DOI: 10.14529/hsm23s109

БРАДИКАРДИЯ И ВАРИАБЕЛЬНОСТЬ СЕРДЕЧНОГО РИТМА У СПОРТСМЕНОВ

Н.И. Шлык¹, shlyknatalia@yandex.ru, http://orcid.org/0000-0002-3165-9065 **Е.А. Гаврилова²**, gavrilovaea@mail.ru, http://orcid.org/0000-0002-7866-4996

1 Удмуртский государственный университет, Ижевск, Россия

Аннотация. Цель. Выявить взаимосвязь и особенности нарушения между показателями частоты сердечных сокращений (ЧСС) и вариационного размаха кардиоинтервалов (МхDMn) в покое и ортостазе у биатлонистов с брадикардией. И на этом основании провести верификацию брадикардии. Материалы и методы. Проведены динамические исследования частоты сердечных сокращений и вариабельности сердечного ритма в покое и ортостазе у 59 биатлонистов с брадикардией в возрасте 16-20 лет. Исследование вариабельности сердечного ритма проводились с помощью аппарата «Варикард 2.52» и программ «Иским 6» и «Варикард МП». Всего проведено 486 исследований у спортсменов в разные периоды тренировочного процесса. Результаты. Проведенные исследования показывают, что брадикардия у спортсменов менее 50 и особенно менее 40 уд./мин в сочетании с малым диапазоном вариационного размаха кардиоинтервалов (MxDMn) в покое и патологической реакцией на ортостаз (с увеличением ЧСС происходит рост показателя МхDMn, вместо уменьшения) является патологическим феноменом вариабельности сердечного ритма и проявлением перетренированности. При индивидуальных динамических исследованиях вариабельности сердечного ритма у спортсменов выявлен переход брадикардии с одного уровня на другой, что связано с неустойчивостью кардиорегуляции. Показана связь патологической брадикардии с нарушением сердечного ритма и появлением жизнеопасных аритмий. Заключение. Доказано, что исследования вариабельности сердечного ритма являются важным инструментом в верификации брадикардии как патологического феномена. Оценка брадикардии только по ЧСС без учета вариационного размаха кардионтервалов (MxDMn) не дает возможности определить ее истинное состояние. При неустойчивой брадикардии появление патологического феномена ВСР может определять границу нарушения процессов восстановления. Патологический феномен брадикардии может способствовать появлению перетренированности, жизнеопасных аритмий и повышению риска внезапной сердечной смерти спортсменов.

Ключевые слова: спортсмены, брадикардия, вариабельность сердечного ритма, нарушения ритма сердца

Для цитирования: Шлык Н.И., Гаврилова Е.А. Брадикардия и вариабельность сердечного ритма у спортсменов // Человек. Спорт. Медицина. 2023. Т. 23, № S1. С. 59–69. DOI: 10.14529/hsm23s109

Original article

DOI: 10.14529/hsm23s109

BRADYCARDIA AND HEART RATE VARIABILITY IN ATHLETES

N.I. Shlyk¹, shlyknatalia@yandex.ru, http://orcid.org/0000-0002-3165-9065 E.A. Gavrilova², gavrilovaea@mail.ru, http://orcid.org/0000-0002-7866-4996

Abstract. Aim. This paper was aimed at identifying the relationship between heart rate (HR) and the MxDMn range at rest and during orthostasis in biathletes with bradycardia and, thus, confirming their diagnosis. **Materials and methods.** Dynamic studies of heart rate and heart rate variability at rest and during orthostasis involved 59 biathletes with bradycardia from 16 to 20 years of age. Heart rate variability

² Северо-Западный государственный медицинский университет имени И.И. Мечникова, Санкт-Петербург, Россия

¹ Udmurt State University, Izhevsk, Russia

² North-Western State Medical University after I.I. Mechnikov, St. Petersburg, Russia

was studied with the "Varicard-2.52" device and the "Iskim-6" and "Varicard MP" programs. A total of 486 measurements were performed on athletes during different periods of training. Results. The results obtained show that, in athletes, bradycardia of less than 50 and especially 40 bpm, combined with a small MxDMn range at rest and a pathological response to orthostasis (increased HR results in an increase in the MxDMn range instead of its decrease), is a pathological phenomenon of HRV and a symptom of overtraining. Individual dynamic studies of HRV in athletes revealed the transition of bradycardia from one level to another, which was associated with unstable cardiac regulation. The relationship between pathological bradycardia and cardiac arrhythmia, including life-threatening arrhythmias, was shown. Conclusion. HRV studies are important for describing bradycardia as a pathological phenomenon. Evaluation of bradycardia based on HR data alone, regardless of the MxDMn range, does not make it possible to determine its true state. With unstable bradycardia, the appearance of pathological HRV can determine the boundary of impaired recovery. Pathological bradycardia can contribute to overtraining, life-threatening arrhythmias, and an increased risk of sudden cardiac death among athletes.

