Н.В.Латыпова, Н.А. Соловьева

МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО «Удмуртский государственный университет» Институт математики, информационных технологий и физики Кафедра математического анализа

Н.В. Латыпова, Н.А. Соловьева

МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Учебно-методическое пособие

УДК 517.518(075.8) ББК 22.161я73 Л278

Рекомендовано к изданию Учебно-методическим советом УдГУ

Рецензент: канд. физ.-мат. наук, доцент каф. алгебры и топологии ин-та математики, информационных технологий и физики ФГБОУ ВО «Удмуртский государственный университет» **А.К. Кощеева**

Латыпова Н.В., Соловьева Н.А.

Л278 Метрические пространства : учеб.-метод. пособие / Н.В. Латыпова, Н.А. Соловьева. – Ижевск : Удмуртский университет, 2025. – 48 с.

Учебное пособие посвящено изучению такого раздела курса математического анализа, как Метрические пространства, который является базовым не только для последующего изучения дифференциального исчисления функций многих переменных и кратных интегралов в математическом анализе, но и знания которого потребуются для изучения таких дисциплин, как «Топология», «Дифференциальная геометрия» и «Функциональный анализ». Приводятся основные понятия и теоремы, которые подробно иллюстрируются примерами.

Предназначено для студентов бакалавриата направлений по укрупненным группам: 01.00.00 «Математика и механика», 02.00.00 «Компьютерные и информационные науки», а также будет полезно всем интересующимся математическим анализом

УДК 517.518(075.8) ББК 22.161я73

© Латыпова Н.В., Соловьева Н.А., 2025 © ФГБОУ ВО «Удмуртский государственный университет», 2025

ОГЛАВЛЕНИЕ

Предисловие
ОСНОВНЫЕ ПОНЯТИЯ И ТЕОРЕМЫ
Определение и примеры метрических пространств
Сходимость в метрическом пространстве
Предельные точки
Внутренность, внешность и граница множества 15
Замкнутые и открытые множества
Вполне ограниченные и компактные множества 23
Расстояние между множествами
Нормированные пространства
РЕШЕНИЕ ЗАДАЧ32
УПРАЖНЕНИЯ40
КОНТРОЛЬНЫЕ ВОПРОСЫ45
Список рекомендуемой литературы

ПРЕДИСЛОВИЕ

Одним из разделов курса математического анализа, вызывающим наибольшие трудности в понимании и усвоении материала, является раздел "Метрические пространства". Данное пособие призвано помочь преодолеть возникающие трудности студентам математических направлений подготовки.

Пособие состоит из двух частей. В первой части излагается теоретический материал и приводятся примеры и задачи, решение которых иллюстрирует теорию. Во второй части проводится разбор и решение различных задач, а также представлены упражнения для самостоятельного решения, позволяющие студентам более основательно усвоить и закрепить изучаемый материал.

ОСНОВНЫЕ ПОНЯТИЯ И ТЕОРЕМЫ

§1. Определение и примеры метрических пространств

Определение. Числовая функция $\rho(x,y)$, определенная для любых двух точек x,y из некоторого множества X, называется метрикой (расстоянием между точками x и y), если она удовлетворяет следующим условиям (аксиомам):

- 1. $\rho(x,y) \geqslant 0$ (неотрицательность);
- 2. $\rho(x,y) = 0 \iff x = y$;
- 3. $\rho(x,y) = \rho(y,x)$ (симметричность);
- 4. для любых трех точек $x,y,z\in X$ $\rho(x,y)\leqslant \rho(x,z)+\rho(z,y)$ (неравенство «треугольника»).

Множество X, в котором введено расстояние между точками, называется метрическим пространством.

Пример 1. Пространство \mathbb{R}^n

При изучении функций нескольких переменных возникает необходимость в изучении множества упорядоченных наборов $x=(x_1,\ldots,x_n)$ из n действительных чисел. Упорядоченный набор $x=(x_1,\ldots,x_n)$ из n действительных чисел называется n-мерной точкой или n-мерным вектором.

Пусть $x=(x_1,\ldots,x_n), y=(y_1,\ldots,y_n)-n$ -мерные точки и λ — некоторое вещественное число. Если во множестве n-мерных точек ввести операции сложения и умножения на число по правилам

$$x + y = (x_1 + y_1, \dots, x_n + y_n),$$

$$\lambda x = (\lambda x_1, \dots, \lambda x_n),$$
(1)

то множество n-мерных точек становится линейным пространством.

Точка $0=(0,\dots,0)$ будет нулем этого пространства, а точка

$$y = (-1)x = (-x_1, \dots, -x_n) = -x$$

будет противоположной точке x.

Числовая величина

$$(x,y) = \sum_{i=1}^{n} x_i y_i \tag{2}$$

называется $\mathit{cкалярным}$ $\mathit{npouseedehuem}$ $\mathit{n}\text{-}\mathsf{мерныx}$ векторов x и y .

Скалярное произведение обладает следующими *свой-ствами*, которые доказываются в курсе линейной алгебры:

- 1. (x,y) = (y,x);
- 2. (x + y, z) = (x, z) + (y, z);
- 3. $(\lambda x, y) = \lambda(x, y)$;
- 4. $(x,x) \ge 0$;
- 5. $(x, x) = 0 \iff x = 0$.

С помощью этих свойств в линейной алгебре выводится неравенство $|(x,y)| \leq \sqrt{(x,x)\cdot(y,y)}$, называемое неравенством Коши-Буняковского.

Формула (2) позволяет записать это неравенство следующим образом:

$$\left| \sum_{i=1}^n x_i y_i \right| \leqslant \sqrt{\sum_{i=1}^n x_i^2} \cdot \sqrt{\sum_{i=1}^n y_i^2}.$$

Скалярное произведение (2) вносит в линейное пространство n-мерных точек структуру евклидова пространства, которое обозначается через \mathbb{R}^n .

Неотрицательная величина $||x|| = \sqrt{(x,x)} = \sqrt{\sum_{i=1}^n x_i^2}$ называется *нормой* точки x или длиной вектора x. Понятие нормы позволяет придать неравенству Коши–Буняковского следующую форму: $|(x,y)| \leq ||x|| \cdot ||y||$.

Норма обладает следующими свойствами:

- 1. $||x|| = 0 \iff x = 0;$
- $2. \|\lambda x\| = |\lambda| \cdot \|x\|;$
- 3. $||x + y|| \le ||x|| + ||y||$ (неравенство «треугольника»).

Норма позволяет ввести в пространстве \mathbb{R}^n понятие метрики или расстояния.

Число $d(x,y) = \|x-y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$ называется расстоянием между точками x и y пространства \mathbb{R}^n .

Из свойств нормы вытекают следующие *свойства* расстояния:

- 1. $d(x,y) \ge 0$;
- $2. d(x,y) = 0 \iff x = y;$
- 3. d(x, y) = d(y, x) (симметричность);
- 4. $d(x,y) \le d(x,z) + d(z,y)$ (неравенство «треугольника»).

Неравенство треугольника для нормы методом математической индукции распространяется на любое конечное число векторов a_i :

$$\left\| \sum_{i=1}^m a_i \right\| \leqslant \sum_{i=1}^m \|a_i\|.$$

Положим $a_i = (0, \dots, x_i, \dots, 0)$. Тогда имеем $x = (x_1, \dots, x_n) = \sum_{i=1}^n a_i$. Далее

$$||x|| = \left\| \sum_{i=1}^{n} a_i \right\| \le \sum_{i=1}^{n} ||a_i|| = \sum_{i=1}^{n} |x_i|.$$

Учитывая еще, что при любом $i ||x|| = \sqrt{\sum_{i=1}^n} x_i^2 \geqslant |x_i|$, мы придем в итоге к важному неравенству

$$\max_{1 \leqslant i \leqslant n} |x_i| \leqslant ||x|| \leqslant \sum_{i=1}^n |x_i|. \tag{3}$$

Частные случаи

Π ространство \mathbb{R}^1

Точка x есть просто вещественное число. Операции сложения и умножения на скаляр есть обычные операции сложения и умножения чисел. Скалярное произведение (x,y)=xy совпадает с обычным умножением двух действительных чисел. Норма $\|x\|=|x|$ совпадает с абсолютной величиной числа x. Геометрическая модель пространства \mathbb{R}^1 числовая ось. Расстояние d(x,y)=|x-y| есть обычное расстояние между двумя точками на прямой.

Пространство \mathbb{R}^2

Точка $x \in \mathbb{R}^2$ есть пара вещественных чисел. Точку $x = (x_1, x_2)$ можно интерпретировать как точку плоскости, в которую внесена некоторая прямоугольная декартова система координат или как радиус—вектор этой точки. Сложение точек в \mathbb{R}^2 есть сложение по правилу «параллелограмма». Норма точки x есть величина

$$||x|| = \sqrt{x_1^2 + x_2^2},$$

равная длине радиус—вектора точки x. Если $x=(x_1,x_2),$ $y=(y_1,y_2),$ то формула

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

есть хорошо известная формула для расстояния между двумя точками плоскости. Неравенство треугольника

$$d(x,y) \leqslant d(x,z) + d(z,y)$$

выражает известную теорему геометрии: любая сторона треугольника не превосходит суммы двух других его сторон.

