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ANDREEV STATES IN A QUASI-ONE-DIMENSIONAL

SUPERCONDUCTOR ON THE SURFACE

OF A TOPOLOGICAL INSULATOR

Yu. P. Chuburin∗ and T. S. Tinyukova†

We study bound states in an s-wave superconducting strip on the surface of a topological superconductor

with the perpendicular Zeeman field. We prove analytically that an arbitrarily small local perturbation of

the Zeeman field generates Andreev bound states with energies near the superconducting gap edges, while

the (nonmagnetic) impurity potential does not produce such an effect. Rather large perturbations of the

Zeeman field can lead to the appearance of Andreev bound states with energies near zero. We analytically

find wave functions of the Andreev bound states under consideration. In contrast to the one-dimensional

case, the wave functions do not satisfy the conjugation conditions that are characteristic of Majorana

states because of the influence of neighboring subbands.
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1. Introduction

Active studies of topological superconductors are continued at present, which is related to the appear-

ance of Majorana bound states (MBSs) in the topologically nontrivial phase at their boundaries; they are

zero-energy quasiparticles of the “electron–hole” form and obey the non-Abelian quantum statistics. There

exists a high probability of using MBSs in quantum calculations (see [1]–[3]).

In what follows, by the Andreev bound states (ABSs), we mean quasiparticles generated by the impurity

or a local change in the constant magnetic field with the energy inside the superconducting gap (cf. an

analogous understanding of ABSs, e.g., in [4], [5]). The difference between the MBSs and ABSs is a serious

problem in experiments [4], [6], [7]; therefore, studies of the origin and behavior of the ABSs are important.

This problem has usually been studied within the framework of the one-dimensional Bogoliubov–de Gennes

equation (BdG), and hence the influence of neighboring subbands was not taken into account. However,

it became difficult to identify quasiparticles in the case of a significant filling of subbands [8].
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In this paper, we study the ABSs in a one-dimensional strip on the surface of a three-dimensional

topological insulator (TI) in the presence of a constant perpendicular Zeeman field. We analytically prove

that for an arbitrarily small local perturbation of the Zeeman field, energy levels appear near the boundaries

of the superconducting gap, as in the one-dimensional model [9]. However, in the one-dimensional case,

the ABSs have (separately for particles with spin up and spin down for a spinor in Eq. (4) below) the

“particle–hole” symmetry (see (29) below), which is not the case for the strip (cf. the numerical results

in [10], [11]).

In contrast to [12], where the authors studied a spinless p-wave model, the nonmagnetic impurity does

not generate bound states in a TI. In addition, in the case of a TI, the wave functions for the topological

and trivial phases are symmetric, but the wave functions differ strongly from each other for the p-wave

model and the symmetry appears only if resonant states are taken into account. We note that in the

one-dimensional superconducting structure, at the boundary of a two-dimensional TI [9], the nonmagnetic

impurity can generate bound states in the trivial phase.

2. Hamiltonian and basic equations

In the presence of a perpendicular Zeeman field, the two-dimensional boundary of a three-dimensional

TI with superconducting order induced due to the proximity effect (see the discussion of this effect for the

three-dimensional TI boundary in [1], [13]) is described by the BdG Hamiltonian of the form (see [14]–[16])

H =

⎛
⎜⎜⎜⎝

M −i∂x − ∂y 0 Δ

−i∂x + ∂y −M −Δ 0

0 −Δ −M −i∂x + ∂y

Δ 0 −i∂x − ∂y M

⎞
⎟⎟⎟⎠ , (1)

where Δ = const �= 0 is a real pairing potential and M is the parameter of the perpendicular Zeeman field.

The Hamiltonian H acts on spinors of the form

Ψ(x, y) = (ψe↑(x, y), ψe↓(x, y), ψh↑(x, y), ψh↓(x, y))T, (2)

where the arrow indicates the spin direction; the first two components describe electrons, and last two,

holes. We consider the solutions Ψ(x, y) of the BdG equation in the strip −∞ < x < ∞, 0 < y < W ,

assuming that the solutions are periodic in y with the period W . In what follows, W is assumed to be

large, which allows assuming that the errors caused by the choice of boundary conditions with respect to y

are small; however, it should not significantly exceed the coherence length [17]. Thus,

Ψ(x, y) =
1√
W

∞∑
n=−∞

Ψ(n)(x)e−2πiny/W , (3)

where

Ψ(n)(x) = (ψ
(n)
e↑ (x), ψ

(n)
e↓ (x), ψ

(n)
h↑ (x), ψ

(n)
h↓ (x))T =

1√
W

∫ W

0

Ψ(x, y)e2πiny/W dy. (4)