Keywords: athletes, bradycardia, heart rate variability, cardiac arrhythmias

For citation: Shlyk N.I., Gavrilova E.A. Bradycardia and heart rate variability in athletes. *Human. Sport. Medicine*. 2023;23(S1):59–69. (In Russ.) DOI: 10.14529/hsm23s109

Введение. Сегодня доказана связь между интенсивными физическими нагрузками в спорте и развитием нарушений ритма сердца, в том числе брадиаритмий. В последние годы отмечается не только тенденция к росту брадиаритмий у спортсменов, но и к их омоложению. Однако до сего времени расходятся суждения при оценке характера брадикардии. Длительные тренировки на выносливость связаны с вегетативным ремоделированием сердца в пользу кардиопротекторных механизмов блуждающего нерва, что приводит к брадикардии в состоянии покоя и увеличению вклада парасимпатической составляющей в регуляцию работы сердца [12–14].

В норме между частотой сердечных сокращений в состоянии покоя и вариабельностью ритма сердца отмечается отрицательная корреляция как у спортсменов, так и у физически активных людей [5–7]. Тренировка выносливости приводит как к брадикардии, так и улучшению вегетативной регуляции сердечно-сосудистой системы, тем самым снижая риск заболеваний сердца [1, 6–8, 12].

Есть отдельные наблюдения, которые показывают и отсутствие роста ВСР при брадикардии у спортсменов [9, 15]. Этот феномен, а также собственные данные о снижении ВСР при брадикардии у ряда спортсменов представляют значительный интерес как для физиологов спорта, тренеров, спортсменов, так и для клиницистов с точки зрения оценки брадикардии. Решить проблему в поиске причин нарушений автоматизма синусового узла, верификации брадикардии как физиологического или патологического феномена у спортсменов, в том числе юных, может помочь исследование вариабельности сердечного ритма (ВСР).

Материалы и методы. Анализ литературы проведен по базам Pubmed и Elibrary с ключевыми словами «спортсмены», «брадикардия», «вариабельность сердечного ритма». Проведена оценка ЧСС, ВСР и ЭКГ с проведением ортопробы у 63 биатлонистов сборных команд Удмуртии 16-20 лет с брадикардией 38-60 уд./мин и низкой вариабельностью сердечного ритма (вариационный размах кардиоинтервалов MxDMn менее 300 мс) в разные периоды тренировочного процесса. При исследовании ВСР регистрировался ЭКГ-сигнал в положении лежа на спине в течение 5 мин и стоя в течение 6 мин во втором стандартном отведении утром после предыдущего тренировочного дня. Обработка кардиоинтервалограмм и анализ вариабельности сердечного ритма проводились с помощью аппарата «Варикард 2.52» и программ «Иским 6» и «Варикард МП».

Программа «Варикард МП» позволяет регистрировать показатели ВСР одновременно у 12 спортсменов, что дает исследователю и тренеру полную информацию о функциональной готовности, резервных возможностях организма, уровне восстановления непосредственно перед тренировочной нагрузкой целой группы и своевременно вносить коррективы в тренировочный процесс каждого спортсмена [6, 7].

Всего проведено 486 исследований.

Результаты исследования и обсуждение. На рис. 1 и 2 отражены значения вариационного размаха кардиоинтервалов (MxDMn, мс) в покое (лежа) и в ортостазе в двух группах

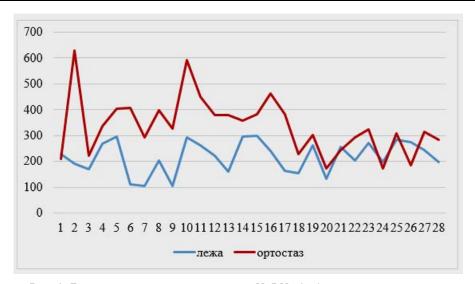


Рис. 1. Данные вариационного размаха MxDMn (мс) в покое и в ортостазе у биатлонистов с ЧСС 38–44 уд./мин Fig. 1. MxDMn measurements (ms) at rest and during orthostasis in biathletes with HR ranging from 38 to 44 bpm

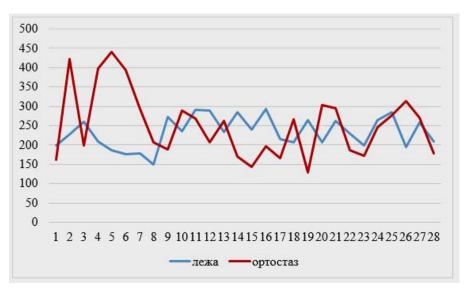


Рис. 2. Данные вариационного размаха MxDMn (мс) в покое и в ортостазе у биатлонистов с ЧСС 45–50 уд./мин Fig. 2. MxDMn measurements (ms) at rest and during orthostasis in biathletes with HR ranging from 45 to 50 bpm

спортсменов с различным уровнем бради-кардии.