Таким образом, координатная плоскость может служить геометрической моделью пространства \mathbb{R}^2 . Аналогичная геометрическая интерпретация имеет место и для пространства \mathbb{R}^3 . При n>3 пространство \mathbb{R}^n не имеет наглядного геометрического представления, но и в этом случае мы будем широко пользоваться геометрической терминологией. Каждую n-мерную точку $x=(x_1,\ldots,x_n)$ можно представлять в виде упорядоченной пары из двух точек x=(y,z), где $y=(x_1,\ldots,x_k)\in\mathbb{R}^k$, а $z=(x_{k+1},\ldots,x_n)\in\mathbb{R}^{n-k}$. Поэтому для пространства \mathbb{R}^n (n>1) при любом $k=1,2,\ldots,n-1$ имеет место представление

$$\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}.$$

n-мерным сегментом или n-мерным параллелепипедом называется множество $I=[a_1,b_1]\times\cdots\times[a_n,b_n]$, т.е. множество точек $x\in I$, где $x=(x_1,\ldots,x_n)$, удовлетворяющих неравенствам:

$$\begin{cases} a_1 \leqslant x_1 \leqslant b_1, \\ a_2 \leqslant x_2 \leqslant b_2, \\ \vdots \\ a_n \leqslant x_n \leqslant b_n. \end{cases}$$

Одно и то же множество X может порождать разные метрические пространства, так как расстояние в X можно определять различными способами. Так во множестве n-мерных точек \mathbb{R}^n , наряду с метрикой d(x,y), рассматривают метрики

$$d_1(x,y) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\}, \ d_2(x,y) = \sum_{i=1}^n |x_i - y_i|.$$

Таким образом, метрическое пространство X нельзя отождествлять со множеством X. Поэтому еще говорят, что метрическое пространство есть пара (X, ρ) , составленная из множества X и метрики ρ .

Пример 2. Пространство $\mathbb{C}[a,b]$

Точками x = x(t) этого пространства являются всевозможные функции, непрерывные на [a,b].

Расстояние между точками x = x(t) и y = y(t) определяется по формуле

$$\rho(x,y) = \max_{a \le t \le b} |x(t) - y(t)|.$$

В силу известной теоремы Вейерштрасса для непрерывной функции величина $\rho(x,y)$ определена для любых $x,y\in\mathbb{C}[a,b].$

Пример 3. Произвольное пространство с дискретной метрикой

Всякое множество X можно сделать метрическим пространством, если ввести в нем так называемую $\partial ucкретную$ метрику:

$$\rho(x,y) = \left\{ \begin{array}{ll} 1, & \text{если} & x \neq y, \\ 0, & \text{если} & x = y. \end{array} \right.$$

Если X — метрическое пространство, E — произвольная часть X и во множестве E сохранена метрика пространства X, то E в свою очередь является метрическим пространством, которое называют nodnpocmpancmeom метрического пространства X.

Определение. Пусть X есть метрическое пространство и r>0. Множества

$$B^*(a;r) = \{x \in X : \rho(a,x) \leqslant r\}, B(a;r) = \{x \in X : \rho(a,x) < r\}$$

называются соответственно замкнутым и открытым шаром радиуса r с центром в точке a. Множество

$$S(a;r) = \{x \in X : \rho(a,x) = r\}$$

называется сферой радиусом r с центром в точке a.

Пример 4. В пространстве \mathbb{R}^1 замкнутый шар $B^*(a;r) = [a-r,a+r]$ — отрезок, открытый шар B(a;r) = (a-r,a+r) —

интервал, сфера S(a;r) состоит из двух точек $x_1 = a - r$ и $x_2 = a + r$.

В пространстве (\mathbb{R}^n,d) замкнутый шар, открытый шар и сфера будут обозначаться соответственно через $B_n^*(a;r)$, $B_n(a;r)$ и $S_{n-1}(a;r)$, где индекс показывает размерность указываемого множества. Соотношения, определяющие множества B_n^* , B_n и S_{n-1} , примут такой вид

$$B_n^*(a;r): x_1^2 + \dots + x_n^2 \leqslant r^2, \ B_n(a;r): x_1^2 + \dots + x_n^2 < r^2,$$

 $S_{n-1}(a;r): x_1^2 + \dots + x_n^2 = r^2.$

Определение. Множество $E\subset X$ называется ограниченным, если $\sup_{x,y\in E}\rho(x,y)<\infty$. Величина

$$diamE = \sup_{x,y \in E} \rho(x,y)$$

называется диаметром E.

§2. Сходимость в метрическом пространстве

Определение. Точка $a \in X$ называется npedenom последовательности $x_p,$ если

$$\lim_{p\to\infty}\rho(x_p,a)=0, \text{ r.e.}$$

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) : \ \forall p > N \Rightarrow \rho(x_p, a) < \varepsilon.$$

Записывается этот факт известным уже способом:

$$\lim_{p \to \infty} x_p = a \quad \text{или} \quad x_p \to a \quad \text{при} \quad p \to \infty.$$

Последовательность, имеющая конечный предел, называется сходящейся.

Рассмотрим простейшие свойства сходящихся последовательностей.

1. Сходящаяся последовательность имеет единственный предел.

- 2. Всякая сходящаяся последовательность ограничена.
- **3.** Если последовательность $x_p \to a$, то и всякая подпоследовательность $x_{p_k} \to a$.

Определение. Последовательность x_p называется $\phi yn-$ даментальной или последовательностью Kouu в метрическом пространстве X, если

$$\forall \varepsilon > 0, \quad \exists N = N(\varepsilon), \quad \forall p > N \quad \text{if} \quad \forall q > N : \rho(x_p, x_q) < \varepsilon.$$

Теорема 1. Всякая сходящаяся последовательность фундаментальна.

Доказательство. Пусть $\lim_{p\to\infty} x_p = a$. Тогда $\forall \varepsilon > 0$, $\exists N = N(\varepsilon), \forall p > N : \rho(x_p,a) < \frac{\varepsilon}{2}$. Поэтому $\forall p > N$ и $\forall q > N$ получаем $\rho(x_p,x_q) \leqslant \rho(x_p,a) + \rho(a,x_q) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Однако обратное утверждение верно не в любом метрическом пространстве.

Контрпример. Пусть X=(0,1) и $\rho(x,y)=|x-y|$. Последовательность $x_p=\frac{1}{p}$ фундаментальна, но не имеет предела в пространстве X.

Определение. Метрическое пространство, в котором каждая фундаментальная последовательность имеет предел, принадлежащий данному метрическому пространству, называется *полным метрическим пространством*.

Известный критерий сходимости Коши означает, что \mathbb{R}^1 — полное пространство.

Рассмотрим сейчас более подробно введенные понятия в пространстве \mathbb{R}^n .

Теорема 2. Для того чтобы последовательность $x_p \in \mathbb{R}^n$ сходилась к точке $a \in \mathbb{R}^n$, необходимо и достаточно, чтобы при любом i = 1, 2, ..., n выполнялись равенства $\lim_{p \to \infty} x_{pi} = a_i$, где $x_p = (x_{p1}, ..., x_{pn})$ и $a = (a_1, ..., a_n)$.

Доказательство. Необходимость. \Rightarrow) Пусть $\lim_{p\to\infty} x_p = a$.

На основании (3) имеем

$$0 \leqslant |x_{pi} - a_i| \leqslant \sqrt{\sum_{i=1}^n (x_{pi} - a_i)^2} = \rho(x_p, a).$$

Так как $\rho(x_p, a) \to 0$, то $\lim_{p \to \infty} x_{pi} = a_i$.

Достаточность. \Leftarrow) Предположим, что $\lim_{p\to\infty}x_{pi}=a_i$. Тогда

$$\lim_{p \to \infty} \rho(x_p, a) = \lim_{p \to \infty} \sqrt{\sum_{i=1}^n (x_{pi} - a_i)^2} = \sqrt{\sum_{i=1}^n \lim_{p \to \infty} (x_{pi} - a_i)^2} = 0.$$

Следовательно, $\lim_{p \to \infty} x_p = a$.

§3. Предельные точки

Определение. Открытый шар с центром в точке a называется *окрестностью* точки a в метрическом пространстве X.

Окрестность точки a радиуса δ будет обозначаться $O_X(a;\delta)$, а если ясно, о каком пространстве идет речь, то просто $O(a;\delta)$. Так как радиус окрестности произволен, то каждая точка имеет бесконечное множество окрестностей. Множество

$$\dot{O}(a;\delta) = O(a;\delta) \setminus \{a\}$$

называется проколотой окрестностью точки а.

Пример. Пусть $x = (x_1, \ldots, x_n), a = (a_1, \ldots, a_n)$. Рассмотрим линейное пространство n-мерных точек с метрикой

$$\rho(x, a) = d_1(x, y) = \max\{|x_1 - a_1|, \dots, |x_n - a_n|\}.$$

В этой метрике неравенство $\rho(x,a) < \delta$, определяющее δ -окрестность точки, принимает следующий вид:

$$|x_1 - a_1| < \delta, |x_2 - a_2| < \delta, \dots, |x_n - a_n| < \delta.$$

Такую окрестность точки мы будем называть *квадратной* в отличие от *круговой окрестности*

$$\sum_{i=1}^{n} (x_i - a_i)^2 < \delta^2,$$

определяемой евклидовой метрикой

$$\rho(x, a) = d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - a_i)^2}.$$

Определение. Пусть X — метрическое пространство. Точка $a \in X$ называется npedenhoù dns множества $E \subset X$, если любая проколотая окрестность точки a содержит хотя бы одну точку множества E, то есть если $\forall \varepsilon > 0 \colon \dot{O}(a,\varepsilon) \cap E \neq \emptyset$. Точка $a \in E$ называется изолированной точкой множества E, если она не является предельной для E, то есть $\exists \delta > 0 \colon O(a,\delta) \cap E = \{a\}$.

Примеры.