Hamiltonian (1) acts on the nth term in (3) in accordance with the formula

H(Ψ(n)(x)e−2πiny/W ) =

⎛
⎜⎜⎜⎝

M −i∂x + 2πin/W 0 Δ

−i∂x − 2πin/W −M −Δ 0

0 −Δ −M −i∂x − 2πin/W

Δ 0 −i∂x + 2πin/W M

⎞
⎟⎟⎟⎠×

× (ψ
(n)
e↑ (x), ψ

(n)
e↓ (x), ψ

(n)
h↑ (x), ψ

(n)
h↓ (x))T, n = 0,±1, . . . . (5)

We let H(n) denote the matrix in relation (5); it determines the Hamiltonian H in the nth band. In what

follows, we need the Green’s function of the Hamiltonian H(n); it is given in the appendix.
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The spectrum of H(n) is described by the inequality (see (A.3))

|E| �
√
(|M | − |Δ|)2 +

(
2πn

W

)2

,

where E is the energy. The energy gap width increases with increasing |n|. The spectrum of H coincides

with that of H(0) and is defined by the inequality |E| � ||M | − |Δ||.
We consider the BdG equation

(H + V )Ψ = EΨ (6)

with the potential

V = V (x, y) = m

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ (e−2πiy/W + e2πiy/W )δ(x), (7)

where δ(x) is the Dirac delta function. The potential V describes the perturbation of a constant Zeeman

field, which is local with respect to x, and generates a coupling of the subbands due to harmonics. We assume

that the potential energy is distributed symmetrically with respect to zero, i.e., even approximations of the

delta function δ(x) are used in calculations. Below, we are interested only in the bands with n = 0,±1;

they are the nearest neighbors to E = 0, and we can therefore approximately write Eq. (6) in the form

(H(0) − E)Ψ(0)(x) + (H(1) − E)Ψ(1)(x)e−2πiy/W + (H(−1) − E)Ψ(−1)(x)e2πiy/W =

= −m

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

ψ
(0)
e↑ (x)

−ψ(0)
e↓ (x)

−ψ(0)
h↑ (x)

ψ
(0)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠

(e−2πiy/W + e2πiy/W ) +

⎛
⎜⎜⎜⎜⎜⎝

ψ
(1)
e↑ (x)

−ψ(1)
e↓ (x)

−ψ(1)
h↑ (x)

ψ
(1)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

ψ
(−1)
e↑ (x)

−ψ(−1)
e↓ (x)

−ψ(−1)
h↑ (x)

ψ
(−1)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠
δ(x). (8)

Hence we obtain

(H(0) − E)

⎛
⎜⎜⎜⎜⎜⎝

ψ
(0)
e↑ (x)

ψ
(0)
e↓ (x)

ψ
(0)
h↑ (x)

ψ
(0)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠

= −m

⎛
⎜⎜⎜⎜⎜⎝

ψ
(1)
e↑ (x) + ψ

(−1)
e↑ (x)

−(ψ
(1)
e↓ (x) + ψ

(−1)
e↓ (x))

−(ψ
(1)
h↑ (x) + ψ

(−1)
h↑ (x))

ψ
(1)
h↓ (x) + ψ

(−1)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠
δ(x), (9)

(H(±1) − E)

⎛
⎜⎜⎜⎜⎜⎝

ψ
(±1)
e↑ (x)

ψ
(±1)
e↓ (x)

ψ
(±1)
h↑ (x)

ψ
(±1)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠

= −m

⎛
⎜⎜⎜⎜⎜⎝

ψ
(0)
e↑ (x)

−ψ(0)
e↓ (x)

−ψ(0)
h↑ (x)

ψ
(0)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠
δ(x). (10)

We next assume that

M,Δ > 0, |M −Δ| � min{M,Δ}, |E| < |M −Δ|. (11)

In particular, the superconducting gap is small. We also assume that the quantities p, 1/W , and M −Δ

are approximately of the same order, in particular, (1/W )2 � |M −Δ|, and |M −Δ|2 � 1/W . We set

a2n = E2 −
(
2πn

W

)2

− (M −Δ)2. (12)
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Using form (A.7) of the Green’s function G(n)(x−x′, E) of the Hamiltonian H(n) at n = 0, we pass from (9)

to the equation

(ψ
(0)
e↑ (x), ψ

(0)
e↓ (x), ψ

(0)
h↑ (x), ψ

(0)
h↓ (x))

