

ПРОБЛЕМЫ ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ХИМИИ

Тезисы докладов XXXV Российской молодежной научной конференции с международным участием, посвященной 165-летию со дня рождения Н. С. Курнакова

Екатеринбург 22–25 апреля 2025 г.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ ПЕРВОГО ПРЕЗИДЕНТА РОССИИ Б. Н. ЕЛЬЦИНА

УРАЛЬСКОЕ ОТДЕЛЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК

НАУЧНЫЙ СОВЕТ РАН ПО НЕОРГАНИЧЕСКОЙ ХИМИИ

ПРОБЛЕМЫ ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ХИМИИ

Тезисы докладов XXXV Российской молодежной научной конференции с международным участием, посвященной 165-летию со дня рождения Н.С. Курнакова

Екатеринбург, 22-25 апреля 2025 года

Екатеринбург Издательство Уральского университета 2025

Редакционная коллегия:

И. Е. Анимица, Е. В. Вербицкий, С. А. Вшивков, Ю. П. Зайков, А. Ю. Зуев, В. Л. Кожевников, М. В. Кузнецов, М. О. Мазурин (отв. за вып.), Л. К. Неудачина, Ю. С. Петрова, Е. В. Русинова, А. П. Сафронов, В. Я. Сосновских, Д. С. Цветков

Проблемы теоретической и экспериментальной химии : тез. докл. XXXV Рос. молодеж. науч. конф. с международ. участием, посвящ. 165-летию со дня рожд. Н. С. Курнакова, Екатеринбург, 22–25 апр. 2025 г. / Министерство науки и высшего образования Российской Федерации, Уральский федеральный университет. — Екатеринбург : Издво Урал. ун-та, 2025. — 528 с. : ил. — ISBN 978-5-7996-4004-0. — Текст : электронный.

ISBN 978-5-7996-4004-0

В сборнике представлены результаты исследований по четырем научным направлениям: физикохимии полимерных и коллоидных систем, аналитической химии, физической химии и органической химии.

Для специалистов, занимающихся вопросами теоретической и экспериментальной химии, а также студентов, аспирантов и научных сотрудников.

УДК 351

ЭЛЕКТРОКАТАЛИТИЧЕСКИЕ СВОЙСТВА ДИОКСИДА РУТЕНИЯ ПРИ ПРЯМОМ ОКИСЛЕНИИ НИЗШИХ СПИРТОВ В КИСЛОЙ СРЕДЕ

Максимов И.А., Дидик М.В. Удмуртский государственный университет 426034, г. Ижевск, ул. Университетская, д. 1

Разработка и усовершенствование спиртовых топливных элементов (СТЭ) – актуальная задача современной химии. В настоящее время показано, что лучшим катализатором для реакции окисления спиртов является платина. Однако высокая стоимость, а также отравление поверхности металла продуктами окисления, приводящее к снижению его каталитической активности, заставляют вести поиск новых, бесплатиновых анодных катализаторов, обладающих достаточной электропроводностью и обеспечивающих глубину реакции при прямом окислении топлива.

В данной работе исследованы электрокаталитические свойства диоксида рутения, нанесенного на предварительно анодированную титановую подложку для получения пористого наноструктурированного электропроводящего покрытия из TiO_2 , обеспечивающего хорошее сцепление с катализатором. Диоксид рутения на носителе получали путем термохимического разложения прекурсора $RuOHCl_3$ на поверхности подготовленного титанового электрода при $500^{\circ}C$ в течение 2 часов. Электрокаталитическую активность RuO_2 исследовали вольтамперометрическим методом (циклическая вольтамперометрия) в растворах 0,1M H_2SO_4 и 1M H_2SO_4 в присутствии простейших алифатических спиртов C1-C3.

В ходе исследования получено, что на циклических вольтамперограммах (ЦВА) Ті/Ті O_2 -электрода в фоновых растворах при $E \approx -0.3$ В фиксируется один максимум тока, соответствующий редокс-превращению Ti^{4+}/Ti^{3+} . ЦВА Ti/TiO_2 электрода без и в присутствии спиртов, как показал эксперимент, идентичны, что свидетельствует об отсутствии процесса окисления последних и позволяет использовать титан в качестве инертной подложки для нанесения катализатора. На ЦВА Ті/ТіO₂/RuO₂-электрода в растворах H₂SO₄ в области потенциалов +0,4...+0,8 В наблюдается подъем тока, связанный с формированием на электроде RuO₂, который катализирует процесс окисления спирта. Так в растворах, содержащих этанол и н-пропанол, в области +1,4...+1,6 В наблюдается максимум анодного тока, связанный с необратимым окислением данных спиртов до соответствующих кислот согласно реакции R-CH₂-OH + H₂O - 4 $\overline{e} \rightarrow$ RCOOH + $4H^+$ (R: $-CH_3$, $-C_2H_5$). Установлено, что ток окисления линейно возрастает по мере повышения концентрации спирта в ячейке, а его амплитуда выше в 0,1М H₂SO₄, чем в 1M H₂SO₄. Следует отметить, что в изученных фоновых электролитах токи окисления этанола выше, чем н-пропанола, что свидетельствует о лучшем окислении первого. Эксперименты показали, что метанол не окисляется в кислом электролите на Ti/TiO₂/RuO₂-электроде.

СОДЕРЖАНИЕ

ТЕЗИСЫ ДОКЛАДОВ ПРИГЛАШЕННЫХ УЧАСТНИКОВ СЕКЦИЯ ФИЗИКОХИМИИ ПОЛИМЕРНЫХ И КОЛЛОИДНЫХ СИСТЕМ СЕКЦИЯ АНАЛИТИЧЕСКОЙ ХИМИИ И ХИМИИ ОКРУЖАЮЩЕЙ СРЕДЫ	7
	11
	85
СЕКЦИЯ ФИЗИЧЕСКОЙ ХИМИИ ВЕЩЕСТВ И МАТЕРИАЛОВ	181
СЕКЦИЯ ОРГАНИЧЕСКОЙ ХИМИИ	371
АВТОРСКИЙ УКАЗАТЕЛЬ	512

Научное издание

ПРОБЛЕМЫ ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ХИМИИ

Тезисы докладов XXXV Российской молодёжной научной конференции с международным участием, посвященной 165-летию со дня рождения Н. С. Курнакова Екатеринбург, 22–25 апреля 2025 года

Ответственный за выпуск Мазурин Максим Олегович

Оригинал-макет – А.В. Середа

Электронное сетевое издание размещено в архиве УрФУ http://elar.urfu.ru

Подписано в печать 18.06.2025. Формат $70\times100^{1}/_{16}$. Уч.-изд. л. 27,9. Объем данных 14,3 Мб. Гарнитура Таймс.

Издательство Уральского университета 620000, Екатеринбург-83, ул. Тургенева, 4 Тел.: +7 (343) 358-93-06, 358-93-22 E-mail: press-urfu@mail.ru http://print.urfu.ru