- 1. $X=\mathbb{R}^1,\; E=\left\{1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots\right\}$. Множество имеет единственную предельную точку a=0. Все точки множества E изолированные.
- 2. $X=\mathbb{R}^1$, $E=[0,2]\bigcup\{3\}$. Все точки [0,2] предельные для E. Точка a=3 единственная изолированная точка множества E.
- 3. $X = \mathbb{R}^n$, $E = B_n^*(a;r)$. Множество предельных точек множества E есть само E, так что у замкнутого шара нет изолированных точек.
- 4. В дискретной метрике все точки пространства X изолированные, т.к. для $\forall a \in X$ имеем $O\left(a; \frac{1}{2}\right) = \{a\}.$

5. Если $E = \{x_1, \dots, x_p, \dots\}, \ x_i \neq x_j \ (i \neq j)$ и $\lim_{p \to \infty} x_p = a$, то a — предельная точка множества E. Действительно, для $\forall \varepsilon > 0, \ \exists N(\varepsilon), \ \forall p > N \ x_p \in O(a; \varepsilon)$, так что найдется x_p , для которого будем иметь $0 < \rho(x_p, a) < \varepsilon$.

§4. Внутренность, внешность и граница множества

Определение. Точка $a \in X$ называется внутренней точкой множества E, если $\exists \delta > 0 : O(a, \delta) \subset E$. Множество E всех внутренних точек множества E называется внутренностью множества E.

Примеры.

1.
$$X = \mathbb{R}^2$$
, $E = (a, b) \times (c, d)$, $E = E$.

2.
$$X = \mathbb{R}^1$$
, $E = [a, b]$, $E = (a, b)$.

3.
$$X=[a,b]$$
 с дискретной метрикой. $E=X, \quad \overset{\circ}{E}=[a,b].$

4.
$$X=[a,+\infty)$$
 — подпространство $\mathbb{R}^1,\ E=[a,b],$ $\stackrel{\circ}{E}=[a,b).$

Примеры 2, 3, 4 показывают, что понятие внутренней точки и внутренности множества зависят от того, в каком пространстве рассматривается это множество.

Определение. Точка a называется eнешней точкой множества E, если

$$\exists \delta > 0 \colon O_X(a; \delta) \bigcap E = \emptyset. \tag{4}$$

Множество всех внешних точек множества E называется eneumocmью множества E. Условие (4) равносильно условию

$$O_X(a;\delta) \subset C_X E$$
,

так что точка, внешняя для множества E, будет внутренней для множества $C_XE = X \backslash E$ — дополнения E, а внешность множества E будет внутренностью дополнения множества E. Поэтому мы будем обозначать внешность множества E через $\stackrel{\circ}{CE}$.

Пример. $X=\mathbb{R}^2,\,E=\{x\in\mathbb{R}^2\colon 0\leqslant r<\rho(x,a)\leqslant R\}.$ Множество E — круговое кольцо с центром $a,\,r$ — внутренний радиус, R — внешний радиус.

Внутренность $\stackrel{\circ}{E} = \{ x \in \mathbb{R}^2 \colon 0 < r < \rho(x, a) < R \}$, внешность

$$\overset{\circ}{CE} = \{ x \in \mathbb{R}^2 : \rho(x, a) < r \} \bigcup \{ x \in \mathbb{R}^2 : \rho(x, a) > R \}.$$

Определение. Точка $a \in X$ называется граничной точкой множества $E \subset X$, если каждая окрестность точки a содержит как точки, принадлежащие E, так и точки, не принадлежащие E. Множество граничных точек называется границей множества E и обозначается ∂E .

Примеры.

- 1. $X = \mathbb{R}^2$, $E = \{x \in \mathbb{R}^2 : 0 \le r < \rho(x, a) \le R\}$, $\partial E = \{x \in \mathbb{R}^2 : \rho(x, a) = r\} \bigcup \{x \in \mathbb{R}^2 : \rho(x, a) = R\}$.
- 2. $X = \mathbb{R}^1$, E = [a, b], $\partial E = \{a, b\}$ состоит из двух точек концов сегмента [a, b].
- 3. $X = \mathbb{R}^2$, E = [a, b], $\partial E = [a, b]$.
- 4. $X=\mathbb{R}^1,\,E=\mathbb{Q}$ множество рациональных чисел. Тогда

$$\stackrel{\circ}{E} = \stackrel{\circ}{CE} = \emptyset, \quad \partial E = (-\infty, +\infty).$$

Из определений видно, что $\forall a \in X$ будет либо внутренней, либо граничной, либо внешней точкой для множества E. Значит,

$$\overset{\circ}{E} \left[\ \right] \partial E \left[\ \right] \overset{\circ}{CE} = X.$$

Кроме того, внутренность, внешность и граница множества — дизъюнктные множества.

Определение. Множество $\overline{E}=E\bigcup\partial E$ называется замыканием множества E.

Примеры.

1.
$$X = \mathbb{R}^1$$
, $E = (a, b)$, $\overline{E} = (a, b) \cup \{a, b\} = [a, b]$.

$$2. \ X=\mathbb{R}^1$$
 или $X=\mathbb{R}^2, \quad E=[a,b], \quad \overline{E}=[a,b].$

3.
$$X = \mathbb{R}^1$$
, $E = \mathbb{Q}$, $\overline{E} = \mathbb{Q} \bigcup \mathbb{R}^1 = \mathbb{R}^1$.

4.
$$X = \mathbb{R}^2$$
, $E = \{x : 0 < r < \rho(x, a) < R\}$, $\overline{E} = \{x : r \le \rho(x, a) \le R\}$.

Определение. Пусть X — метрическое пространство. Множество A называется *плотным* во множестве E, если для $\forall \varepsilon > 0, \ \forall x \in E, \ \exists a \in A \colon \rho(x,a) < \varepsilon$.

Если E = X, то говорят, что A всюду плотно в X.

Замечание. Если A плотно в E, то по определению это значит, что каждая точка множества E либо принадлежит A, либо является предельной для A, т.е. $E \subset \overline{A}$.

§5. Замкнутые и открытые множества

Определение. Пусть X — метрическое пространство. Множество $E{\subset}X$, содержащее все свои предельные точки, называется *замкнутым* в X.

Пустое множество и само метрическое пространство X считаются замкнутыми в X множествами.

Примеры.

- 1. Любое конечное множество замкнуто.
- 2. Во всяком метрическом пространстве сфера S(a;r) есть замкнутое множество.
- 3. $X = \mathbb{R}^1$, E = [a, b] замкнутое множество.

Определение. Множество $E\subset X$, все точки которого являются внутренними в X, называется *открытым* в X, то есть $E=\stackrel{\circ}{E}$. Или множество $E\subset X$ называется открытым в X, если

$$\forall a \in E, \quad \exists \delta > 0 \colon O_X(a; \delta) \subset E.$$

Само метрическое пространство X есть открытое в X множество.

Примеры.

- 1. $E=\emptyset$ открытое множество. Действительно, $\stackrel{\circ}{E}\subset E$. Поэтому и $\stackrel{\circ}{E}=\emptyset$.
- 2. $X = \mathbb{R}^{1}$, E = (a, b) открытое множество.
- 3. В дискретном пространстве любое множество E будет открытым, т.к. для $\forall a \in E \colon O\left(a; \frac{1}{2}\right) = \{a\} \subset E.$
- 4. В пространстве \mathbb{R}^2 множество E=(a,b) не есть открытое. Более того, ни одна точка $x\in(a,b)$ не будет внутренней.
- 5. Открытый шар B(a; r) есть открытое множество.
- 6. Открытым множеством будет окрестность любой точки. Откуда следует, что внутренность и внешность всякого множества есть открытые множества. При доказательстве достаточно ограничиться случаем множества E, т.к. внешность множества E есть внутренность множества E. Пусть x_0 внутренняя точка множества E. Тогда $\exists \delta > 0$: $O(x_0; \delta) \subset E$. Все точки окрестности $O(x_0; \delta)$ внутренние для E. Так что $O(x_0; \delta) \subset \mathring{E}$.

Связь между замкнутыми и открытыми множествами да- $\ddot{\text{e}}$ т следующая теорема.

Теорема 1. Для того чтобы множество E было открытым в метрическом пространстве X, необходимо и достаточно, чтобы множество $C_X E$ было замкнутым в X.

Доказательство. Необходимость. Пусть E открытое множество. Любая точка $a \notin C_X E$ будет точкой множества E. Тогда найдется окрестность $O(a;\delta) \subset E$. Поэтому точка a не может быть предельной для множества $C_X E$, и следовательно, это множество замкнуто.

Достаточность. Пусть множество $C_X E$ замкнуто. Тогда $\forall a \in E$ не может быть предельной для CE, и значит, $\exists O(a;\delta): O(a;\delta) \cap CE = \varnothing$. Эта окрестность, очевидно, содержится в E.

Следствие. Замыкание любого множества замкнуто.

Доказательство. Так как $\overline{E} = \stackrel{\circ}{E} \bigcup \partial E$, то $\overline{E} = X \backslash \check{CE}$ и множество \overline{E} замкнуто как дополнение открытого множества \mathring{CE} .

Для выяснения поведения замкнутых и открытых множеств при операциях объединения и пересечения множеств нам потребуются законы двойственности указанных операций:

$$X \setminus \bigcup E_{\alpha} = \bigcap (X \setminus E_{\alpha}), \tag{5}$$

$$X \backslash \bigcap_{\alpha}^{\alpha} E_{\alpha} = \bigcup_{\alpha}^{\alpha} (X \backslash E_{\alpha}). \tag{6}$$

Теорема 2.

- 1. Объединение любого семейства открытых множеств есть открытое множество.
- 2. Пересечение любого семейства замкнутых множеств есть множество замкнутое.
- 3. Пересечение любого конечного числа открытых множеств есть открытое множество.
- 4. Объединение любого конечного числа замкнутых множеств есть замкнутое множество.