T =

=
meia0|x|

4ia0

⎛
⎜⎜⎜⎝

M −Δ+ E a0 sgn(x) −a0 sgn(x) −(M −Δ+ E)

a0 sgn(x) −(M −Δ− E) M −Δ− E −a0 sgn(x)
−a0 sgn(x) M −Δ− E −(M −Δ− E) a0 sgn(x)

−(M −Δ+ E) −a0 sgn(x) a0 sgn(x) M −Δ+ E

⎞
⎟⎟⎟⎠×

×

⎛
⎜⎜⎜⎜⎜⎝

ψ
(1)
e↑ (0) + ψ

(−1)
e↑ (0)

−(ψ
(1)
e↓ (0) + ψ

(−1)
e↓ (0))

−(ψ
(1)
h↑ (0) + ψ

(−1)
h↑ (0))

ψ
(1)
h↓ (0) + ψ

(−1)
h↓ (0)

⎞
⎟⎟⎟⎟⎟⎠

(13)

(for brevity, we set ψ(0) = (ψ(+0) + ψ(−0))/2). Multiplying (13) by δ(x) and integrating, we obtain two

equations
(
ψ
(0)
e↑ (0)

ψ
(0)
h↓ (0)

)
=
m(M −Δ+ E)

4ia0
(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0)− ψ

(1)
h↓ (0)− ψ

(−1)
h↓ (0))

(
1

−1

)
,

(
ψ
(0)
e↓ (0)

ψ
(0)
h↑ (0)

)
=
m(M −Δ− E)

4ia0
(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0)− ψ

(1)
h↑ (0)− ψ

(−1)
h↑ (0))

(
1

−1

)
.

(14)

From (A.7) and (10), we similarly find

(ψ
(±1)
e↑ (0), ψ

(±1)
e↓ (0), ψ

(±1)
h↑ (0), ψ

(±1)
h↓ (0)) =

=
m

4ia1

⎛
⎜⎜⎜⎝

M −Δ+ E ±2πi/W ∓2πi/W −(M −Δ+ E)

∓2πi/W −(M −Δ− E) M −Δ− E ±2πi/W

±2πi/W M −Δ− E −(M −Δ− E) ∓2πi/W

−(M −Δ+ E) ∓2πi/W ±2πi/W M −Δ+ E

⎞
⎟⎟⎟⎠×

× (ψ
(0)
e↑ (0),−ψ(0)

e↓ (0),−ψ(0)
h↑ (0), ψ

(0)
h↓ (0))

T. (15)

3. ABSs with energies near the superconducting gap edges

We first consider the case of the topologically trivial phase where M −Δ > 0 (see [1], [2]). We prove

the existence of ABSs with the energies E = M − Δ − ε, where 0 < ε � |M − Δ|, i.e., near the upper

superconducting gap edge. From (14), we approximately find
(
ψ
(0)
e↑ (0)

ψ
(0)
h↓ (0)

)
=

(M −Δ)m

2ia0
(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0)− ψ

(1)
h↓ (0)− ψ

(−1)
h↓ (0))

(
1

−1

)
,

ψ
(0)
e↓ (0) = ψ

(0)
h↑ (0) = 0.

(16)

Using (16) and the assumptions introduced above, we write (15) in the form
⎛
⎜⎜⎜⎜⎜⎝

ψ
(±1)
e↑ (0)

ψ
(±1)
e↓ (0)

ψ
(±1)
h↑ (0)

ψ
(±1)
h↓ (0)

⎞
⎟⎟⎟⎟⎟⎠

= − (M −Δ)m2

4a0a1
(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0)− ψ

(1)
h↓ (0)− ψ

(−1)
h↓ (0))×

×
(
M −Δ,∓ πi

W
,± πi

W
,−(M −Δ)

)T

. (17)
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In accordance with (12), we approximately have

a0 = ±i
√
2ε(M −Δ), (18)

where the signs + and − correspond to the respective bound and resonant states. The resonant states

appear in the case where the energy ε measured from the gap boundary is transferred to the second sheet of

the Riemann surface of the square root. In this case, in view of (13), the wave function increases at infinity

because of the factor eia0|x|. We note that the quantity 1/|a0| characterizes the lifetime of the particle [18],

as do the 1/|a±|, where

a1 = a−1 = ±i
√(

2π

W

)2

+ (M −Δ)2 − E2 = ±i
√(

2π

W

)2

+ 2ε(M −Δ) ≈ ±2πi

W
. (19)

