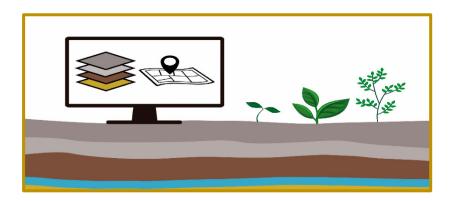


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ


ФАКУЛЬТЕТ ГЕОГРАФИИ И ГЕОИНФОРМАТИКИ Кафедра почвоведения и геоинформационных систем БЕЛОРУССКОЕ ГЕОГРАФИЧЕСКОЕ ОБЩЕСТВО

ПОЧВЕННЫЕ И ЗЕМЕЛЬНЫЕ РЕСУРСЫ: ТРАДИЦИОННЫЕ И ИННОВАЦИОННЫЕ ПОДХОДЫ К ИЗУЧЕНИЮ И УПРАВЛЕНИЮ

Материалы

международной научно-практической конференции, посвященной 90-летию образования кафедры почвоведения и геоинформационных систем БГУ и 85-летию со дня рождения доктора географических наук, профессора В. С. АНОШКО

Минск, 21–24 сентября 2023 г.

Научное электронное издание

МИНСК, БГУ, 2023

Редакционная коллегия:

кандидат сельскохозяйственных наук, доцент А. Н. Червань (гл. ред.); кандидат географических наук А. С. Семенюк; кандидат сельскохозяйственных наук, доцент И. А. Ефимова; доктор сельскохозяйственных наук, профессор Н. В. Клебанович; кандидат географических наук, доцент Н. В. Ковальчик; кандидат географических наук, доцент Л. И. Смыкович; кандидат экономических наук, доцент Д. А. Чиж; кандидат географических наук, доцент А. А. Карпиченко; А. Л. Киндеев; А. А. Сазонов

Рецензенты:

заместитель начальника отдела № 14 «Разработки технологий обработки и применения данных дистанционного зондирования Земли» Научно-инженерного республиканского унитарного предприятия «Геоинформационные системы» В. А. Сипач; кандидат географических наук, доцент А. Е. Яротов

Почвенные и земельные ресурсы: традиционные и инновационные подходы к изучению и управлению [Электронный ресурс] : материалы междунар. науч.-практ. конф., посвящ. 90-летию образования каф. почвоведения и геоинформ. систем БГУ и 85-летию со дня рождения д-ра геогр. наук, проф. В. С. Аношко, Минск, 21–24 сент. 2023 г. / Белорус. гос. ун-т ; редкол.: А. Н. Червань (гл. ред.) [и др.]. – Минск : БГУ, 2023. – 1 электрон. опт. диск (CD-ROM). – ISBN 978-985-881-535-6.

Рассматриваются проблемы географии и картографирования почв, применения геоинформационных систем в почвоведении, землеустройства и территориального планирования.

Минимальные системные требования:

PC, Pentium 4 или выше; RAM 1 Гб; Windows XP/7/10; AdobeAcrobat Оригинал-макет подготовлен в программе MicrosoftWord

В авторской редакции

Ответственный за выпуск Е. В. Логинова

Подписано к использованию 15.11.2023. Объем 2,9 МБ

Белорусский государственный университет. Управление редакционно-издательской работы. Пр. Независимости, 4, 220030, Минск. Телефон: (017) 259-70-70, email: urir@bsu.by, http://elib.bsu.by