Доказательство. 1. Пусть $G = \bigcup_{\alpha} G_{\alpha}$, где каждое G_{α} открытое множество, и пусть $a \in G$. Тогда $\exists \alpha : a \in G_{\alpha}$. Так как G_{α} — открытое множество, то $\exists O(a; \delta) \subset G_{\alpha} \subset G$.

2. Пусть $F = \bigcap_{\alpha} F_{\alpha}$, где каждое F_{α} — замкнутое множество. Тогда, используя (6), имеем

$$CF = \bigcup_{\alpha} CF_{\alpha}.$$

Каждое CF_{α} — открытое множество, и в силу утверждения 1 данной теоремы будет открытым и множество CF. Применение теоремы 1 завершает доказательство.

3. Пусть $G = \bigcap_{i=1}^n G_i$, где каждое G_i — открытое множество, и $a \in G$. Из определения множества G имеем: при любом i, $a \in G_i$, а это значит, что при любом i существует $O(a; \delta_i)$ такая, что $O(a; \delta_i) \subset G_i$. Возьмем $\delta = \min\{\delta_1, \ldots, \delta_n\}$. Окрестность $O(a; \delta)$ входит в каждое из множеств G_i и, следовательно,

$$O(a; \delta) \subset G$$
.

4. Пусть $F = \bigcup_{i=1}^{n} F_i$, где каждое F_i — замкнутое множество. На основании (5)

$$CF = \bigcap_{i=1}^{n} CF_i.$$

Каждое CF_i — открытое множество. Значит и CF — открытое множество, а F — замкнутое множество.

Следствие. Граница ∂E любого множества E есть замкнутое множество.

Доказательство вытекает из соображения

$$\partial E = X \diagdown (\overset{\circ}{E} \bigcup \overset{\circ}{CE}).$$

Пример.
$$X = \mathbb{R}^1$$
, $G_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, $G = \bigcap_{n=1}^{\infty} G_n = \{0\}$.

Каждое G_n — открытое множество, а их $\stackrel{n=1}{\text{пересечение}} G$ не есть открытое множество.

Этот пример показывает, что требование конечности числа множеств в утверждениях 3 и 4 Теоремы 2 существенно.

Замечание. Отметим без доказательства следующий существенный факт. В пространстве \mathbb{R}^n нет не пустого множества E, отличного от всего пространства, одновременно замкнутого и открытого. Это свойство пространства \mathbb{R}^n называется связностью.

Теорема 3. Если F — замкнутое, ограниченное сверху (снизу) множество вещественных чисел, и $\alpha = \sup F$ ($\beta = \inf F$), то $\alpha \in F$ ($\beta \in F$).

Доказательство. Допустим, что F — множество, ограниченное сверху, $\alpha = \sup F$ и $\alpha \not\in F$. По свойству точной верхней грани для любого $\delta > 0$ существует $x^* \in F$: $\alpha - \delta < x^* \leqslant \alpha$. Но знака равенства здесь быть не может $(\alpha \not\in F)$. Поэтому точка $x^* \in \dot{O}(\alpha; \delta)$. Следовательно, α — предельная точка множества F, не принадлежащая F, что противоречит замкнутости множества F.

Аналогично доказывается утверждение теоремы о точной нижней грани.

§6. Вполне ограниченные и компактные множества

Определение. Множество точек M называется ε -сетью для множества E в метрическом пространстве X, если

$$\forall x \in E \quad \exists y \in M : \rho(x, y) < \varepsilon.$$

Множество $\{y_1,\dots,y_N\}$ является ε -сетью для E тогда и только тогда, когда $E\subset\bigcup_{i=1}^N B(y_j,\varepsilon).$

Определение. Множество E называется вполне ограниченным, если $\forall \varepsilon > 0$ существует ε -сеть для E, состоящая из конечного числа точек. Из определения сразу следует, что множество E вполне ограниченно тогда и только тогда, когда $\forall \varepsilon > 0$ множество E можно покрыть конечным набором шаров радиуса ε .

Teopema 1. Всякое вполне ограниченное множество является ограниченным.

Доказательство. Пусть E — вполне ограниченное множество. Возьмем произвольное ε . Пусть $\{y_1,\ldots,y_N\}$ есть конечная ε -сеть для E. Для любых точек $x,y\in E$ существуют $i,j\colon \rho(x,y_i)<\varepsilon$ и $\rho(y,y_j)<\varepsilon$. Положим $d=\sup_{i,j}\rho(y_i,y_j)$. Имеем

$$\rho(x,y) \leqslant \rho(x,y_i) + \rho(y_i,y_j) + \rho(y_j,y) \leqslant \varepsilon + d + \varepsilon \leqslant d + 2\varepsilon.$$

Отсюда $\sup_{x,y} \rho(x,y) \leqslant d + 2\varepsilon$ и множество E ограничено.

Теорема 2. Всякое ограниченное множество $E \subset \mathbb{R}^n$ является вполне ограниченным.

Доказательство. Пусть $a = (a_1, \ldots, a_n)$ и $x = (x_1, \ldots, x_n) \in E$. Имеем $|a_i - x_i| \le \rho(x, a) \le diam E = d$. Отсюда $x_i \in [a_i - d, a_i + d]$. На каждом отрезке $[a_i - d, a_i + d]$ найдется конечная $\frac{\varepsilon}{\sqrt{n}}$ -сеть M. Рассмотрим множество

$$M = M_1 \times M_2 \times \cdots \times M_n = \{(x_1, \dots, x_n) \colon x_i \in M_i\}.$$

Множество M конечно.

Покажем, что оно образует ε - сеть для множества E. Возьмем произвольный элемент $x=(x_1,\ldots,x_n)\in E$. Пусть $y_i\in M_i$ и $|x_i-y_i|<\frac{\varepsilon}{\sqrt{n}}$. Рассмотрим точку $y=(y_1,\ldots,y_n)$. Имеем $y\in M$ и

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} < \varepsilon.$$

Отсюда вытекает, что множество M является ε -сетью для множества E. \blacksquare

Определение. Множество E метрического пространства X называется *компактным*, если из любой последовательности элементов множества E можно извлечь подпоследовательность, сходящуюся к элементу множества E.

Свойства:

- 1. Компактное множество всегда замкнуто.
- **2.** Замкнутое подмножество компактного множества компактно.
- **3.** Множество E компактно тогда и только тогда, когда любое бесконечное подмножество множества E имеет предельную точку, принадлежащую E.
- **4.** Множество E компактно тогда и только тогда, когда E полно и вполне ограниченно.

Теорема 3. Подмножество $E \subset \mathbb{R}^n$ компактно тогда и только тогда, когда E замкнуто и ограниченно.

Доказательство. Из теорем 1 и 2 следует, что для подмножества E в пространстве \mathbb{R}^n свойства вполне ограниченности и ограниченности эквивалентны. В силу полноты \mathbb{R}^n подмножество $E \subset \mathbb{R}^n$ замкнуто тогда и только тогда, когда E полно. По свойству 4 получаем требуемый критерий компактности в \mathbb{R}^n .

Определение. Семейство открытых множеств $\{G_{\alpha}\}$ называется *открытым покрытием множества* E, если $E \subset \bigcup G_{\alpha}$, т.е. если $\forall x \in E, \quad \exists \alpha \colon x \in G_{\alpha}$.

Теорема [Борель, Лебег]. Для того чтобы метрическое пространство X было компактным, необходимо и достаточно, чтобы из любого открытого покрытия $\{G_{\alpha}\}$ пространства X можно было выделить конечное подпокрытие, т.е. выбрать конечный набор $G_{\alpha_1}, \ldots, G_{\alpha_N}$ из семейства $\{G_{\alpha}\}$, покрывающий X.

Доказательство. Необходимость. Пусть $\{G_{\alpha}\}$ — открытое покрытие компактного пространства X. Предположим противное, т.е. что из $\{G_{\alpha}\}$ нельзя извлечь конечное подпокрытие. Возьмем произвольную последовательность $\varepsilon_p > 0$, $\varepsilon_p \to 0$. Множество X вполне ограниченно, поэтому его мож-

но покрыть конечным числом шаров радиуса ε_p . Из этих шаров выберем такой, который не покрывается конечным числом множеств G_{α} . Этот шар обозначим через B_p . Пусть z_p — центр шара B_p . Существует подпоследовательность z_{p_k} , сходящаяся к некоторому элементу $a \in X$. Найдется индекс α_0 такой, что $a \in G_{\alpha_0}$. В силу открытости G_{α_0} для некоторого $\varepsilon > 0$ шар $B(a, \varepsilon) \subset G_{\alpha_0}$. Выберем p_k так, чтобы $\varepsilon_{p_k} + \rho(z_{p_k}, a) < \varepsilon$. Тогда если $x \in B_{p_k}$, то

$$\rho(a, x) \leqslant \rho(a, z_{p_k}) + \rho(z_{p_k}, x) \leqslant \rho(a, z_{p_k}) + \varepsilon_{p_k} < \varepsilon.$$

Отсюда $B_{p_k}\subset G_{\alpha_0}.$ Это противоречит тому, что шар B_{p_k} не покрывается конечным числом множеств $G_{\alpha}.$

Достаточность. Пусть A — бесконечное множество в X. Предположим противное, т.е. что A не имеет предельных точек в E. Тогда для каждого $x \in X$ найдется окрестность O(x) такая, что множество $O(x) \cap A$ конечно. Окрестности O(x) образуют открытое покрытие пространства X. Извлечем из него конечное подпокрытие $O(x_1), \ldots, O(x_N)$. Так как в каждой окрестности $O(x_j)$ содержится только конечное число элементов множества A, то получим противоречие с тем, что множество A бесконечно. Следовательно, множество A имеет предельную точку. Теорема доказана.