In what follows, unless stipulated otherwise, we choose the sign +; it corresponds to bound sates in (18)

and (19). We introduce the notation

α = −m
2(M −Δ)

2a0a1
=
m2

√
M −Δ

4
√
2ε(π/W )

. (20)

From (17), we obtain the equalities

ψ
(±1)
h↓ (0) = −ψ(±1)

e↑ (0), ψ
(±1)
h↑ (0) = −ψ(±1)

e↓ (0). (21)

Using (20), (21), we write the system of equations for the unknowns ψ
(±1)
e↑ (0), ψ

(±1)
e↓ (0):

ψ
(±1)
e↑ (0) = 2α(M −Δ)(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0)),

ψ
(±1)
e↓ (0) = ∓2α

πi

W
(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0)).

(22)

The determinant of system (22) is d = 1−4α(M −Δ). Then the existence conditions for a nonzero solution

of the system has the form

1− 4α(M −Δ) = 0 (23)

and, in view of (20),

√
ε =

m2(M −Δ)3/2√
2π/W

. (24)

Condition (24) means that for all rather small m, there exists a stable energy level near the gap edge.

In contrast to the one-dimensional case [9], this condition is independent of the sign of m.

We find the wave function corresponding to this level. Under condition (23), system (22) can be written

in the form
⎛
⎜⎜⎜⎝

1/2 −1/2 0 0

−1/2 1/2 0 0

iπ/(2W (M −Δ)) iπ/(2W (M −Δ)) 1 0

−iπ/(2W (M −Δ)) −iπ/(2W (M −Δ)) 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ψ
(1)
e↑ (0)

ψ
(−1)
e↑ (0)

ψ
(1)
e↓ (0)

ψ
(−1)
e↓ (0)

⎞
⎟⎟⎟⎟⎟⎠

= 0, (25)
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whence we have ψ
(1)
e↑ (0) = ψ

(−1)
e↑ (0) = C = const, ψ

(1)
e↓ (0) = −ψ(−1)

e↓ (0) = −πiC/(W (M −Δ)). Substituting

these quantities in (13) and using (21), at C = 1, we have

(ψ
(0)
e↑ (x), ψ

(0)
e↓ (x), ψ

(0)
h↑ (x), ψ

(0)
h↓ (x))

T =

=
meia0|x|

2ia0

⎛
⎜⎜⎜⎝

2(M −Δ) a0 sgn(x) −a0 sgn(x) −2(M −Δ)

a0 sgn(x) 0 0 −a0 sgn(x)
−a0 sgn(x) 0 0 a0 sgn(x)

−2(M −Δ) −a0 sgn(x) a0 sgn(x) 2(M −Δ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1

0

0

−1

⎞
⎟⎟⎟⎠ =

=
meia0|x|

ia0
(2(M −Δ), a0 sgn(x),−a0 sgn(x),−2(M −Δ))T . (26)

Similarly, using (10), (26), (A.7), we obtain

(ψ
(±1)
e↑ (x), ψ

(±1)
e↓ (x), ψ

(±1)
h↑ (x), ψ

(±1)
h↓ (x))T =

= − (M −Δ)m2eia1|x|

2a0a1

⎛
⎜⎜⎜⎝

2(M −Δ) 0 0 −2(M −Δ)

a1 sgn(x) ∓ 2πi/W 0 0 −(a1 sgn(x) ∓ 2πi/W )

−(a1 sgn(x)∓ 2πi/W ) 0 0 a1 sgn(x) ∓ 2πi/W

−2(M −Δ) 0 0 2(M −Δ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1

0

0

−1

⎞
⎟⎟⎟⎠ =

= −2(M −Δ)m2eia1|x|

a0a1

⎛
⎜⎜⎜⎝

M −Δ

(πi/W )(sgn(x)∓ 1)

−(πi/W )(sgn(x)∓ 1)

−(M −Δ)

⎞
⎟⎟⎟⎠ . (27)

Substituting (26), (27) in (3) at n = 0,±1, using (18), (19), and omitting the common factor m/ia0, we find

the wave function of the bound state (see Fig. 1):

Ψ(x, y) =
1√
W

(
e−

√
2ε(M−Δ)|x|(2(M −Δ), i

√
2ε(M −Δ) sgn(x),−i

√
2ε(M −Δ) sgn(x),−2(M −Δ))−

− (M−Δ)me−(2π/W )|x|

π/W

((
M −Δ,

2πi

W
θ(x),−2πi

W
θ(x),−(M −Δ)

)
e2πiy/W+

+

(
M −Δ,−2πi

W
θ(−x), 2πi

W
θ(−x),−(M −Δ)

)
e−2πiy/W

))T

. (28)

The “valley” in Fig. 1 is due to the second term in the right-hand side of (28), i.e., due to the effect of

neighboring subbands. The amplitude of the wave function of an ABS with the energy near the lower

boundary has a similar form.