СОДЕРЖАНИЕ

Раздел I. ИСТОРИЯ И МЕТОДОЛОГИЯ ПОЧВОВЕДЕНИЯ В КОНТЕКСТЕ РАЗВИТИЯ ПОЧВЕННОЙ НАУКИ И	
УНИВЕРСИТЕТСКОГО ОБРАЗОВАНИЯ	10
Карпиченко А.А. Ландшафтно-геохимические исследования на кафедре почвоведения и ГИС в XXI веке	10
Романова Т.А. Научные школы почвоведения в Беларуси	15
Богдевич И.М., Путятин Ю.В., Станилевич И.С. Полвека формирования и оптимизации агрохимических показателей плодородия пахотных и луговых почв Беларуси	
<i>Махнач В.В., Мотузка А.Н.</i> Становление палеопочвоведения Беларуси	25
<i>Теренёва А.П., Симанков О.В.</i> Почвенное обследование земель в Республике Беларусь	30
ПОКРОВ. ВОПРОСЫ ДЕГРАДАЦИИ ПОЧВ И ЗЕМЕЛЬ, МЕТОДЫ ОЦЕНКИ И ПРОГНОЗА СОСТОЯНИЯ ПОЧВЕННО-ЗЕМЕЛЬНЫХ РЕСУРСОВ	
Анциферова О.А. Оценка вторично переувлажненных почв в осущенных агроландшафтах Калининградской области	
Баширов Р.Р., Гасанов Г.Н., Гаджиев К.М., Абдулаева А.С., Усманов Р.З. Способ освоения солончаков в условиях Терско-Кумской	
равнины	43
применения радиоцезиевого метода	50
Двойных В.В. Влияние склоновых агроландшафтов на биологическую активность почвы	55
<i>Дериглазова Г.М.</i> Влияние технологий возделывания полевых культур на агрохимические свойства почв в Курской области	59
<i>Ересько М. А.</i> Комплексное восстановление земель в местах добычи полезных ископаемых	64
Чалов С.Р., Иванов В.А. Соотношение компонентов баланса	
наносов для больших рек: эрозия и аккумуляция, русловая и водосборная эрозия	69

Иванова Н.Н. Анализ истории землепользования, изменений
систем земледелия и структуры посевов в регионах ЕТР с различными
природными условиями и длительностью земледельческого освоения
для целей ретроспективной оценки динамики темпов и объемов смыва
за последние столетия
Костюченко Н.Н., Дашкевич М.М., Волчек А.А. Содержание тяжелых
металлов в дерново-подзолистой почве при хранении органического
удобрения в полевых условиях 79
Прущик А.В. Оценка эффективности лесных полос
на эрозионноопасном склоне
Кухарчик Т.И., Чернюк В.Д., Рябычин К.О. Опыт изучения микропластика
в почвах в зонах локальных источников воздействия: методические
подходы, результаты
Унанян С.А., Сукиасян А.Р., Джангирян Т.А., Киракосян А.А.
Эколого-токсикологическая оценка антропогенного загрязнения почвы
в районе Араратского цементного завода
Тюгай 3., Салимгареева О.А., Иванов А.В., Сидорова И.Я.
Агрегатная структура естественных и пахотных почв разного генезиса
европейской части России: морфологические и физико-химические
характеристики
Жидкин А.П., Фомичева Д.В., Рухович Д.И. Оценка деградации
почвенного покрова на основе сочетания эрозионного моделирования
и отражательной способности открытой поверхности почвы
на ключевых участках в лесостепи Среднерусской возвышенности 101
Фомичева Д.В., Иванова Н.Н., Шамшурина Е.Н. Ретроспективная
оценка динамики эрозионных процессов юга лесостепной зоны
(на примере ключевого участка в Тамбовской области)
(na nprimepe kino-teboro y taerka b ramoobekon oonaem)
Раздел III. СОВРЕМЕННЫЕ МЕТОДЫ И ТЕХНОЛОГИИ
ФИЗИКО-ГЕОГРАФИЧЕСКИХ ИССЛЕДОВАНИЙ111
Чуян Н.А. Биологическое состояние чернозема типичного
в условиях применения агробиотехнологии
<i>Гусев А.П.</i> Диагностика химического загрязнения почвенного
покрова комплексом дистанционных и наземных методов
Кокорева А.А., Клебанович Н.В., Колупаева В.Н., Никитина М.А.
Моделирование водного режима типичных почв сельскохозяйственных
ландшафтов Республики Беларусь как первый этап создания
национальных сценариев оценки риска пестицидов