Как видно из рис. 1 и 2, у 24 из 28 спортсменов с ЧСС 38–44 уд./мин (86 %) выявлена парадоксальная реакция на ортостаз в виде увеличения диапазона значения МхDМп вместо уменьшения. При этом у спортсменов с ЧСС 45–50 уд./мин эта парадоксальная реакция выявлена только у 11 из 28 спортсменов (39 %).

Среди спортсменов с ЧСС менее 45 уд./мин на ЭКГ предсердная экстрасистолия встречалась у шести спортсменов (21,4%) против

двух спортсменов с ЧСС более 45 уд./мин (7,1%).

Желудочковая экстрасистолия на ЭКГ встречалась у трех обследованных и только у спортсменов с парадоксальной реакцией на ортостаз независимо от ЧСС, в том числе с коротким интервалом сцепления (рис. 3).

На рис. 4 представлены нарушения реполяризации на ЭКГ в ортостазе у биатлониста с брадикардией при парадоксальной реакции.

Оставление без внимания брадиаритмий у спортсменов может привести к летальным исходам [2, 3].

Рис. 3. Желудочковая экстрасистолия с коротким интервалом сцепления у биатлониста с брадикардией и парадоксальной реакцией на ортостаз Fig. 3. Ventricular extrasystoles with a short coupling interval in a biathlete with bradycardia and a paradoxical response to orthostasis

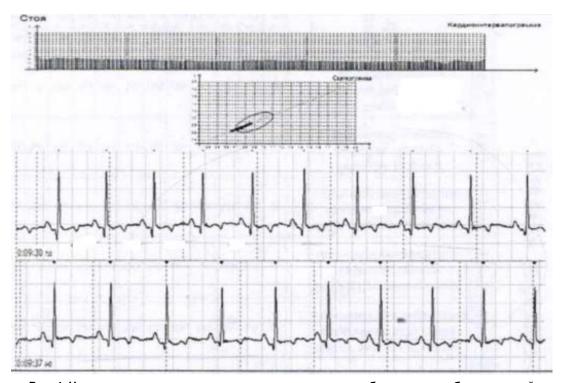


Рис. 4. Нарушения процессов реполяризации в ортостазе у биатлониста с брадикардией и парадоксальной реакцией Fig. 4. Repolarization abnormalities during orthostasis in a biathlete with bradycardia and a paradoxical response

Второе разделение данных ВСР у 56 спортсменов было по показателям вариационного размаха кардиоинтервалов: 18 спортсменов с диапазоном MxDMn менее 150 мс и 38 спортсменов с диапазоном MxDMn 151–299 мс. Данное разделение в 150 мс было выполнено на основе жалоб спортсменов на снижение спортивных результатов, которое отмечалось в основном у спортсменов с MxDMn менее 150 мс.

Очень важно отметить, что при переходе спортсменов с брадикардией из положения лежа в положение стоя увеличивается ЧСС с одновременным увеличением диапазона вариационного размаха кардиоинтервалов (MxDMn) вместо его уменьшения. То есть

при малых значениях ЧСС в покое в процесс регуляции вмешиваются центральные механизмы, а при переходе в ортостаз — автономные структуры, что отражает патологический тип регуляции. В табл. 1, 2 и на рис. 5, 6 в качестве примеров представлены результаты индивидуальных динамических исследований ВСР у биатлонистов в тренировочном процессе.

Табл. 1, 2 и рис. 5, 6 наглядно демонстрируют патологический феномен брадикардии у спортсменов в покое и ортостазе. У обоих спортсменов при брадикардии < 50 уд./мин в покое отмечаются низкие диапазоны значения MxDMn, отсутствие вариабельности ритма сердца на кардиоритмограммах и локальный

Таблица 1 Table 1

Показатели BCP у биатлониста Б. в подготовительном периоде с выраженной брадикардией в покое и патологической реакцией на ортостаз (патологический феномен BCP)
HRV measurements obtained during the early season in biathlete B with bradycardia at rest and a pathological response to orthostasis (a pathological phenomenon of HRV)