In contrast to the one-dimensional model [9], wave function (28) has no “particle–hole” symmetry,

which is described by the conjugation conditions

(Ψe↑)∗(x, y) = Ψh↓(x, y), (Ψe↓)∗(x, y) = Ψh↑(x, y) (29)

(this symmetry is characteristic of MBSs). We note that as ε increases, the ABS localization increases.

We now consider the case E = −(M −Δ) + ε, where 0 < ε� Δ−M . In view of (14), we have

ψ
(0)
e↑ (0) = ψ

(0)
h↓ (0) = 0,

(
ψ
(0)
e↓ (0)

ψ
(0)
h↑ (0)

)
=
m(M −Δ)

2ia0
(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0)− ψ

(1)
h↑ (0)− ψ

(−1)
h↑ (0))

(
1

−1

)
.

(30)
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Fig. 1. Amplitude |Ψ|2 of the ABS wave function with the energy near the upper gap edge. Here,

M −Δ = 0, 1 meV and m = 0, 1 meV.

In accordance with (15), as above, we obtain the equation
⎛
⎜⎜⎜⎜⎜⎝

ψ
(±1)
e↑ (0)

ψ
(±1)
e↓ (0)

ψ
(±1)
h↑ (0)

ψ
(±1)
h↓ (0)

⎞
⎟⎟⎟⎟⎟⎠

=
(M −Δ)m2

2a0a1
(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0)− ψ

(1)
h↑ (0)− ψ

(−1)
h↑ (0))×

×
(
± πi

W
,−(M −Δ),M −Δ,∓ πi

W

)T

. (31)

From (31), we obtain the equalities ψ
(±1)
h↓ (0) = −ψ(±1)

e↑ (0), ψ
(±1)
h↑ (0) = −ψ(±1)

e↓ (0) and the system

ψ
(±1)
e↑ (0) = ∓2α

πi

W
(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0)),

ψ
(±1)
e↓ (0) = 2α(M −Δ)(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0)).

The existence condition for a nonzero solution of this system coincides with (23). To find the wave function,

we have the equation

⎛
⎜⎜⎜⎝

1 0 iπ/(2W (M −Δ)) iπ/(2W (M −Δ))

0 1 −iπ/(2W (M −Δ)) −iπ/(2W (M −Δ))

0 0 1/2 −1/2

0 0 −1/2 1/2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ψ
(1)
e↑ (0)

ψ
(−1)
e↑ (0)

ψ
(1)
e↓ (0)

ψ
(−1)
e↓ (0)

⎞
⎟⎟⎟⎟⎟⎠

= 0, (32)

which is analogous to (25). The wave function has the form

Ψ(x, y) =
1√
W

(
e−

√
2ε(M−Δ)|x|(−i

√
2ε(M −Δ) sgn(x), 2(M −Δ),−2(M −Δ), i

√
2ε(M −Δ) sgn(x)) +

+
(M −Δ)me−(2π/W )|x|

π/W

((
−2πi

W
θ(−x),−(M −Δ),M −Δ,

2πi

W
θ(−x)

)
×

× e2πiy/W +

(
2πi

W
θ(x),−(M −Δ),M −Δ,−2πi

W
θ(x)

)
e−2πiy/W

))T

. (33)

We note that the states with energies near the upper and lower gap edges have opposite spins (cf. [19], [20]).
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If the signs of a0 and a1 in (20) change at the same time, which corresponds to the second sheet of

the Riemann surface of the Green’s function, then this equality remain unchanged, but the bound state

becomes resonant with a finite lifetime (see the foregoing). But under the above assumptions, the continuous

transformation of the bound state into a resonant one is impossible (cf. [21]) because the quantities ε

and M −Δ must have the same order of smallness as the sign of a1 changes, which contradicts the above

conditions.

We now consider the case of the topologically nontrivial phase Δ −M > 0. We set E = Δ −M − ε,

where 0 < ε � Δ −M . Then from (14), we obtain (30) and then (31), but with a0 = i
√
2ε(Δ−M).

The existence condition for an ABS has the form (cf. (24))

√
ε =

m2(Δ−M)3/2√
2π/W

. (34)

The changes in the wave function are analogous to those when passing from the upper gap edge to the

lower one in the trivial phase.