Асварова Т.А., Гасанов Г.Н., Гаджиев К.М., Баширов Р.Р., Абдулаева А.С. Оценка влияния климатических факторов на	
почвенно-растительный покров Терско-Кумской низменности	126
Сапожникова П.М., Данилова Н.И. Кадастровая стоимость агроландшафтов России, граничащих с Республикой Беларусь	131
Гафуров А.М., Усманов Б.М. Использование воздушного лазерного сканирования для мониторинга лесных формаций	136
Григорьев И.И., Рысин И.И. Изучение русловых и овражных процессов на территории Удмуртии с помощью современных	
технологий	141
Раздел IV. ГИДРОМЕЛИОРАТИВНЫЕ И ХИМИКО- МЕЛИОРАТИВНЫЕ ПОДХОДЫ К ОПТИМИЗАЦИИ СВОЙСТ	
ПОЧВ	146
Салимгареева О.А., Ковалева Н.О., Вытовтов В.А. Об удельной поверхности чернозема типичного Курской области	146
Пукин С.В., Корнейко Н.И., Четверикова Н.С. Динамика плодородия почв и продуктивности агроценозов в условиях биологизации земледелия Белгородской области России	151
<i>Дудкина Т.А</i> . Влияние севооборота и минеральных удобрений на биологические свойства почвы под яровым ячменем	
Хомич В.С. Методические аспекты мониторинга почв и почвенно-геохимических изысканий	
<i>Брескина Г.М.</i> Современный взгляд на использование биопрепаратов и растительных остатков на удобрение	165
Волчек А.А., Городнюк Ю.П. Моделирование урожайности озимой ржи на территории Брестской области	170
Кунавич К.В. Изменения водоудерживающей способности и степени восстановления тургора листьев клевера (клевер луговой и клевер ползучий) под антропогенным влиянием	
на почвенный покров	176
Раздел V. ГЕОХИМИЯ ПОЧВ И ЛАНДШАФТОВ	182
Абдулаева А.С., Гасанов Г.Н., Гаджиев К.М., Асварова Т.А.,	
<i>Баширов Р.Р.</i> Углерод в основных типах почв в полупустынях	1.02
Терско-Кумской низменности	182

Елсукова Е.Ю., Недбаев И.С., Кузьмина Д.С. Эколого-	
геохимические особенности и биотестирование почв в зоне	
воздействия добычи и производства фосфоритов	. 187
$Ky \partial pe в a m ы x И. Ю., K a л и н и н П. И., A л е к c e e в A. O. Редкоземельные$	
элементы в оценке интенсивности выветривания и скорости потери	
элементов из почв на примере степных ландшафтов	. 192
<i>Мижуй С.М., Пехота А.П.</i> Кислотность генетических горизонтов	
дерновой полугидроморфной песчаной почвы в зависимости от	100
микрорельефа местности	. 196
Салихов Ш.К., Гасанов Г.Н., Кичева Ж.О., Яхияев М.А.,	
Усманов Р.З. Органический углерод в почвах	• • •
внутригорного Дагестана	. 201
Чекин Γ .В. Содержание и профильное распределение	
тяжелых металлов в аллювиальных почвах городского	206
участка поймы р. Десна	. 206
Клебанович Н.В., Ересько М.А. Об экологических аспектах	210
нейтрализации почвенной кислотности	. 210
Кузьмин С.И., Дробенок С.Д., Лаппо В.М. Распределение тяжелых	
металлов и нефтепродуктов в почвах санитарно-защитных зон	214
полигонов твердых коммунальных отходов	. 214
Савченко С.В., Какарека С.В., Парфенов В.В., Саливончик С.В.,	
Хомич В.С. Прогнозная оценка загрязнения почв тяжелыми	210
металлами на территории Беларуси	. 219
Оношко М.П., Смыкович Л.И., Крошинский В.А., Бурко А.Н.,	22.4
Костюкевич Н.В. Геохимическая оценка почв Могилевской области	. 224
Раздел VI. ТЕРРИТОРИАЛЬНОЕ УПРАВЛЕНИЕ И	
планирование, землеустроительное проектирован	ПИБ
УСТОЙЧИВОЕ РАЗВИТИЕ РЕГИОНОВ	
Киварина М.В. Региональные инновации как фактор устойчивого	
экономического роста	. 229
<i>Червань А.Н.</i> Структура почвенного покрова в практике	>
территориального планирования агроландшафтов	234
<i>Бондарев В.П., Радомысльский М.С.</i> Социальные последствия	. 25 .
деградации земель с точки зрения экспертов	243
<i>Любезная В.С.</i> Сетевой анализ объектов социальной	. 2 13
инфраструктуры для целей городского планирования	
(на примере г. Гомеля)	. 248
\ 1 1 1 / / · · · · · · · · · · · · · · ·	