Дата	Комментарий к обследованию	ЧСС, уд./мин HR, bpm		MxDMn, mc/ms		SI, усл. ед. с. и.		$\frac{\text{TP,}}{\text{mc}^2 / \text{ms}^2}$		$\frac{\text{HF,}}{\text{mc}^2/\text{ms}^2}$		LF, mc ² / ms ²		VLF, mc ² /ms ²		UI mc²	LF, / ms²
Date	Comments	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho
13.06	Вчера 11 ч 40 мин, станок 10 мин, 2-я трен. – кросс 1 ч, станок + баня, самочув. нормальное Yesterday: 1 st training 1 hour 40 min, exercise machine 10 min; 2 nd training – cross country running 1 hour, exercise machine + sauna; normal general health	48	86	64	258	1193	116	252	2782	125	365	72	1420	24	278	32	720
21.06	Вчера выходной, самочув. нормальное, в понедельник простудился на тренировке Day off yesterday, normal general health, caught a cold on Monday during the training session	47	94	64	189	947	278	102	1181	34	122	13	519	17	261	38	279
07.08	Вчера 1-я тренировка – кросс и прыжковые упр. 2 серии, 2-я тренировка – роллеры комплексная техническая 20 км, самочув. нормальное Yesterday: 1 st training – cross country running and jump exercises (2 sets); 2 nd training – rollers, 20 km, normal general health	43	80	169	268	183	88	818	3037	329	124	317	1500	78	784	94	630

– выделенные показатели BCP в покое и ортостазе указывают на отклонение от нормы / HRV abnormalities at rest and during orthostasis.

жёсткий ритм на скатерграммах, что само по себе является отклонением от нормы.

В настоящее время показано, что снижение вариабельности ритма сердца имеет четкие обратные корреляции с уровнем тропонина, то есть нарушением целостности мембран кардиомиоцитов [10, 11], что доказывает связь нарушений регуляциии со структурным повреждением миокарда.

Э.В. Земцовский также рассматривал вы-

раженную брадикардию у спортсменов как проявление перетренированности. Автор показал, что при нарастании процессов дезадаптации в ответ на чрезмерные нагрузки возможно формирование маловариабельного ритма на фоне брадикардии [4].

При переходе в ортостаз у обоих спортсменов увеличивается ЧСС и значение MxDMn, что соответствует патологическому феномену брадикардии. На скатерграммах

Таблица 2 Table 2

Показатели ВСР у биатлониста А. с выраженной патологической брадикардией в покое и парадоксальной реакцией на ортостаз в разные периоды тренировочного процесса HRV measurements in biathlete A with pathological bradycardia at rest and a paradoxical response to orthostasis at different stages of the training season

Дата	Комментарий	ЧСС, уд./мин HR, bpm		MxDMn, mc/ms		SI, усл. ед. с. и.		TP, mc ² /ms ²		HF, mc ² /ms ²		LF, mc ² /ms ²		VLF, mc ² /ms ²		ULF, mc ² /ms ²	
Date	к обследованию Comments	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho	лежа rest	стоя ortho
18.07	8-й день сбора. Вчера выходной. В город ездил, купался. Самочув. хорошее, не выспался 8th day of the training camp. Yesterday: day off. I went to the city and swam. Good general health, didn't get enough sleep	47	60	289	328	107	41	493	4190	120	567	168	2185	79	256	126	1182
04.11	2-й день сбора. Вчера кросс. Самочув. хорошее, не выспался 2 nd day of the training camp. Yesterday: cross country running. Good general health, didn't get enough sleep	43	73	116	433	338	63	441	3740	129	2150	106	873	90	327	116	389

– выделенные показатели BCP в покое и ортостазе указывают на отклонение от нормы / HRV abnormalities at rest and during orthostasis.

присутствует увеличение разброса точек по сравнению с покоем, что говорит об увеличении диапазона разброса кардиоинтервалов, который в норме должен снижаться. Это еще раз свидетельствует об информативности использования метода исследования ВСР в сравнении с пульсометрией [6–8].

У спортсмена (рис. 6) на ЭКГ в покое и особенно в ортостазе регистрируются частые желудочковые экстрасистолы. Учащение экстрасистол при переходе в вертикальное положение тела (выброс стресс-реализующих гормонов) позволяет отнести эти экстрасистолы в разряд экстрасистол «группы риска», что повышает риск внезапной сердечной смерти у данного спортсмена [3].

Снижение автоматизма синусового узла может привести к неспособности удовлетворять физиологические потребности организма, особенно в периоды стресса или физической активности — хронотропной недостаточности, которая присутствует у 50 % пациентов с дисфункцией синусового узла [2, 9].

Важно отметить устойчивость патологи-

ческой брадикардии у этих спортсменов, при которой продолжается тренировочный пропесс.