4. ABSs with the energy near zero

We consider states with the energies E = ε ≈ 0. From (14), (15), we have
(
ψ
(0)
e↑ (0)

ψ
(0)
h↓ (0)

)
=
m(M −Δ)

4ia0
(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0)− ψ

(1)
h↓ (0)− ψ

(−1)
h↓ (0))

(
1

−1

)
,

(
ψ
(0)
e↓ (0)

ψ
(0)
h↑ (0)

)
=
m(M −Δ)

4ia0
(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0)− ψ

(1)
h↑ (0)− ψ

(−1)
h↑ (0))

(
1

−1

) (35)

and ⎛
⎜⎜⎜⎜⎜⎝

ψ
(±1)
e↑ (0)

ψ
(±1)
e↓ (0)

ψ
(±1)
h↑ (0)

ψ
(±1)
h↓ (0)

⎞
⎟⎟⎟⎟⎟⎠

= − (M −Δ)m2

16a0a1

⎛
⎜⎜⎜⎝

M −Δ ±2πi/W ∓2πi/W −(M −Δ)

∓2πi/W −(M −Δ) M −Δ ±2πi/W

±2πi/W M −Δ −(M −Δ) ∓2πi/W

−(M −Δ) ∓2πi/W ±2πi/W M −Δ

⎞
⎟⎟⎟⎠×

×

⎛
⎜⎜⎜⎜⎜⎝

ψ
(1)
e↑ (0) + ψ

(−1)
e↑ (0)− ψ

(1)
h↓ (0)− ψ

(−1)
h↓ (0)

−(ψ
(1)
e↓ (0) + ψ

(−1)
e↓ (0)− ψ

(1)
h↑ (0)− ψ

(−1)
h↑ (0))

ψ
(1)
e↑ (0) + ψ

(−1)
e↑ (0)− ψ

(1)
h↓ (0)− ψ

(−1)
h↓ (0)

−(ψ
(1)
e↑ (0) + ψ

(−1)
e↑ (0)− ψ

(1)
h↓ (0)− ψ

(−1)
h↓ (0))

⎞
⎟⎟⎟⎟⎟⎠
. (36)

From (36), we have

ψ
(±1)
e↑ (0) = −ψ(±1)

h↓ (0), ψ
(±1)
e↓ (0) = −ψ(±1)

h↑ (0). (37)

Using (20), we obtain the system

ψ
(±1)
e↑ (0) =

α

2

(
(M −Δ)(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0))∓ 2πi

W
(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0))

)
,

ψ
(±1)
e↓ (0) =

α

2

(
∓2πi

W
(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0)) + (M −Δ)(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0))

)
.

(38)

The matrix determinant of system (38) is (1− α(M −Δ))2; therefore, the existence condition for a bound

state has the form
m2|M −Δ|

2
√
(2π/W )2 + (M −Δ)2

= 1 (39)
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and is independent of the phase. If (39) is satisfied, then it follows from (38) that

ψ
(1)
e↑ (0)− ψ

(−1)
e↑ (0) = − 2πi

W (M −Δ)
(ψ

(1)
e↓ (0) + ψ

(−1)
e↓ (0)),

ψ
(1)
e↑ (0) + ψ

(−1)
e↑ (0) = −W (M −Δ)

2πi
(ψ

(1)
e↓ (0)− ψ

(−1)
e↓ (0)),

where ψ
(1)
e↓ (0)+ψ

(−1)
e↓ (0) = C1 and ψ

(1)
e↓ (0)−ψ(−1)

e↓ (0) = C2 are arbitrary constants. Let C1 = 1 and C2 = 0,

then

ψ
(1)
e↓ (0) = ψ

(−1)
e↓ (0) =

1

2
, ψ

(1)
e↑ (0) = −ψ(−1)

e↑ (0) = − πi

W (M −Δ)
. (40)

If C1 = 0 and C2 = 1, then

ψ
(1)
e↓ (0) = −ψ(−1)

e↓ (0) =
1

2
, ψ

(1)
e↑ (0) = ψ

(−1)
e↑ (0) = −W (M −Δ)

4πi
. (41)

Using two analogous wave functions, we write the function corresponding to (40). From (35), we have

ψ
(0)
e↑ (0) = ψ

(0)
h↓ (0) = 0, ψ

(0)
e↓ (0) = −ψ(0)

h↑ (0) = −m
2
sgn(M −Δ). (42)

Using (10), (13), and (A.7), we write the wave function as

Ψ(x, y) =
1√
W

(
m

2
e−|M−Δ||x|(i sgn(x),− sgn(M −Δ), sgn(M −Δ),−i sgn(x)) −

− m2 sgn(M −Δ)