Маевская А.Н., Богдасаров М.А., Шешко Н.Н. Ранжирование	
земельного фонда территории Брестской области по приемлемости к	
разработке общераспространенных полезных ископаемых	4
Пиловец Г.И. Анализ изменения структуры видов земель	
Витебской области	9
Полюхович А.Н. Управление территориями водно-болотных	
угодий международного значения Беларуси	4
Ридевский Г.В. Дуализм и трихотомия сельского пространства	
Беларуси как результат интенсивности	
сельско-городских взаимодействий	8
Сафина Г.В., Федорова В.А. Искусственные земельные участки	
как территориальный резерв развития городских	
систем (на примере города Казани)	3
Шушкова Е.В., Устин В.В. Анализ реализации региональной	
схемы рационального размещения ООПТ	
местного значения (на примере Минской области)	8
Яцухно В.М. Отражение почв в правовой системе Республики	
Беларусь: состояние и необходимость совершенствования	3
Шавель А.Н., Безрученок А.П. Географические особенности выращивания	Я
сахарной свеклы в Республике Беларусь	
Ефимова И.А., Андреева В.Л. Характеристика типа земель	
«водороздел выпуклый высокий на двучленных породах» в границах	
Березинского заповедника	3
Раздел VII. ГЕНЕЗИС, ЭВОЛЮЦИЯ И КЛАССИФИКАЦИЯ ПОЧВ.	
СТРУКТУРА ПОЧВЕННОГО ПОКРОВА, ЭВОЛЮЦИЯ	_
И МОНИТОРИНГ ПОЧВ И ЗЕМЕЛЬ293	8
Горячкин В.Н. Оценка содержания подвижного фосфора в почвах	
сельскохозяйственных угодий Ленинградской области	8
Давыдова С.Г. Почвы и почвообразующие породы	
Новгородской области	
Давыдова С.Г., Дружнова М.П., Степанова А.А. Типы почв Новгородской	ĭ
области, сформировавшиеся в условиях избыточного увлажнения 30	6
Ковалев И.В., Ковалева Н.О. Мониторинг полугидроморфных	
почв, осущенных пластмассовым и гончарным дренажом31	1
Ковалева Н.О. Особенности генезиса и эволюции почв	
полесий Русской равнины	6

Лисецкий В.Н. Закономерности депонирования органического углерода
постагрогенными почвами в контексте климатических различий321
Махнач В.В., Мотузка А.Н. Палеопочвы территории Беларуси326
Неведров Н.П. Многолетняя динамика эмиссии CO ₂ из почв лесопарковых экосистем Курской агломерации
Смыкович Л.И., Оношко М.П., Кажуро Е.А. Структура земельного фонда Могилевской области
Сазонов А.А. География почвообразующих пород почв сельскохозяйственных земель Беларуси
Раздел VIII. ГЕОИНФОРМАЦИОННОЕ КАРТОГРАФИРОВАНИЕ И МОДЕЛИРОВАНИЕ ДЛЯ УПРАВЛЕНИЯ ПОЧВЕННО- ЗЕМЕЛЬНЫМИ РЕСУРСАМИ
Глазунов Г.П. Агроэкологическая оценка склоновых земель в условиях Центрально-Черноземного региона
Гутько Ф.С., Киндеев А.Л. Геостатистический анализ кислотности почв для целей точного земледелия
Давидович Ю.С. Использование материалов радиолокационной съемки при дешифрировании геосистем Белорусского Полесья352
<i>Князев И.С., Сазонов А.А.</i> Определение почвенного покрова методами машинного обучения по данным воздушного лазерного сканирования
Алисиевич С.В., Ковальчик Н.В. Оценка условий формирования избыточного стока в локальных водосборах на территории г. Минска361
Копыльцова Е.В., Шамаль Н.В., Сеглин В.Н., Никитин А.Н., Тимохина Н.И. Создание цифровой модели поверхности и радиационной обстановки на примере площадки вблизи бывшего населенного пункта Ясная Поляна
Решоткин О.В., Алябина И.О. Современные тенденции изменения климата почв Европейской России и Западной Сибири369
Сафина А.Р., Коркина Е.К. БПЛА-съёмка почвенного покрова в условиях темнохвойной тайги
Сипач В.А., Люштык В.С., Семенов О.А. Применение ГИС в управлении территорией национального парка «Нарочанский»380
Усманов Б.М., Гафуров А.М., Иванов М.А. Хомякова П.В.
Организация дистанционного мониторинга на полигоне «Карбон-Поволжье»

