ− E

⎞
⎟⎟⎠
(
ψ̃
(n)
e (p)

ψ̃
(n)
h (p)

)
=

(
ϕ̃
(n)
e (p)

ϕ̃
(n)
h (p)

)
, (A.3)

n = 0,±1, . . . . The determinant of matrix (A.3) is

dn = E2 −
(
p2 +

(
2πn

l

)2
− μ

)2
−Δ2

(
p2 +

(
2πn

l

)2 )
. (A.4)
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By (A.4), the dispersion law dn = 0 is

(
p2 +

(
2πn

l

)2
+

Δ2

2
− μ

)2
− Δ4

4
+ Δ2μ− E2 = 0. (A.5)

Using the assumption |μ| � min{|Δ|,Δ2} in (A.5), we obtain that the spectrum of the operator H(n),

which coincides with matrix (A.2), is determined by the inequality

E2 �
(
2πn

l

)4
+ 2

(
Δ2

2
− μ

)(
2πn

l

)2
+ μ2 � μ2

and decreases as |n| increases. Therefore, the spectrum of the Hamiltonian H , which coincides with the

union of the spectra of H(n), n = 0,±1, . . . , is described by the inequality |E| � |μ|.
From (A.4) and (A.5), we have

1

dn
= − 1

2a

(
1

p2 − p2+
− 1

p2 − p2−

)
, (A.6)

where

a =

√
Δ4

4
−Δ2μ+ E2, p± =

√
±a+ μ− Δ2

2
−
(
2πn

l

)2
. (A.7)

In what follows, we only consider the case n = ±1 and use the assumption that μ and O(1/l) are of

the same order of magnitude. We obtain the Green’s function of the operators H(±1) near the edge points

of the superconducting gap (−|μ|, |μ|). By (A.7), we approximately have

a =
Δ2

2
− μ− μ2 − E2

Δ2
, p+ =

2πin

l
, p− = i|Δ|. (A.8)

We note that

p+ =
i
√
μ2 − E2

|Δ| , n = 0. (A.9)

For definiteness, we consider the case of a topological phase μ > 0. For the energies E = μ− ε, where

0 < ε� μ, we have a = Δ2/2− μ− 2με/(Δ2). From (A.3), (A.6), and (A.8), we obtain

ψ̃(±1)
e (p) =

1

Δ2

((
p2 +

(
2π

l

)2)
ϕ̃(±1)
e (p)−Δ

(
ip∓ 2π

l

)
ϕ̃
(±1)
h (p)

)
×

×
(

1

p2 + (2π/l)2
− 1

p2 +Δ2

)
,

ψ̃
(±1)
h (p) =

1

Δ2

(
Δ

(
ip± 2π

l

)
ϕ̃(±1)
e (p)−

(
p2 +

(
2π

l

)2
− 2μ

)
ϕ̃
(±1)
h (p)

)
×

×
(

1

p2 + (2π/l)2
− 1

p2 +Δ2

)
.

(A.10)
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From this, by using the well-known relations

1√
2π

∫ ∞

−∞

eipxϕ̃(p) dp

p2 − p20
= − 1

2ip0

∫ ∞

−∞
eip0|x−x′|ϕ(x′) dx′,

1√
2π

∫ ∞

−∞

peipxϕ̃(p) dp

p2 − p20
= − 1

2i

∫ ∞

−∞
eip0|x−x′| sgn(x − x′)ϕ(x′) dx′

we obtain Ψ(±1) = (H(±1) − E)−1Φ(±1) (i.e., in fact, the resolvent):

ψ(±1)
e (x) =

1

2Δ

(
sgn(Δ)

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

e (x′) dx′ +

+

∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

h (x′) sgn(x− x′) dx′ ±

±
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

h (x′) dx′ −

−
∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

h (x′) sgn(x − x′) dx′
)
,

ψ
(±1)
h (x) =

1

2Δ

(
μ

Δ(π/l)

∫ ∞

−∞
e−|2π/l||x−x′|ϕ(±1)

h (x′) dx′ −

− sgn(Δ)

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

h (x′) dx′ −

−
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

e (x′) sgn(x− x′) dx′ ±

±
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

e (x′) dx′ +

+

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

e (x′) sgn(x − x′) dx′
)
.

(A.11)

In the case E = −μ+ ε, ε > 0, we similarly obtain

ψ(±1)
e (x) =

1

2Δ

(
− μ

Δ(π/l)

∫ ∞

−∞
e−|2π/l||x−x′|ϕ(±1)

e (x′) dx′ +

+ sgn(Δ)

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

e (x′) dx′ +

+

∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

h (x′) sgn(x− x′) dx′ ±

±
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

h (x′) dx′ −

−
∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

h (x′) sgn(x− x′) dx′
)
,

ψ
(±1)
h (x) =

1

2Δ

(
− sgn(Δ)

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

h (x′) dx′ −

−
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

e (x′) sgn(x− x′) dx′ ±

±
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

e (x′) dx′ +

+

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

e (x′) sgn(x− x′) dx′
)
.

(A.12)
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We now assume that |E| � μ. As above, we obtain Ψ(±1) = (H(±1) − E)−1Φ(±1), and in this case,

we have

ψ(±1)
e (x) =

1

2Δ

(
− μ

2Δ(π/l)

∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

e (x′) dx′ +

+ sgn(Δ)

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

e (x′) dx′ +

+

∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

h (x′) sgn(x− x′) dx′ ±

±
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

h (x′) dx′ −

−
∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

h (x′) sgn(x− x′) dx′
)
,

ψ
(±1)
h (x) =

1

2Δ

(
μ

2Δ(π/l)

∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

h (x′) dx′ −

− sgn(Δ)

∫ ∞

−∞
−e−|Δ||x−x′|ϕ(±1)

h (x′) dx′ −

−
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

e (x′) sgn(x− x′) dx′ ±

±
∫ ∞

−∞
e−(2π/l)|x−x′|ϕ(±1)

e (x′) dx′ +

+

∫ ∞

−∞
e−|Δ||x−x′|ϕ(±1)

e (x′) sgn(x− x′) dx′
)
.

(A.13)
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