§7. Расстояние между множествами

Определение. Пусть A и B — какие-то множества метрического пространства. Числовая величина

$$\rho(A,B) = \inf_{\substack{x \in A \\ y \in B}} \rho(x,y) \tag{7}$$

называется расстоянием между множествами A и B.

Поскольку для любых x и y величина $\rho(x,y)\geqslant 0$, то, во-первых, расстояние $\rho(A,B)$ определено для любых двух непустых множеств A и B и, во-вторых, всегда $\rho(A,B)\geqslant 0$.

Если множество B состоит из одной точки a, то расстояние $\rho(A,B)$ называют просто расстоянием от точки a до

множества A и обозначают его $\rho(a,A)$. Так что согласно определению (7)

$$\rho(a, A) = \inf_{x \in A} \rho(x, a). \tag{8}$$

Теорема. Если F_1 и F_2 — непересекающиеся замкнутые множества, хотя бы одно из которых компактно, то

$$\rho(F_1, F_2) > 0.$$

Доказательство. Пусть для определенности компактно множество F_1 . Предположим противное: $\rho(F_1,F_2)=0$. Тогда для любого $\varepsilon>0$ существуют $x^*\in F_1$ и $y^*\in F_2$ такие, что $\rho(x^*,y^*)<\varepsilon$. Придавая ε значения $1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{n},\ldots,$ мы построим две последовательности точек $x_n\in F_1$ и $y_n\in F_2$, которые удовлетворяют неравенству $\rho(x_n,y_n)<\frac{1}{n}$.

Таким образом, $\rho(x_n, y_n) \to 0$ при $n \to \infty$. В силу компактности множества F_1 , из x_n можно выделить подпоследовательность $x_{n_k} \to \xi$. Теперь неравенство треугольника

$$\rho(y_{n_k}, \xi) \leqslant \rho(y_{n_k}, x_{n_k}) + \rho(x_{n_k}, \xi)$$

и соотношения $\rho(x_{n_k}, y_{n_k}) \to 0$, $\rho(x_{n_k}, \xi) \to 0$ дают нам $\rho(y_{n_k}, \xi) \to 0$. Следовательно, точка ξ предельная для замкнутого множества F_2 , и поэтому $\xi \in F_2$.

Итак, точка ξ принадлежит обоим множествам F_1 и F_2 вопреки условию, что множества F_1 и F_2 не пересекаются. Полученное противоречие доказывает теорему.

Следствие 1. Если F_1 и F_2 — непересекающиеся замкнутые множества пространства \mathbb{R}^n и, по крайней мере, одно из них ограниченно, то $\rho(F_1, F_2) > 0$.

Следствие 2. Если F — замкнутое множество метрического пространства $u \ a \notin F$, то $\rho(a, F) > 0$.

§8. Нормированные пространства

Определение. Пусть X — линейное пространство. Неотрицательная числовая функция

$$||x||: X \to \mathbb{R}$$

называется *нормой* в X, если

- 1) $||x|| = 0 \iff x = 0;$
- 2) $\|\lambda x\| = |\lambda| \cdot \|x\|$ (положительная однородность или свойство гомотетии);
- 3) $||x + y|| \le ||x|| + ||y||$ (неравенство «треугольника» или условие полуаддитивности).

Линейное пространство, в котором введена норма, называется *линейным нормированным пространством*.

Пример 1. Пространство \mathbb{R}^n

Напомним, что для $x = (x_1, \ldots, x_n)$

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$
 (9)

Норму (9) обычно называют евклидовой. В линейном пространстве n-мерных точек часто используют еще две нормы:

$$||x||_1 = \max_{1 \leqslant i \leqslant n} |x_i| \tag{10}$$

И

$$||x||_2 = \sum_{i=1}^n |x_i|, \tag{11}$$

которые мы также обозначаем знаком $\|\cdot\|$, но с индексами. Линейные нормированные пространства, определяемые нормами (10), (11), конечно, не совпадают с \mathbb{R}^n , хотя все они и порождены одним и тем же линейным пространством.

Пример 2. Пространство $\mathbb{C}[a,b]$

Это линейное пространство функций x=x(t), непрерывных на сегменте [a,b], с нормой

$$||x|| = \max_{a \le t \le b} |x(t)|. \tag{12}$$

Заметим сразу, что из аксиомы 2) вытекает соотношение

$$||-x|| = ||x||.$$

Неравенство «треугольника» методом математической индукции легко распространяется на любое конечное число слагаемых, являющихся точками линейного нормированного пространства:

$$||x_1 + x_2 + \dots + x_p|| \le ||x_1|| + ||x_2|| + \dots + ||x_p||.$$

Также из неравенства треугольника (если заменить x на x-y или y на y-x) следуют неравенства

$$||x - y|| \ge ||x|| - ||y||$$
 и $||y|| \ge ||y|| - ||x||$.

Поэтому имеем

$$||x - y|| \ge |||x|| - ||y|||.$$
 (13)

Определение. Пусть X — линейное пространство и $a,b\in X$. Множество точек

$$x = (1 - t)a + tb, -\infty < t < +\infty$$
(14)

называется прямой. Если в уравнении (14) ограничить изменение параметра t промежутком $0 \le t \le 1$, то полученное множество называется отрезком, соединяющим точки a и b и обозначается [a,b]. Если же $t \ge 0$, то множество (14) называется nyчом.

Совокупность отрезков, составленных таким образом, что конец каждого предыдущего отрезка является началом следующего, называется *поманой*.

Определение. Множество A линейного пространства X называется выпуклым, если любые две его точки входят в A вместе с отрезком, соединяющим эти точки.

Пример. Любой шар в линейном нормированном пространстве есть выпуклое множество. В самом деле, пусть $\|x-a\| < r$, $\|y-a\| < r$ и z=(1-t)x+ty $(0\leqslant t\leqslant 1)$. Тогда

$$||z - a|| = ||(1 - t)(x - a) + t(y - a)|| \le$$

$$\le (1 - t)||x - a|| + t||y - a|| < (1 - t)r + tr = r.$$

В нормированном пространстве легко ввести расстояние, если положить

$$\rho(x,y) = ||x - y||.$$

Теперь, как и во всяком метрическом пространстве, в нормированном пространстве можно определить предел последовательности. Только в этом случае утверждение $\lim_{p\to\infty} x_p = a$ означает следующее:

$$\rho(x_p,a) = ||x_p - a|| \to 0$$
 при $p \to \infty$

или

$$\forall \varepsilon > 0, \quad \exists N(\varepsilon), \quad \forall p > N \colon ||x_p - a|| < \varepsilon.$$

В одно и то же линейное пространство можно внести разные нормы. Это было проиллюстрировано на примере линейного пространства \mathbb{R}^n , в котором рассматривались три разные нормы.

Определение. Две нормы $\|x\|_I$ и $\|x\|_{II}$, определенные в одном и том же линейном пространстве X, называются эквивалентными, если существуют m>0 и M>0 такие, что для любых точек $x\in X$

$$m||x||_{II} \le ||x||_{I} \le M||x||_{II}$$
 (15)

Обозначение: $||x||_I \sim ||x||_{II}$.

Лемма. Если в линейном пространстве $X: \|x\|_I \sim \|x\|_{II}$ и точка $a \in X$, то

$$\forall O_{II}(a), \quad \exists O_I(a) \colon O_I(a; \delta_1) \subset O_{II}(a; \delta)$$
 (16)

$$\forall O_I(a;\delta), \quad \exists O_{II}(a;\delta_1) : O_{II}(a;\delta_1) \subset O_I(a;\delta).$$
 (17)

Доказательство. Отметим прежде всего, что обозначения O_I и O_{II} показывают, в какой метрике берется окрестность точки a.

Включение (16) равносильно утверждению

$$||x - a||_I < \delta_1 \Longrightarrow ||x - a||_{II} < \delta.$$

Поэтому рассуждаем так. Пусть $\|x-a\|_I < \delta_1$, где δ_1 пока не определено. В силу (15) имеем

$$||x - a||_{II} \leqslant \frac{1}{m} ||x - a||_{I} < \frac{1}{m} \delta_1.$$

Выбрав теперь $\delta_1 = m\delta$, получаем требуемое неравенство.

Аналогично доказывается и включение (17). Пусть $||x-a||_{II} < \delta_1$. Опять-таки на основании (15)

$$||x - a||_I \leqslant M||x - a||_{II} < M\delta_1.$$

Взяв $\delta_1 = \frac{1}{M} \delta$, приходим к утверждению

$$||x-a||_{II} < \delta_1 \Longrightarrow ||x-a||_{I} < \delta,$$

что равносильно включению (17). ■

Теорема 3. Если в линейном пространстве X определены две эквивалентные нормы, то каждое множество $G \subset X$, открытое в одной из метрик, будет открытым и в другой метрике, и наоборот.

Доказательство. Пусть множество G открыто в метрике I. Тогда любая точка $a \in G$ входит в G вместе с некоторой окрестностью $O_I(a)$. Согласно лемме существует $O_{II} \subset O_I(a) \subset G$. Значит, G открыто и в метрике II. Обратное утверждение доказывается точно так же.

Таким образом, в нормированных пространствах с эквивалентными нормами один и тот же набор открытых множеств.

Совокупность всех открытых множеств линейного нормированного пространства X называется его $\underline{mononorue\check{u}}$, а свойства и понятия пространства, основанные на открытых множествах, называются mononorueckumu свойствами u nonsmusmu.

Понятия окрестности, предельной точки, замкнутого множества, замыкания, внутренности и внешности множества, границы являются топологическими понятиями. Топологическим будет и понятие непрерывной функции. Топологические свойства пространства не меняются при переходе к эквивалентной норме.

Следовательно, теорему 3 можно кратко сформулировать в такой форме.