Нами отмечены случаи неустойчивой брадикардии у одних и тех же спортсменов в тренировочном процессе. В табл. 3 и 4 приведены сравнительные данные показателей ЧСС и ВСР у биатлонистки при переходе брадикардии с одного уровня на другой. Так, при ЧСС < 39 уд./мин можно наблюдать патологический феномен ВСР, когда происходит отклонение показателей ВСР от нормы как в покое, так и ортостазе, а при ЧСС > 40 уд./мин (см. табл. 4) патологический феномен исчезает и брадикардия носит оптимальный (физиологический) характер, то есть кардиорегуляция и работа синусового узла нормализуется.

Однако частый переход брадикардии с одного уровня на другой говорит о неустой-чивости регуляции, ведущей к перетренированности. Эти указанные различия в показателях ЧСС и ВСР в покое и ортостазе у данной спортсменки при брадикардии более четко можно увидеть на рис. 7.

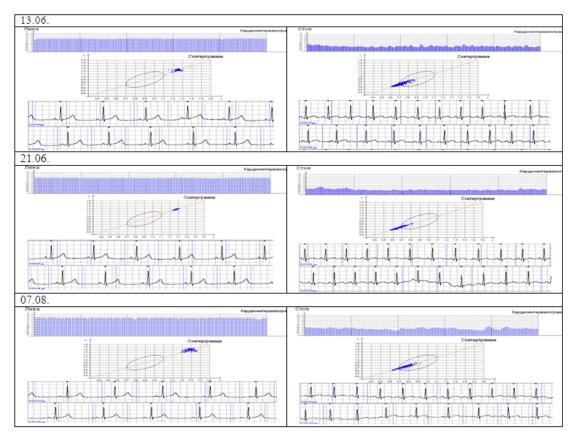


Рис. 5. Показатели кардиоинтервалограммы, скатерграммы и ЭКГ в покое и ортостазе у биатлониста с выраженной брадикардией в подготовительном периоде тренировочного процесса Fig. 5. Cardiac interval measurements, scattergrams, and ECG data at rest and during orthostasis in a biathlete with bradycardia during the early season

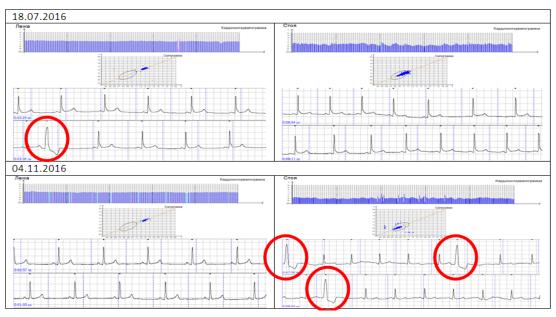


Рис. 6. Показатели кардиоинтервалограмм, скатерграмм ВСР и ЭКГ в покое и парадоксальной реакции на ортостаз у биатлониста с патологическим феноменом брадикардии и желудочковой экстрасистолией в подготовительном и соревновательном периодах тренировочного процесса Fig. 6. Cardiac interval measurements, HRV scattergrams, and ECG data at rest and during orthostasis in a biathlete with a pathological phenomenon of bradycardia and ventricular extrasystoles during the early season and the competitive period of training

Таблица 3
Table 3
Показатели ВСР у биатлонистки Б.С. в покое и ортостазе при патологической брадикардии в разные периоды тренировочного процесса
HRV measurements in biathlete B.S. with pathological bradycardia at rest and during orthostasis at different stages of the training season

Дата	ЧСС, уд./мин HR, bpm		MxDMn, Mc/ms		SI		$\frac{\text{TP,}}{\text{mc}^2/\text{ms}^2}$		$\frac{HF}{mc^2/ms^2}$		$\frac{LF}{mc^2/ms^2}$		VLF, mc ² / ms ²		ULF, mc ² / ms ²	
Date	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp
20.01.17	38	75	256	347	42	56	6872	4434	3971	124	1673	1677	680	1665	547	968
10.07.17	38	56	200	498	73	17	4391	7126	2720	2227	1020	2679	375	1312	275	907
13.07.17	38	48	247	477	69	19	4528	4490	2340	2472	615	773	674	553	899	692
17.07.17	37	60	313	437	33	27	7099	4356	2763	1347	2780	1059	637	1256	919	695
03.09.17	38	54	321	457	37	17	5383	4803	2532	1603	1165	1328	1235	1005	451	867
07.09.17	38	49	234	544	57	12	5014	8136	2907	2516	809	1363	375	757	923	3500
25.10.17	39	54	236	432	46	22	4563	5435	2957	2740	582	904	389	1400	634	391
27.10.17	39	55	237	346	47	36	3806	3563	2733	1451	462	1002	347	831	264	278
28.10.17	38	47	186	436	106	21	3813	5467	2618	3259	549	906	405	881	241	421
29.10.17	39	54	257	407	41	23	5267	6722	3357	1327	802	930	399	1322	709	3142
30.10.17	38	60	282	488	26	23	5035	8387	2530	834	1046	2236	691	3171	769	2146

– выделенные показатели BCP в покое и ортостазе, указывающие на отклонение от нормы / HRV abnormalities at rest and during orthostasis.