4
√
(2π/W )2 + (M −Δ)2

e−
√

(2π/W )2+(M−Δ)2|x| ×

×
∑
j=1,2

(c1,−(M −Δ),M −Δ,−c1)e(−1)j+12πiy/W

)T

, (43)

where c1 = i
√
(2π/W )2 + (M −Δ)2 sgn(x) + (−1)j2πi/W (see Fig. 2). Obviously, it does not satisfy

conditions (29). This function is strongly localized with respect to x, unlike the function in Fig. 1. The

second term in the right-hand side of (43) smoothes oscillations of |Ψ|2 along the y axis.

Fig. 2. Amplitude |Ψ|2 of the ABS wave function with an energy that is close to zero. Here,

M −Δ = 0, 1 meV and m = 0, 1 meV.
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Thus, the perturbation (local with respect to x) of the constant Zeeman field can generate ABSs with

multiplicity 2 and near-zero energy; in contrast to the one-dimensional case [9], these are not Majorana-like

states (cf. [10]).

5. Nonmagnetic impurity potential

We now consider the impurity potential W(x, y) of the form

W(x, y) = w

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ (e−2πiy/W + e2πiy/W )δ(x). (44)

First, let E = M − Δ + ε, M − Δ > 0, where 0 < ε � M − Δ. Using the line of reasoning as before,

we obtain Eq. (13) with the spinor in the right-hand side replaced with

⎛
⎜⎜⎜⎜⎜⎝

ψ
(1)
e↑ (0) + ψ

(−1)
e↑ (0)

ψ
(1)
e↓ (0) + ψ

(−1)
e↓ (0)

−(ψ
(1)
h↑ (0) + ψ

(−1)
h↑ (0))

−(ψ
(1)
h↓ (0) + ψ

(−1)
h↓ (0))

⎞
⎟⎟⎟⎟⎟⎠
.

Instead of (16), (17), we have

(
ψ
(0)
e↑ (0)

ψ
(0)
h↓ (0)

)
=

(M −Δ)w

2ia0
(ψ

(1)
e↑ (0) + ψ

(−1)
e↑ (0) + ψ

(1)
h↓ (0) + ψ

(−1)
h↓ (0))

(
1

−1

)
,

ψ
(0)
e↓ (0) = ψ

(0)
h↑ (0) = 0,

(ψ
(±1)
e↑ (0), ψ

(±1)
e↓ (0), ψ

(±1)
h↑ (0), ψ

(±1)
h↓ (0))T =

= − (M −Δ)w2

2a0a1

(
M −Δ,∓ πi

W
,± πi

W
,−(M −Δ)

)T

(ψ
(1)
e↑ (0) + ψ

(−1)
e↑ (0) + ψ

(1)
h↓ (0) + ψ

(−1)
h↓ (0)).

(45)

Consequently, ψ
(±1)
e↑ (0) = −ψ(±1)

h↓ (0) and ψ
(±1)
e↓ (0) = −ψ(±1)

h↑ (0), and system (45) has no nonzero

solutions for energies near the gap edge, and hence there are no states with such energies. It can be proved

similarly that the nonmagnetic impurity generate no bound states with the energy that is close to zero.

(In the one-dimensional case [9], the existence of the ABSs is phase-dependent.)

6. Conclusions

In this paper, we have considered the quasi-one-dimensional superconducting structure on the surface

of a topological insulator in the presence of a perpendicular constant Zeeman field. We proved analytically

that the local perturbation of the Zeeman field generates stable bound states with energies near the energy

gap edges and also ABSs with near-zero energy. In contrast to the one-dimensional case, these states have

no “particle–hole” symmetry. The nonmagnetic impurity generates no ABSs.
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Appendix

To find the Green’s function of the Hamiltonian H(n), we find the function Ψ from the equation

(H(n) − E)Ψ = Φ. We rewrite this equation in the form
⎛
⎜⎜⎜⎝

M − E −i∂x + 2πin/W 0 Δ

−i∂x − 2πin/W −M − E −Δ 0

0 −Δ −M − E −i∂x − 2πin/W

Δ 0 −i∂x + 2πin/W M − E

⎞
⎟⎟⎟⎠×

×

⎛
⎜⎜⎜⎜⎜⎝

ψ
(n)
e↑ (x)

ψ
(n)
e↓ (x)

ψ
(n)
h↑ (x)

ψ
(n)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ϕ
(n)
e↑ (x)