Линейные нормированные пространства с эквивалентными нормами обладают одной и той же топологией.

Топологические свойства определяются только топологией пространства, они не нуждаются в метрике. Поэтому возможно широкое обобщение метрического пространства — топологическое пространство. Их изучение составляет предмет отдельной математической дисциплины — топологии.

Отметим еще, что понятия шара, сферы, ограниченного множества не являются топологическими.

Если $\|x\|_I$ и $\|x\|_{II}$ — нормы в линейном пространстве X, то запись $x_p \underset{I}{\to} a$ или $x_p \underset{II}{\to} a$ означает сходимость к a по соответствующей норме, т.е. $\|x_p - a\|_I \to 0$ или $\|x_p - a\|_{II} \to 0$.

Теорема 4. Если в линейном пространстве $X\colon \|x\|_I \sim \|x\|_{II},$ то условия $x_p \overset{\rightarrow}{\to} a$ и $x_p \overset{\rightarrow}{\to} a$ эквивалентны.

Доказательство немедленно следует из неравенства

$$m||x_p - a||_{II} \le ||x_p - a||_I \le M||x_p - a||_{II}$$
.

В заключение рассмотрим еще одну важную теорем.

Теорема 5. В линейном пространстве \mathbb{R}^n нормы

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i}, \ ||x||_1 = \max_{1 \le i \le n} |x| \ u \ ||x||_2 = \sum_{i=1}^{n} |x_i|$$

эквивалентны.

Замечание. Можно доказать более сильное утверждение: в конечномерном линейном пространстве \mathbb{R}^n все нормы эквивалентны.

Доказательство. Неравенство (3) можно записать в виде

$$||x||_1 \leqslant ||x|| \leqslant ||x||_2.$$

Легко видеть, что

$$||x||_2 = \sum_{i=1}^n |x_i| \le n||x||_1.$$

В итоге получаем

$$||x||_1 \leqslant ||x|| \leqslant ||x||_2 \leqslant n||x||_1.$$

Это значит, что $\|x\| \sim \|x\|_1$ и $\|x\|_2 \sim \|x\|_1$. \blacksquare

Эквивалентность в пространстве \mathbb{R}^n норм $\|x\|$ и $\|x\|_1$ позволяет формулировать все факты и понятия, опирающиеся на понятие окрестности, как в терминах круговой окрестности (т.е. окрестности в норме $\|x\|$), так и в терминах квадратной окрестности (т.е. окрестности в норме $\|x\|_1$).

РЕШЕНИЕ ЗАДАЧ

1. Проверить аксиомы метрики в пространстве \mathbb{R}^n :

а) евклидовой метрики
$$d(x,y) = ||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2};$$

b)
$$d_1(x, y) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\},\$$

c)
$$d_2(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$
.

Peшение. а) Очевидно, что $d(x,y)\geqslant 0$. Равенство d(x,y)=0 выполнено тогда и только тогда, когда $x_i=y_i$ для всех $i=1,2,\ldots,n$, т.е. x=y. Нетрудно заметить, что d(x,y)=d(y,x). Покажем, что справедливо неравенство «треугольника»: $d(x,y)\leqslant d(x,z)+d(z,y)$.

Пусть $x_i - z_i = a_i$, $z_i - y_i = b_i$. Тогда $x_i - y_i = a_i + b_i$. Используя неравенство Коши-Буняковского, имеем

$$\sum_{i=1}^{n} (a_i + b_i)^2 = \sum_{i=1}^{n} a_i^2 + 2 \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} b_i^2 \leqslant$$

$$\leqslant \sum_{i=1}^{n} a_i^2 + 2 \sqrt{\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2} + \sum_{i=1}^{n} b_i^2 = \left(\sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2\right)^2.$$

Следовательно,

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = \sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i} + \sqrt{\sum_{i=1}^{n} b_i^2} = \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} + \sqrt{\sum_{i=1}^{n} (z_i - y_i)^2} = d(x,z) + d(z,y).$$

b) Аксиомы 1) - 3) для $d_1(x,y)$ очевидно выполнены. Проверим аксиому 4.

$$d_1(x,y) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\} =$$

$$= \max\{|x_1 - z_1 + z_1 - y_1|, \dots, |x_n - z_n + z_n - y_n|\} \le$$

$$\le \max\{|x_1 - z_1| + |z_1 - y_1|, \dots, |x_n - z_n| + |z_n - y_n|\} \le$$

$$\le \max\{|x_1 - z_1|, \dots, |x_n - z_n|\} + \max\{|z_1 - y_1|, \dots, |z_n - y_n|\} =$$

$$= d_1(x, z) + d_1(z, y).$$

Следовательно, неравенство «треугольника» для $d_1(x,y)$ выполнено.

с) Для функции $d_2(x,y)$ аксиомы 1) - 3) выполнены.

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i| = \sum_{i=1}^n |x_i - z_i| + |z_i - y_i| \le$$

$$\le \sum_{i=1}^n |x_i - z_i| + |z_i - y_i| = \sum_{i=1}^n |x_i - z_i| + \sum_{i=1}^n |z_i - y_i| =$$

$$= d_2(x,z) + d_2(z,y).$$

Следовательно, аксиома 4 также выполнена.

2. Проверить аксиомы метрики в пространстве $\mathbb{C}[a,b]$. Точками x=x(t) этого пространства являются всевозможные функции, непрерывные на [a,b]. Расстояние между точками x=x(t) и y=y(t) определяется по формуле

$$\rho(x,y) = \max_{a \le t \le b} |x(t) - y(t)|.$$

Peшение. Выполнение первых трех аксиом метрики очевидны. Проверим неравенство «треугольника». Для каждого $t \in [a,b]$ имеем

$$|x(t) - y(t)| \leqslant |x(t) - z(t)| + |z(t) - y(t)| \leqslant$$
$$\leqslant \max_{a \leqslant t \leqslant b} |x(t) - z(t)| + \max_{a \leqslant t \leqslant b} |z(t) - y(t)|$$

Тогда

$$\max_{a\leqslant t\leqslant b} \lvert x(t)-y(t)\rvert \leqslant \max_{a\leqslant t\leqslant b} \lvert x(t)-z(t)\rvert + \max_{a\leqslant t\leqslant b} \lvert z(t)-y(t)\rvert$$

Значит $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$.

3. Является ли функция $\rho(x,y) = |x^2 - y^2|$ метрикой в пространстве \mathbb{R}^1 ?

Peшение. Рассмотрим точки x=1 и y=-1. В этих точках $\rho(x,y)=0$, т.е. не выполняется вторая аксиома. Значит функция $\rho(x,y)=|x^2-y^2|$ не определяет метрику на числовой прямой.

4. Задает ли в пространстве \mathbb{R}^2 расстояние между точками $A(x_1,y_1)$ и $B(x_2,y_2)$ функция

$$\rho(A, B) = (|x_1 - x_2| + |y_1 - y_2|)^2?$$

Решение. Рассмотрим точки A(1,0), B(0,1), C(1,1). Вычислим значения функции в этих точках $\rho(A,B)=4, \ \rho(A,C)=1, \rho(C,B)=4.$ Это означает, что $\rho(A,B)>\rho(A,C)+\rho(C,B).$ Следовательно не выполнено неравенство «треугольника». Значит функция $\rho(A,B)$ не определяет метрику в пространстве $\mathbb{R}^2.$

5. Доказать, что во всяком метрическом пространстве сфера $S(a;r)=\{x\in X\colon \rho(a,x)=r\}$ есть замкнутое множество.

Решение. В самом деле, если ξ — предельная точка для множества S(a;r), то на сфере можно выделить последовательность точек $x_p \to \xi$ (или, что то же самое, $\rho(x_p,\xi) \to 0$). В силу неравенства

$$|\rho(x_p, a) - \rho(\xi, a)| \le \rho(x_p, \xi) \to 0.$$

Значит, $\lim_{p\to\infty}\rho(x_p,a)=\rho(\xi,a)$. Но $\rho(x_p,a)=r$. Поэтому получаем отсюда $\rho(\xi,a)=r$ и $\xi\in S(a,r)$.

6. Доказать, что открытый шар

$$B(a;r) = \{x \in X : \rho(a,x) < r\}$$

есть открытое множество.

Peшeнue. Пусть точка $x_0 \in B(a;r)$. Тогда $\rho(x_0,a) < r$.

Выберем число $\delta > 0$ так, чтобы $\delta + \rho(x_0, a) = r$. Проверим, что $O(x_0; \delta) \subset B(a; r)$. Если $x \in O(x_0; \delta)$, то $\rho(x, x_0) < \delta$. Поэтому имеем

$$\rho(x, a) \leq \rho(x, x_0) + \rho(x_0, a) < \delta + \rho(x_0, a) = r,$$

и точка $x \in B(a; r)$.

7. Доказать, что множество \mathbb{Q}^n всюду плотно в пространстве \mathbb{R}^n .

Решение. Пусть $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ и $\varepsilon>0$. Для $\forall i,\, \exists r_i\in\mathbb{Q}\colon |x_i-r_i|<\frac{\varepsilon}{n}.$ Тогда при $r=(r_1,\ldots,r_n)\in\mathbb{Q}^n$ в силу неравенства (3) имеем

$$\rho(x,r) = \|x - r\|_{\mathbb{R}^n} \leqslant \sum_{i=1}^n |x_i - r_i| < \frac{\varepsilon}{n} \cdot n = \varepsilon.$$

8. Числовая величина

$$\rho(A,B) = \inf_{\substack{x \in A \\ y \in B}} \rho(x,y)$$

называется расстоянием между множествами A и B. Для любых двух непустых множеств A и B требуется исследовать случай $\rho(A,B)=0$.