Таблица 4
Table 4
Показатели ВСР у биатлонистки Б.С. в покое и ортостазе при физиологической брадикардии в разные периоды тренировочного процесса
HRV measurements in biathlete B.S. with physiological bradycardia at rest and during orthostasis at different stages of the training season

Дата	ЧСС, уд./мин HR, bpm		MxDMn, мс/ms		SI		$\frac{\text{TP,}}{\text{mc}^2 / \text{ms}^2}$		$\frac{HF}{mc^2/ms^2}$		LF , mc^2/ms^2		VLF, mc ² /ms ²		ULF, mc ² /ms ²	
Date	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp	лежа rest	стоя orthp
05.01.17	46	77	443	281	19	95	5449	1993	4151	219	643	938	473	275	181	561
03.02.17	43	81	400	220	21	159	6140	1962	3785	107	1501	1222	193	415	661	218
10.02.17	43	75	385	282	24	76	5320	1281	2982	167	763	416	611	415	964	284
14.02.17	45	73	484	220	15	142	7449	1128	4625	148	1227	311	342	518	1255	151
09.06.17	41	60	567	450	13	31	6456	5619	4034	1149	1283	1181	710	1778	429	1512
22.06.17	45	64	387	317	21	58	6399	2532	4107	867	1349	604	765	398	178	663
22.10.17	42	63	510	307	48	59	6629	1602	4010	529	1556	568	914	351	149	154
23.10.17	40	64	456	400	17	44	7601	2603	3736	627	2436	1094	894	272	535	611

Следовательно, проведение динамических исследований ЧСС и показателей ВСР в покое и ортостазе позволяет с определенной точностью проводить верификацию брадикардии у каждого спортсмена и корректировать тренировочный процесс.

Это еще раз подчеркивает, что в спорте необходимо получать информацию не по час-

тоте сердечных сокращений, а по состоянию кардиорегуляторных систем, то есть анализу взаимоотношений ЧСС и вариационного размаха кардиоинтервалов, а также других показателей ВСР в покое и ортостазе. При этом применению ортостатического тестирования для оценки верификации брадикардии необходимо придавать особое значение.

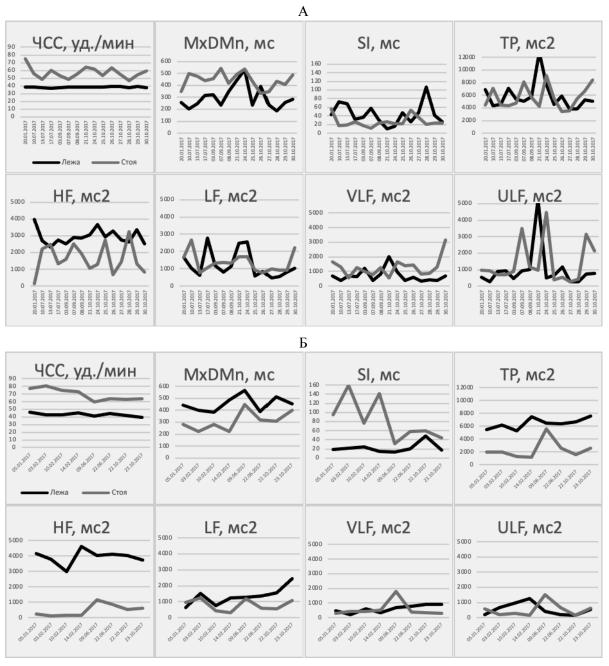


Рис. 7. Сравнение показателей ВСР в покое и ортостазе у биатлонистки Б.С. при разной ЧСС: A – ЧСС < 40 уд./мин; Б – ЧСС > 40 уд./мин

Fig. 7. HRV measurements in biathlete B.S. at rest and during orthostasis depending on HR: A - HR < 40 bpm; B - HR > 40 bpm

Заключение. В результате динамических исследований ЧСС и анализа ВСР в покое и ортостазе в тренировочном процессе спортсменов получены новые научные данные в оценке уровня брадикардии. Показано, что выраженная брадикардия в сочетании с низкими показателями вариационного размаха кардиоинтервалов (МхDМп) в покое и парадоксальной реакцией на ортостаз связаны с дизрегуляцией отделов вегетативной нервной системы и нарушением работы синусового

узла. При патологической брадикардии синусовый узел уходит из-под контроля регуляторных систем. Чем ниже исходный показатель MxDMn и более выражена брадикардия, тем парадоксальней реакция на ортостаз, то есть более выражены дизрегуляторные процессы. Выявленный патологический феномен ВСР может определять индивидуальные границы перехода брадикардии с одного уровня на другой, что важно для определения нарушения восстановительных процессов, пере-

тренированности, появления жизнеопасных аритмий и своевременной коррекции тренировочного процесса спортсмена.