Φ руль Е.С., Киндеев А.Л. Использование лазерного сканирования для	
определения эрозионно-опасных земель в детальном масштабе	.391
Киндеев А.Л., Сазонов А.А., Яскельчик В.В. Геостатистическая	
интерпретация неоднородности кислотности почвенного покрова	
основных видов земель Республики Беларусь	.395
Чекалов И.А. Построение карты-задания для дифференцированного	
внесения азотных удобрений на основе индекса NDVI	.401

ИЗУЧЕНИЕ РУСЛОВЫХ И ОВРАЖНЫХ ПРОЦЕССОВ НА ТЕРРИТОРИИ УДМУРТИИ С ПОМОЩЬЮ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ

И.И. Григорьев¹⁾, И.И. Рысин²⁾

 $^{1)}$ Удмуртский государственный университет, г. Ижевск, email:ivangrig@yandex.ru $^{2)}$ Удмуртский государственный университет, г. Ижевск, email:rysin.iwan@yandex.ru

Представлены современные технологии и результаты многолетних (1978–2022 гг.) исследований овражной эрозии и русловых процессов (2000–2022 гг.) на территории Удмуртии. На графике среднегодовых скоростей роста вершин оврагов за 44 летний период максимумы прироста относятся к 1979 (2,8 м), 1990 (1,9 м), 1991 (2,3 м) и 1994 (1,8 м) годам. Отчетливо выражен отрицательный тренд в развитии оврагов. Размыв берегов рек различается как по годам, так и отдельным ее участкам и зависит от морфолого-морфометрических параметров русла, руслоформирующих расходов и др. Современные методы исследования опасных эрозионных процессов включают комбинированное использование наземных геодезических измерений и аэрофотосъемок. Получены количественные показатели по линейному, площадному и объемному приросту овражной и русловой эрозии за многолетний период. Используемая методика позволила получить надежные результаты и планируется к дальнейшему использованию в мониторинговых наблюдениях в республике.

Ключевые слова: овражная эрозия, русловые размывы, геодезические работы, аэрофотосъемка, Удмуртская Республика.

На территории Удмуртской Республики (УР) проявляются различные типы опасных эрозионных процессов. Наиболее активны почвенная и овражная эрозия, русловые размывы берегов. В меньшей степени представлены оползневые и абразионные процессы, крип и др.

Современные технологии исследования данных процессов представлены главным образом комплексом полевых и камеральных топографо-геодезических работ, проводимых нами для изучения прироста оврагов за 44-летний период и динамики русловых размывов с начала 2000-х годов. Они заключаются в выполнении высокоточной ($\pm 0,01$ м) топографической съемке оврагов, уступов при вершинах, их бровок и тальвегов. Путем ежегодного сравнения топографических съемок измеряется линейный прирост вершин оврагов и изучается характер изменений очертаний бровок и тальвегов в плане и по высоте. Геодезические приборы для проведения данных работ регулярно совершенствовались. В период 1978-2002 гг. это были оптико-механические геодезические инструменты (теодолиты Т30 и 2Т30). С

2003 года начали использовать электронные инструменты с лазерными дальномерами (тахеометры "Trimble 3305", затем "Nicon NPR-332") [1].