Peшение. Если множества A и B имеют общие точки, то, очевидно, $\rho(A,B)=0$. Обратное, однако, неверно. В качестве примера в пространстве \mathbb{R}^1 можно взять два интервала с общим концом. Аналогичный пример в пространстве \mathbb{R}^2 дает расстояние между какой-либо ветвью гиперболы и ее асимптотой. В самом деле, пусть A — ветвь гиперболы $y=\frac{1}{x}$ (x>0), а B — ее асимптота y=0. Рассмотрим точку гиперболы $P\left(x,\frac{1}{x}\right)$ и точку асимптоты Q(x,0). Расстояние $\rho(P,Q) \to 0$ при $x\to\infty$. Поэтому $\rho(A,B)=0$, хотя множества A и B не имеют общих точек.

9. Проверить аксиомы нормы в евклидовом пространстве \mathbb{R}^n .

Решение. Свойства 1) и 2) очевидны. Докажем свойство 3), воспользовавшись неравенством Коши–Буняковского:

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y) \le$$

$$\le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

10. Проверить аксиомы нормы для любых $x=(x_1,\ldots,x_n)$ в пространстве \mathbb{R}^n

a)
$$||x||_1 = \max_{1 \le i \le n} |x_i|$$
, b) $||x||_2 = \sum_{i=1}^n |x_i|$.

Решение. а) Нетрудно заметить, что свойства 1) и 2) выполнены. Проверим свойство 3). Для любых $x=(x_1,\ldots,x_n)$ и $y=(y_1,\ldots,y_n)$

$$||x + y||_1 = \max_{1 \le i \le n} |x_i + y_i| \le \max_{1 \le i \le n} (|x_i| + |y_i|) \le$$
$$\le \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i| = ||x||_1 + ||y||_1$$

b) Докажем выполнения свойства 3.

$$||x + y||_2 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + |y_i| =$$

$$= \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = ||x||_2 + ||y||_2$$

11. Пространство $\mathbb{C}[a,b]$, непрерывных функций на сегменте [a,b], с нормой $\|x\|=\max_{a\leqslant t\leqslant b}|x(t)|$. Проверить аксиомы нормы.

 $Peшение.\ 1.\ Для\ любых\ функций\ <math>x(t)\in\mathbb{C}[a,b]$

$$||x|| = \max_{a \leqslant t \leqslant b} |x(t)| = 0 \Leftrightarrow x(t) \equiv 0.$$

2. Для любых функций $x(t) \in \mathbb{C}[a,b]$ и для любых λ

$$\|\lambda x\| = \max_{a \leqslant t \leqslant b} |\lambda x(t)| = |\lambda| \cdot \max_{a \leqslant t \leqslant b} |x(t)| = |\lambda| \cdot \|x\|.$$

3. Для любых функций $x(t), y(t) \in \mathbb{C}[a, b]$

$$\begin{split} \|x+y\| &= \max_{a\leqslant t\leqslant b} \lvert x(t) + y(t) \rvert \leqslant \max_{a\leqslant t\leqslant b} (\lvert x(t) \rvert + \lvert y(t) \rvert) \leqslant \\ &\leqslant \max_{a\leqslant t\leqslant b} \lvert x(t) \rvert + \max_{a\leqslant t\leqslant b} \lvert y(t) \rvert = \|x\| + \|y\|. \end{split}$$

12. Найти диаметр множества E, где E-n- мерный куб в пространстве \mathbb{R}^n со стороной a, используя евклидову метрику

$$d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},$$

а также

$$d_1(x,y) = \max\{|x_1-y_1|, \dots, |x_n-y_n|\}, \quad d_2(x,y) = \sum_{i=1}^n |x_i-y_i|.$$

В какой метрике диаметр множества E больше?

Peшение. Рассмотрим пространство \mathbb{R}^n с евклидовой метрикой. Если $x,y\in E,$ где E-n- мерный куб со стороной a, то

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \leqslant \sqrt{na^2} = a\sqrt{n}.$$

Значит диаметр множества E равен

$$diamE = \sup_{x,y \in E} d(x,y) = a\sqrt{n}.$$

В метрике $d_1(x,y)$ для всех $x,y \in E$

$$d_1(x, y) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\} \leqslant \max\{a, \dots, a\} = a.$$

Tогда diam E = a.

В
$$d_2(x,y) \ diam E = an$$
, так как $\sum_{i=1}^n |x_i - y_i| \leqslant \sum_{i=1}^n a = an$.

Следовательно, диаметр множества E больше в метрике $d_2(x,y)$.

13. Проверить непрерывность функции $\rho(x, y)$ — метрика пространства X.

Решение. Для доказательства воспользуемся определением непрерывности по Гейне. Пусть x и y — любые две точки метрического пространства $X, x_n \to x, y_n \to y$. Тогда в силу неравенства $|\rho(a,b) - \rho(a,c)| \le \rho(b,c)$ имеем

$$\begin{aligned} |\rho(x_n, y_n) - \rho(x, y)| &= |\rho(x_n, y_n) - \rho(x_n, y) + \rho(x_n, y) - \rho(x, y)| \le \\ &\le |\rho(x_n, y_n) - \rho(x_n, y)| + |\rho(x_n, y) - \rho(x, y)| \le \\ &\le \rho(y_n, y) + \rho(x_n, x) \to 0 \end{aligned}$$

при $n \to \infty$.

Таким образом, функция $\rho(x, y)$ непрерывна в каждой точке (x, y), т.е. на всем пространстве X. Отсюда, в частности, вытекает непрерывность функции $||x|| = \rho(x, 0)$ на нормированном пространстве X.

14. Доказать, что в метрическом пространстве сходящаяся последовательность имеет единственный предел.

Peшение. Предположим, что $\lim_{p\to\infty}x_p=a$ и $\lim_{p\to\infty}x_p=b.$ Тогда

$$\rho(a,b)\leqslant \rho(a,x_p)+\rho(x_p,b)\to 0,\quad \text{при}\quad p\to\infty.$$

Отсюда имеем $\rho(a,b) = 0$ и a = b.

15. Доказать, что пространство $\mathbb{R}^n (n > 1)$ полное.

Решение. Пусть $x_p \in \mathbb{R}^n$ — фундаментальная последовательность. Числовая последовательность x_{pi} фундаментальна и в силу полноты \mathbb{R}^1 последовательность x_{pi} сходится при $p \to \infty$ к некоторому числу a_i . Положим $a = (a_1, \dots, a_n)$. По теореме 2 (см. §2) $\lim_{p \to \infty} x_p = a$. Полнота \mathbb{R}^n доказана.

16. Докажите, что любой отрезок $[a,b] \subset \mathbb{R}^1$ является вполне ограниченным множеством.

 $\frac{Peшeниe.}{N}$ Выберем натуральное число N так, чтобы $\frac{b-a}{N}<\varepsilon.$ В качестве конечной ε -сети можно взять точки $y_j=a+j\cdot\frac{b-a}{N}$ при $j=0,1,\dots,N.$

УПРАЖНЕНИЯ

1. Являются ли функции $\rho(x,y)$ метрикой в пространстве \mathbb{R}^1 ?

a)
$$\rho(x,y) = \sin^2(x-y);$$
 b) $\rho(x,y) = (x-y)^2;$
c) $\rho(x,y) = \frac{|x-y|}{1+|x-y|};$ d) $\rho(x,y) = \frac{|x-y|}{1+|x-y|^2};$
e) $\rho(x,y) = \frac{|x-y|}{x^2+2y^2+1};$ g) $\rho(x,y) = |x\cdot y|.$

2. Является ли функция

$$\rho(A,B) = \sqrt[4]{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

где $A(x_1, y_1)$ и $B(x_2, y_2)$ метрикой в пространстве \mathbb{R}^2 ?

- **3.** Вычислить расстояние между функциями $x(t) = t^2$, y(t) = 2t + 5 в пространстве $\mathbb{C}[-1,1]$.
- **4.** Исследовать последовательность $x_p = \left(\frac{1}{p}, \frac{1}{p^2}\right) \in \mathbb{R}^2$ на сходимость. Изменится ли ответ в задаче в зависимости от метрики?
- **5.** Проверить аксиомы метрики в пространстве l_p , элементами которого являются последовательности вещественных чисел $\{x_k\}$ таких, что сходится ряд $\sum_{k=1}^{\infty}|x_k|^p$:

$$\rho_p(x,y) = \left(\sum_{k=1}^{\infty} |x_k - y_k|^p\right)^{\frac{1}{p}} \quad 1 \leqslant p < \infty.$$

6. Проверить аксиомы метрики в пространстве \mathbb{R}^n :

$$\rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}} \quad 1 \le p < \infty.$$

7. Проверить аксиомы метрики в пространстве m — ограниченных последовательностей вещественных чисел:

$$\rho(x,y) = \sup_{k \in \mathbb{N}} |x_k - y_k|.$$

8. M[a,b] — пространство ограниченных функций $x:[a,b] \to \mathbb{R}.$ Проверить аксиомы метрики

$$\rho(x,y) = \sup_{a \le t \le b} |x(t) - y(t)|.$$

9. Является ли метрикой в пространстве $\mathbb{C}[a,b]$ функция

$$\rho(x,y) = \int_{a}^{b} |x(t) - y(t)| dt?$$

10. Является ли метрикой в пространстве M — произвольных последовательностей вещественных чисел:

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{|x_k - y_k|}{1 + |x_k - y_k|}?$$

- **11.** Изобразите шары $B^*(0;1)$ в пространствах \mathbb{R}^2 , \mathbb{R}^3 относительно метрик $d(x,y), d_1(x,y), d_2(x,y)$.
- **12.** Доказать, что множество \mathbb{Q} рациональных чисел всюду плотно в метрическом пространстве \mathbb{R}^1 , то есть при любом $\varepsilon > 0$ для каждого вещественного числа x существует рациональное число $r = r(x, \varepsilon)$, такое, что $|x r| < \varepsilon$.