Спортсмены при брадикардии с устойчивым патологическим феноменом ВСР должны пройти углубленный медицинский осмотр.

Список литературы

- 1. Баевский, Р.М. Оценка адаптационных возможностей организма и риск развития заболеваний / Р.М. Баевский, А.П. Берсенева. М.: Медицина, 1997. С. 265.
- 2. Брадиаритмии и нарушение проводимости. Клинические рекомендации. М.: Мин-во здравоохранения РФ, 2020.
 - 3. Гаврилова, Е.А. Спорт, стресс, вариабельность / Е.А. Гаврилова. М.: Спорт, 2015. 170 с.
- 4. Земцовский, Э.В. Спортивная кардиология / Э.В. Земцовский. СПб.: Гиппократ, 1995. 448 с.
- 5. Черкасов, Н.С. Особенности диагностики синусовой аритмии у юных спортсменов / Н.С. Черкасов, Т.Н. Доронина, М.Я. Ледяев // Вестник ВолгГМУ. -2020. -T. 74, № 2. -C. 25-27.
- 6. Шлык, Н.И. Нормативы показателей вариабельности сердечного ритма в покое и ортостазе при разных диапазонах значения MxDMn и их изменение у биатлонистов в тренировочном процессе / Н.И. Шлык // Человек. Спорт. Медицина. − 2020. − T. 20, № 4. − C. 5–24.
- 7. Шлык, Н.И. Вариабельность сердечного ритма в покое и ортостазе при разных диапазонах значений MxDMn у лыжниц-гонщиц в тренировочном процессе / Н.И. Шлык // Наука и спорт: современные тенденции. -2020.-T. 8, N 1. -C. 83–96.
- 8. Шлык, Н.И. Сердечный ритм и тип регуляции у детей, подростков и спортсменов: моногр. / Н.И. Шлык. Ижевск: Изд-во «Удмуртский университет», 2009. 255 с.
- 9. Hawks, M. K. Sinus Node Dysfunction / M.K. Hawks, M.L.B. Paul, O.O. Malu // Am Fam Physician. 2021. Vol. 2, no. 104. P. 179–185.
- 10. Heart Rate and Its Variability in Response to Running-Associations with Troponin / P. Aagaard, A. Sahlén, L. Bergfeldt, F. Braunschweig // Med. Sci. Sports Exerc. 2013. No. 4. P. 337.
- 11. Heidbuchel, H. The athlete's heart is a proarrhythmic heart, and what that means for clinical decision making / H. Heidbuchel // Europace. 2017. No. 20. P. 1401–1411.
- 12. May a unitary autonomic index help assess autonomic cardiac regulation in elite athletes? Preliminary observations on the national Italian Olympic committee team / R. Sala, M. Malacarne, F. Tosi et al. // J Sports Med Phys Fitness. 2017. Vol. 12, no. 57. P. 1702–1710.
- 13. Resting Electrocardiogram and Blood Pressure in Young Endurance and Nonendurance Athletes and Nonathletes / H. Pentikäinen, K. Toivo, S. Kokko et al. // J Athl Train. 2021. Vol. 5, no. 56. P. 484–490.
- 14. Task Force 7: arrhythmias / P.Z. Douglas, J.A. Michael, N.A. Mark Estes et al. // J Am Coll Cardiol. 2005. Vol. 8, no. 45. P. 1354–1463.
- 15. Unaltered R-R interval variability and bradycardia in cyclists as compared with non-athletes / G.E. Molina, L.G. Porto, K.E. Fontana, L.F. Junqueira // Jr. Clin Auton Res. 2013. Vol. 3, no. 23. P. 141–148.