ϕ
(n)
e↓ (x)

ϕ
(n)
h↑ (x)

ϕ
(n)
h↓ (x)

⎞
⎟⎟⎟⎟⎟⎠

or, after the Fourier transformation,

ϕ̃(p) = Fϕ(x) =
1√
2π

∫ ∞

−∞
e−ipxϕ(x) dx,

⎛
⎜⎜⎜⎜⎝

M − E p+ 2πin/W 0 Δ

p− 2πin/W −M − E −Δ 0

0 −Δ −M − E p− 2πin/W

Δ 0 p+ 2πin/W M − E

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ψ̃
(n)
e↑ (p)

ψ̃
(n)
e↓ (p)

ψ̃
(n)
h↑ (p)

ψ̃
(n)
h↓ (p)

⎞
⎟⎟⎟⎟⎟⎠

=

= (ϕ̃
(n)
e↑ (p), ϕ̃

(n)
e↓ (p), ϕ̃

(n)
h↑ (p), ϕ̃

(n)
h↓ (p))T. (A.1)

The determinant of the matrix in (A.1) is

d =

(
p2 +

(
2πn

W

)2)2

+ 2

(
p2 +

(
2πn

W

)2)
(M2 +Δ2 − E2) +

+ (M2 − E2)2 − 2Δ2(M2 + E2) + Δ4. (A.2)

From (A.2), we find the dispersion law for the nth subband

E2 = (M ±Δ)2 + p2 +

(
2πn

W

)2

(A.3)

and the equality

1

d
=− 1

4MΔ

(
1

p2 + (2πn/W )2 + (M +Δ)2 − E2
−

− 1

p2 + (2πn/W )2 + (M −Δ)2 − E2

)
. (A.4)

Using Cramer’s rule and neglecting quantities of the order of smallness of (M −Δ)2, we obtain the Green’s

function of the Hamiltonian H(n) in momentum representation,

G̃(n)(p, p′, E) =
δ(p− p′)

2

(
1

p2 − a2n
− 1

p2 − b2n

)
×

×

⎛
⎜⎜⎜⎝

M −Δ+ E p+ 2πin/W −(p+ 2πin/W ) −(M −Δ+ E)

p− 2πin/W −(M −Δ− E) M −Δ− E −(p− 2πin/W )

−(p− 2πin/W ) M −Δ− E −(M −Δ− E) p− 2πin/W

−(M −Δ+ E) −(p+ 2πin/W ) p+ 2πin/W M −Δ+ E

⎞
⎟⎟⎟⎠ , (A.5)
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where a2n = E2 − (2πn/W )2 − (M −Δ)2 and b2n = E2 − (2πn/W )2 − (M +Δ)2. To pass to the coordinate

representation, we use the known formulas

1√
2π

∫ ∞

−∞

eipxϕ̃(p) dp

p2 − a2
= − 1

2ia

∫ ∞

−∞
eia|x−x′|ϕ(x′) dx′,

1√
2π

∫ ∞

−∞

peipxϕ̃(p) dp

p2 − a2
= − 1

2i

∫ ∞

−∞
eia|x−x′| sgn(x− x′)ϕ(x′) dx′,

(A.6)

assuming that a = an or bn.

To find the Green’s function in the coordinate representation using formulas (A.6), we integrate equal-

ities (A.5) over p. Because of the conditions for the quantities 1/W and |M − Δ| (see Sec. 2), when

integrating over the region where the p are small, the denominator of the second term in the factor before

the matrix in (A.5) is much larger than that of the first term, and the integrals over the region where p are

rather large are small. Thus, the second term in (A.5) can be neglected. Although the remaining integrals

are taken over the entire number line, the smallness of their denominators for small p under the adopted

conditions for the parameters makes these integrals mainly saturated by small p, and the condition for the

smallness of the momenta p (see the assumptions after (11)) is satisfied. This reasoning is easily confirmed

by numerical estimations.

Based on the foregoing, we use (A.5) and (A.6) to obtain the Green’s function of the Hamiltonian H(n)

in the coordinate representation:

G(n)(x− x′, E) = −e
ian|x−x′|

4ian

⎛
⎜⎜⎜⎝

M −Δ+ E b+n −b+n −(M −Δ+ E)

b−n −(M −Δ− E) M −Δ− E −b−n
−b−n M −Δ− E −(M −Δ− E) b−n

−(M −Δ+ E) −b+n b+n M −Δ+ E

⎞
⎟⎟⎟⎠ ,

(A.7)

where b±n = an sgn(x− x′)± 2πin/W .
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