Указание. Вспомните принцип Архимеда и его следствия.

- **13.** Найти расстояние между множествами рациональных и иррациональных чисел.
 - **14.** Доказать, что $\rho(A, B) = \inf_{x \in A} \rho(x, B)$.
- **15.** Доказать, что для того чтобы точка $a \notin E$ была предельной для E, необходимо и достаточно, чтобы $\rho(a, E) = 0$.
 - **16.** Доказать, что для любого множества E

$$\overline{E} = \{x \colon \rho(x, E) = 0\}.$$

17. Доказать, что для того чтобы множество F было замкнутым, необходимо и достаточно, чтобы $\rho(a,F)=0\Longrightarrow a\in F.$

18. Доказать, что если F_1 и F_2 — непересекающиеся замкнутые множества, и хотя бы одно из которых компактно, то существуют $x_0 \in F_1$ и $y_0 \in F_2$ такие, что

$$\rho(F_1, F_2) = \rho(x_0, y_0).$$

- **19.** Вычислить норму функции $f(x) = \sin x + \cos x$ в пространстве $\mathbb{C}[0,\pi]$.
- **20.** Вычислить норму функции $f(x) = x^2 x$ в пространстве $\mathbb{C}[0,2]$.
- **21.** Докажите, что если $x_n, y_n, a, b \in X$, где X нормированное пространство, и $\lambda_n, \lambda \in \mathbb{R}$, то из того, что $x_n \to a$, $y_n \to b, \lambda_n \to \lambda$, следует, что $x_n \pm y_n \to a \pm b$ и $\lambda_n x_n \to \lambda a$.
- **22.** Докажите, что в пространстве \mathbb{R}^n из условий $x_p \to a$ и $y_p \to b$ следует, что $(x_p, y_p) \to (a, b)$.
- **23.** Расшифровать в терминах окрестностей утверждения:
- 1) точка a не является предельной для множества E,
- 2) точка a не является внутренней для множества E,
- 3) точка a не является внешней для множества E,
- 4) точка a не является граничной для множества E,
- 5) множество A не является всюду плотным в метрическом пространстве X.
 - **24.** В пространстве \mathbb{R}^2 заданы множества

$$A = \{(x,y): (x-2)^2 + (y-3)^2 \le 1\},$$

$$B = \{(x,y): y = 0\}, C = \{(x,y): x = 0\}.$$

Найдите расстояние между каждой парой этих множеств в евклидовой метрике. Изменится ли ответ, если взять другую метрику $(d_1(x,y),\ d_2(x,y),\ eстественную метрику)$? Поясните!

- **25.** Найти диаметр n-мерного параллелепипеда.
- **26.** Доказать, что в метрическом пространстве всякая сходящаяся последовательность ограничена.

 $У \kappa a з a н u e$. Доказательство копирует доказательство аналогичного утверждения для случая пространства \mathbb{R}^1 .

27. Доказать, что в метрическом пространстве если последовательность $x_p \to a$, то и всякая подпоследовательность $x_{p_k} \to a$.

Указание. Доказательство копирует доказательство аналогичного утверждения для случая пространства \mathbb{R}^1 .

- **28.** Докажите утверждение. Для того чтобы последовательность $x_p \in \mathbb{R}^n$ была фундаментальной, необходимо и достаточно, чтобы при любом $i = 1, 2, \ldots, n$ была фундаментальной числовая последовательность x_{pi} .
- **29.** Пусть X метрическое пространство и $E\subset X$. Докажите эквивалентность утверждений:
 - 1. каждая проколотая окрестность точки a содержит хотя бы одну точку множества E;
 - 2. каждая окрестность точки a содержит бесконечную часть множества E;
 - 3. во множестве E можно выделить последовательность попарно различных точек x_p , таких, что $x_p \to a$.
- **30.** Доказать, что всякое вполне ограниченное множество является ограниченным.
- **31.** Доказать, что всякое ограниченное множество $E \subset \mathbb{R}^n$ является вполне ограниченным.
 - 32. Доказать, что ограниченное множество

$$E = \{x(t) \in \mathbb{C}[0,1] : \sup_{t \in [0,1]} |x(t)| \le 1\}$$

не является вполне ограниченным в пространстве $\mathbb{C}[0;1]$.

- **33.** Докажите, что для того чтобы множество E было вполне ограниченным, необходимо и достаточно, чтобы из любой последовательности элементов множества E можно было извлечь фундаментальную подпоследовательность.
- **34.** Докажите, что из любой ограниченной последовательности $x_p \in \mathbb{R}^n$ можно извлечь сходящуюся подпоследовательность.

- **35.** Докажите свойства компактных множеств (см. §6).
- **36.** Докажите, что если $x_n,y_n,a,b\in X$ и $\lambda_n,\lambda\in\mathbb{R}$, то из того, что $x_n\to a,\,y_n\to b,\,\lambda_n\to\lambda$, следует, что $x_n\pm y_n\to a\pm b$ и $\lambda_n x_n\to\lambda a.$
- **37.** Докажите, что в пространстве \mathbb{R}^n из условий $x_p \to a$ и $y_p \to b$ следует, что $(x_p,y_p) \to (a,b)$.
- **38.** Проверить, что бинарное отношение $\|x\|_I \sim \|x\|_{II}$ есть отношение эквивалентности.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Дать расшифровку на языке εN определения предела последовательности в метрическом пространстве.
- 2. Дать расшифровку на языке εN определения предела $\lim_{n \to \infty} x_n = a$, где $x_n, a \in X$ метрическое пространство.
- 3. Дать расшифровку на языке εN определения предела $\lim_{n\to\infty} x_n = a$, где $x_n, a\in X$ нормированное пространство.
 - 4. Дать определение предела функции по базе.
- 5. Дать определение предела функции $f:X\to Y$, где X,Y метрические пространства на языке $\varepsilon-\delta$.
- 6. Дать определение предела функции $f: X \to Y$, где X, Y нормированные пространства на языке $\varepsilon \delta$.
- 7. Дать определение предела функции $f: X \to Y$, где X, Y метрические пространства на языке окрестностей.
- 8. Дать определение предела функции $f: X \to Y$, где X, Y нормированные пространства на языке окрестностей.
 - 9. Дать определение предела функции по направлению.
- 10. Дать определение предела функции по множеству E по Гейне.
- 11. Дать определение предела функции по множеству E по Коши.
- 12. Дать определение предела функции $f:X\to Y$, где X метрическое пространство, а Y нормированное пространство на языке $\varepsilon-\delta$.
- 13. Дать определение предела функции $f: X \to Y$, где Y метрическое пространство, а X нормированное пространство на языке $\varepsilon \delta$.
 - 14. Дать определение непрерывной функции по Коши.
 - 15. Дать определение непрерывной функции по Гейне.
- 16. Дать определение непрерывной функции на языке окрестностей.
- 17. Дать определение непрерывной функции $f: X \to Y$, где X, Y нормированные пространства на языке $\varepsilon \delta$.
- 18. Дать определение непрерывной функции $f: X \to Y$, где X, Y метрические пространства на языке $\varepsilon \delta$.

- 19. Дать определение непрерывной функции $f:X\to Y$, где X метрическое пространство, а Y нормированное пространство на языке $\varepsilon-\delta$.
- 20. Дать определение непрерывной функции $f:X \to Y$, где Y метрическое пространство, а X нормированное пространство на языке $\varepsilon \delta$.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Архипов, Г. И. Лекции по математическому анализу / Г. И. Архипов, В. А. Садовничий, В. Н. Чубариков. М.: Дрофа, 2008. 638 с.
- 2. Виноградова, И. А. Задачи и упражнения по математическому анализу. Ч. 2 / И. А. Виноградова, С. Н. Олехник, В. А. Садовничий. М.: Высшая школа, $2002.-710~\mathrm{c}.$
- 3. Демидович, Б. П. Сборник задач и упражнений по математическому анализу / Б. П. Демидович. М.: АСТ, 2009. 558 с.
- 4. Дерр, В. Я. Функциональный анализ: лекции и упражнения: учебное пособие / В. Я. Дерр. М.: КНОРУС, 2013.-464 с.
- 5. Ильин, В. А. Математический анализ в 2-х частях. Ч. 2: учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. М: Юрайт, 2025. 324 с.
- 6. Кудрявцев, Л. Д. Курс математического анализа в 3-х томах. Том 2 в 2-х книгах. Книга 2: учебник для вузов / Л. Д. Кудрявцев. М.: Юрайт, 2025. 323 с.
- 7. Тучинский, Л. И. Основы многомерного анализа / Л.И. Тучинский, И.Я. Шнейберг. Под общ. ред. Е. Л. Тонкова. Ижевск: Изд. «Удмуртский ун—т», 2010. 541 с.
- 8. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления. Т. 2 / Г. М. Фихтенгольц. М.: ФИЗМАТЛИТ, 2018. 864 с.

Учебное издание

Латыпова Наталья Владимировна Соловьева Надежда Александровна

МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Учебно-методическое пособие

Авторская редакция

Подписано в печать 30.10.2025. Формат 60×84 1/16 Усл. печ. л. 2,8. Уч.-изд. л. 2,4. Тираж 22 экз. Заказ № 1669.

Издательский центр «Удмуртский университет» 426034 г. Ижевск, ул. Ломоносова, 4Б, каб. 021 Тел.: +7(3412)916-364, E-mail: editorial@udsu.ru

Типография Издательского центра «Удмуртский университет» 426034, Ижевск, ул. Университетская, 1, корп. 2. Тел. 68-57-18