References

- 1. Bayevskiy R.M., Berseneva A.P. *Otsenka adaptatsionnykh vozmozhnostey organizma i risk razvitiya zabolevaniy* [Evaluation of the Adaptive Capacity of the Body and the Risk of Developing Diseases]. Moscow, Medicine Publ., 1997. 265 p.
- 2. Bradiaritmii i narusheniye provodimosti. Klinicheskiye rekomendatsii [Bradyarrhythmias and Conduction Disturbances. Clinical Gidelines]. Moscow, Ministry of Health of the Russian Federation Publ., 2020.
- 3. Gavrilova E.A. *Sport, stress, variabel'nost'* [Sport, Stress, Variability]. Moscow, Sport Publ., 2015. 170 p.
- 4. Zemtsovskiy E.V. *Sportivnaya kardiologiya* [Sports Cardiology]. St. Petersburg, Gippokrat Publ., 1995. 448 p.
- 5. Cherkasov N.S., Doronina T.N., Ledyayev M.Ya. [Features of the Diagnosis of Sinus Arrhythmia in Young Athletes]. *Vestnik VolgGMU* [Vestnik VolgGMU], 2020, vol. 74, no. 2, pp. 25–27. (in Russ.) DOI: 10.19163/1994-9480-2020-2(74)-25-27

- 6. Shlyk N.I. Standards for Indicators of Heart Rate Variability at Rest and Orthostasis for Different Ranges of MxDMn Values and their Change in Biathletes During the Training Process. *Human. Sport. Medicine*, 2020, vol. 20, no. 4, pp. 5–24. (in Russ.)
- 7. Shlyk N.I. [Heart Rate Variability at Rest and Orthostasis at Different Ranges of MxDMn Values in Cross-Country Skiers During the Training Process]. *Nauka i sport: sovremennyye tendentsii* [Science and Sport. Current Trends], 2020, vol. 8, no. 1, pp. 83–96. (in Russ.) DOI: 10.36028/2308-8826-2020-8-1-83-96
- 8. Shlyk N.I. *Serdechnyy ritm i tip regulyatsii u detey, podrostkov i sportsmenov: monografiya* [Cardiac Rhythm and Type of Regulation in Children, Adolescents and Athletes]. Izhevsk, Udmurt University Publ., 2009. 255 p.
- 9. Hawks M.K., Paul M.L.B., Malu O.O. Sinus Node Dysfunction. *Am Fam Physician*, 2021, vol. 2, no. 104, pp. 179–185.
- 10. Aagaard P., Sahlén A., Bergfeldt L., Braunschweig F. Heart Rate and Its Variability in Response to Running-Associations with Troponin. *Medicine Science Sports Exerc.*, 2013, no. 4, p. 337.
- 11. Heidbuchel H. The Athlete's Heart is a Proarrhythmic Heart, and what that Means for Clinical Decision Making. *Europace*, 2017, no. 20, pp. 1401–1411. DOI: 10.1093/europace/eux294
- 12. Sala R., Malacarne S.M., Tosi F. et al. May a Unitary Autonomic Index Help Assess Autonomic Cardiac Regulation in Elite Athletes? Preliminary Observations on the National Italian Olympic Committee Team. *Journal Sports Med Physical Fitness*, 2017, vol. 12, no. 57, pp. 1702–1710. DOI: 10.23736/S0022-4707.17.06998-5
- 13. Pentikäinen H., Toivo K., Kokko S. et al. Resting Electrocardiogram and Blood Pressure in Young Endurance and Nonendurance Athletes and Nonathletes. *Journal Athletic Train*, 2021, vol. 5, no. 56, pp. 484–490. DOI: 10.4085/78-20
- 14. Douglas P.Z., Michael J.A., Mark N.A. et al. Task Force 7: Arrhythmias. *Journal American Coll Cardiology*, 2005, vol. 8, no. 45, pp. 1354–1463. DOI: 10.1016/j.jacc.2005.02.014
- 15. Molina G.E., Porto L.G., Fontana K.E., Junqueira L.F. Unaltered R-R Interval Variability and Bradycardia in Cyclists as Compared with Non-Athletes. *Jr. Clin Auton Res.*, 2013, vol. 3, no. 23, pp. 141–148. DOI: 10.1007/s10286-013-0196-8

Информация об авторах

Шлык Наталья Ивановна, доктор биологических наук, профессор, заведующий кафедрой валеологии и медико-биологических основ физической культуры, Удмуртский государственный университет, Ижевск, Россия.

Гаврилова Елена Анатольевна, доктор медицинских наук, профессор, заведующий кафедрой лечебной физкультуры и спортивной медицины, Северо-Западный государственный медицинский университет имени И.И. Мечникова, Санкт-Петербург, Россия.

Information about the authors

Natalya I. Shlyk, Doctor of Biological Sciences, Professor, Head of the Department of Valeology and Biomedical Fundamentals of Physical Education, Udmurt State University, Russia.

Elena A. Gavrilova, Doctor of Medical Sciences, Professor, Head of the Department of Physical Therapy and Sports Medicine, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia.

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации.

Авторы заявляют об отсутствии конфликта интересов.

Contribution of the authors: the authors contributed equally to this article.

The authors declare no conflicts of interests.

Cmamья поступила в редакцию 02.11.2022 The article was submitted 02.11.2022