С 2019 года для изучения некоторых эрозионных процессов нами применяется спутниковый приемник «EFT» вместе с квадрокоптером «DJI Phantom 4». Снимки с беспилотных летательных аппаратов (БПЛА) отличаются сверхвысоким пространственным разрешением и имеют высокую скорость получения. Имеются и определенные недостатки: время полета ограничено емкостью батареи (20-30 минут в зависимости от модели), площадь исследуемого участка относительно небольшая (до 100 га), зависимость от погоды (ветер, осадки). Использование квадрокоптера «DJI Phantom 4» дает возможность точной привязки аэрофотоснимков в разных системах координат. Это позволяет получать высокоточные количественные данные о различных эрозионных процессах. Точность определения координат центров снимков квадрокоптером в СК WGS-84 составляет около 2-3 метров. Такой точности измерений явно недостаточно. Для повышения итоговой точности ортофотопланов нами используется привязка к наземным маркерным пунктам, координаты которых определяются с помощью спутниковых приемников. Таким способом точность ортофотопланов достигает 5-10 см. Для осуществления аэрофотосъемочных работ квадрокоптером «DJI Phantom 4» определены следующие параметры: высота полета в диапазоне 50-80 м, перекрытие снимков в продольном направлении - не менее 80%, в поперечном - не менее 70%, для съемки линейных объектов требуется выполнение не менее 3 галсов [2]. Последующая обработка аэрофотоснимков проводится в программе Agisoft Metashape Professional. В исследованиях выполнялось построение 3d-моделей, ортофотопланов и цифровых моделей местности (ЦММ).

На нескольких оврагах, отличающихся активным линейным приростом, каждый год выполняются исследования по измерению площади вершин и вычислению их объемного прироста. То же самое относится и к проявлениям русловой эрозии. Использование аэрофотосъемки в исследованиях позволяет получить достаточно точные количественные данные по развитию различных опасных эрозионных процессов (линейный прирост, площадной размыв и объем вынесенного материала), что повышает качество итоговых результатов за весь период наблюдений.

На 2022 г. в систему мониторинга на землях сельскохозяйственного назначения входят 168 вершин оврагов, которые располагаются на 28 ключевых участках в различных ландшафтных условиях юга Вятско-Камского междуречья.

Все овраги, входящие в сеть мониторинга, разделяются традиционно на две группы: первичные и вторичные. Первичные овраги нами разде-

лены на 3 типа: приводораздельные, к которым отнесены все овраги, развивающиеся на склонах междуречных пространств, а также прибалочные и придолинные (береговые), которые различаются по месту своего развития на бортах балок и речных долин (террас) соответственно. К вторичным отнесены донные (в средней и нижней части днищ древних эрозионных форм), вершинные (в верховьях древних эрозионных форм) и пойменные овраги [3].

Обобщенный график среднегодовых темпов линейного прироста агрогенных оврагов получен на основе использования данных по всем оврагам, включенным в систему мониторинга. За весь период наблюдений (1978–2022 гг.) на фоне общего нисходящего тренда отчетливо выделяются 4 пика с максимальными значениями, которые все относятся к первому этапу наблюдений 1978–1997 годы: 1979 (2,8 м/год), 1990 (1,9 м/год), 1991 (2,3 м/год) и 1994 (1,8 м/год) годы. Усиление темпов отступания вершин оврагов в эти годы было обусловлено высокой интенсивностью половодного стока и значительной долей пашни на их водосборах [3]. После 1996 г. среднегодовые темпы отступания вершин оврагов резко уменьшились и только в 1997, 1998 и 2001 гг. превышали значение 0,5 м/год, достигнув минимума в 2008 г. При этом более активным ростом характеризуются вторичные овраги (рис. 1).

Рис. 1. Динамика среднегодовых скоростей прироста первичных, вторичных и всех типов оврагов на юге Вятско-Камского междуречья за 1978–2022 годы

Ежегодное создание ортофотопланов на основе аэрофотосъемочных работ дает возможность со значительной точностью получать данные по

динамике эрозионных процессов без наземных работ, занимающих достаточно много времени и ресурсов. В 2019-2022 гг. нами изучалась возможность совмещения аэрофотосъемки и проведенных ранее наземных геодезических съемок участков размываемых береговых линий на р. Кырыкмас (лев. приток р. Иж) в Киясовском районе, на р. Сива (прав. приток р. Кама) в Воткинском районе, на р. Нылга (лев. приток р. Вала) в Увинском районе и на р. Вала (лев. приток р. Кильмезь) в Вавожском районе УР. Это позволило выявить особенности развития русловой эрозии. Кроме того, нами получены количественные данные по линейному и площадному размыву на указанных реках за период с 2003 по 2022 годы (рис. 2). На итоговом ортофотоплане фиксируется положение береговых линий изучаемого участка русла реки и появляется возможность создания топографических планов различных масштабов с цель осуществления более полных изысканий.

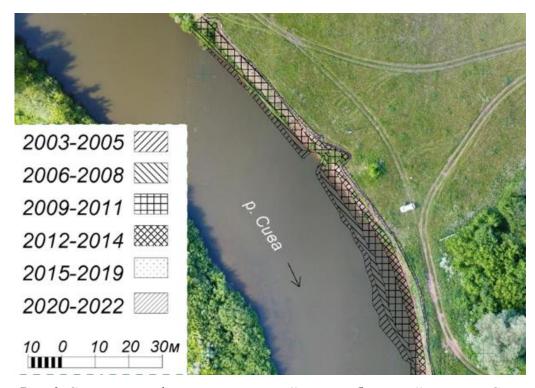


Рис. 2. Совмещение фрагмента наземной съемки береговой линии р. Сива за период 2003–2022 гг. с ортофотопланом (залет 2020 г.)

Аналогичные исследовательские работы за период 2003—2022 гг. с определением линейного и площадного прироста проведены и по нескольким оврагам [4]. Кроме того, нами определен объем выносимого материала в пределах активно размываемой вершинной части оврагов. При этом наиболее активно растущая часть оврага (привершинная) соответствует участкам выполнения топографических съемок. В привершинных частях

оврагов очень редко фиксируется аккумуляция размываемых грунтов. Возможные конуса выноса и аккумуляция наносов обычно сосредоточены в нижних и средних частях оврага. Однако эти участки нами пока не исследовались.

Таким образом, съемка с помощью БПЛА позволяет контролировать и дополнять наземные геодезические методы исследования овражно-русловой эрозии и показывает общую картину развития того или иного наблюдаемого процесса.

Следует отметить, что в настоящее время интенсивно развиваются геоинформационные технологии, появляются в свободном доступе космические снимки высокого и сверхвысокого разрешения. Это позволит выполнить следующий этап наших исследований, заключающийся в изучении динамики структуры землепользования в разных природно-климатических и антропогенных условиях и влияния ее на развитие овражных и русловых эрозионных процессов на территории Удмуртии.

Исследование выполнено за счет гранта Российского научного фонда № 23-27-00194, https://rscf.ru/project/23-27-00194

Библиографические ссылки

- 1. *Григорьев И. И.* Использование программного комплекса «Credo» для определения объемов и площадей оврагов // Вестник Удмуртского университета. Серия «Биология. Науки о Земле». 2009. Вып. 2. С. 141–145.
- 2. *Григорьев И. И., Рысин И. И.* Оценка линейного и площадного прироста оврагов с применением инструментальных методов (на территории Удмуртии). Геоморфология. 2021. Вып. 3. С. 64–78.
- 3. *Рысин И. И.* Овражная эрозия в Удмуртии. Ижевск: Изд-во Удмурт. ун-та, 1998. 274 с.
- 4. *Григорьев И. И., Рысин И. И.* Многолетняя динамика линейного, площадного и объемного прироста оврагов на территории Удмуртии. Геоморфология. 2022. Вып. 53 (4). С. 56–73.