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Введение 

Пространственное представление человека всегда вначале мыс-

ленно создает некую объемную модель объекта, которая является ос-

новой для преобразования ее в ортогональные проекции. Идеология 

двухмерного проектирования заключается в выполнении изображе-

ний на основе воображаемого человеком трехмерного объекта с помо-

щью набора различных линий и функций. Каждая проекция детали 

строится отдельно в проекционной связи и, в данном случае, автома-

тизируется лишь сам процесс получения изображения и проставления 

размеров. 

Необходимость развития пространственного представления сту-

дентов требует такого подхода, при котором на начальном этапе изу-

чения программных продуктов желательно использование двухмерных 

систем либо их двухмерных модулей.  

Освоение студентами вузов компьютерной техники и програм-

мных графических продуктов позволяет: 

– повысить уровень подготовки кадров для различных отрас-

лей промышленности; 

– ускорить процесс выполнения и улучшить качество учебных

графических работ; 

– использовать полученные знания и умения для разработки

курсовых и дипломных работ. 

Одним из пакетов, в котором возможно изучение предметов, 

связанных с компьютерной графикой, является студенческий пакет 

Maple. Студенты имеют возможность использовать его бесплатные 

версии. 

Цель пособия – помощь в формировании у студентов необхо-

димых знаний, умений и навыков по компьютерной геометрии. 

Задачи: 

 приобретение теоретических знаний об основных элементах

и периферийных устройствах, определяющих эффективность ис-

пользования компьютера при работе с графическим материалом; 

 приобретение базовых основ создания графических изобра-

жений. Растровая, векторная, фрактальная графика. Основные пред-

ставления о цветовых моделях (RGB, CMYK и т. д.); 

 знакомство с современными стандартами компьютерной гра-

фики; 
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 приобретение теоретических знаний о способах хранения гра-

фической информации; 

 приобретение прикладных знаний в области использования 

векторной графики в практической деятельности; 

 приобретение прикладных знаний в области верстки изданий 

различного характера. 

В результате изучения студент должен: 

знать: 

 основные требования, предъявляемые к компьютеру при ра-

боте с графическими редакторами; 

 реализацию аппаратно-программных модулей графической 

системы; 

 основные приемы геометрического моделирования и решае-

мые им задачи; 

 основы представления видеоинформации и ее машинной ге-

нерации; 

 современные стандарты компьютерной графики; 

 основные способы визуализации изображения: растровая 

и векторная графика; 

 основные форматы файлов, используемые при работе с гра-

фикой; 

 основные принципы создания векторных графических изоб-

ражений; 

 основные принципы создания растровых изображений и их 

редактирования; 

  
уметь: 

 применять интерактивную графику в информационных си-

стемах; 

 создавать двумерные растровые и векторные графические 

изображения и их редактировать в наиболее распространенных гра-

фических редакторах; 

 сохранять созданные изображения в необходимом формате;  

владеть: 

 методами решения задач геометрической графики. 
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При изучении данной темы формируются элементы следую-

щей совокупности профессиональных компетенций: 

  способен принимать научно обоснованные решения на ос-

нове математического моделирования и методов системного ана-

лиза, осуществлять проверку их корректности, адекватности и эф-

фективности; 

  способен самостоятельно изучать новые разделы фундамен-

тальных и прикладных наук. 

Одной из форм оценки уровня сформированности заявленных 

компетенций является проект, выполняемый в рамках самостоятель-

ной работы. 

Цель проекта. Проект является самостоятельно выполняемым 

заданием, предназначен для усвоения обучаемым современных гра-

фических технологий и графических инструментов, требует разра-

ботки учащимся целостного законченного проекта. 

Тема проекта. Проект выполняется по темам, указанным в при-

ложении. Тема также может быть выбрана студентом самостоя-

тельно, если она согласована с преподавателем курса и руководите-

лем индивидуального обучения. 

Проект выполняется студентом индивидуально. Допускается 

выполнение работы в составе группы – два, три человека при усло-

вии увеличения объема работ в соответствующее число раз.  

Предпочтителен отчет, подготовленный компьютерным спосо-

бом. При подготовке отчета следует учитывать требования ГОСТ 

на техническую документацию. 

Данное учебно-методическое пособие разработано на основе 

опыта преподавания перечисленных дисциплин и современных ме-

тодик обучения.  
Maple – это программный пакет, система компьютерной мате-

матики, предназначенная для символьных вычислений. Система 

Maple имеет огромный спектр средств для численных решений. Этот 

продукт используют в разных областях математики: при решении 

дифференциальных уравнений, численных методов, теоретической 

механики и так далее. Программа имеет собственный интегрируе-

мый язык программирования, легко усваиваемый для любого поль-

зователя. В этом пособии мы рассмотрим различные графические па-

кеты, которые предоставляет нам это приложение. 

Учебно-методическое пособие написано в соответствии с тре-

бованиями государственных образовательных стандартов третьего 
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поколения направлений подготовки 01.03.01 Математика, 01.03.02 

Прикладная математика и информатика, 02.03.01 Математика и ком-

пьютерные науки. Включает в себя всесторонне изложенный теоре-

тический материал с разобранными на каждую тему практическими 

заданиями, с объяснением практического смысла каждого введен-

ного понятия. Данное пособие может быть использовано в качестве 

основной литературы для проведения лекций и практических заня-

тий. Предпосылками написания данного пособия являлась необходи-

мость систематизировать накопленный материал при многолетнем 

прочтении лекций и проведении практических занятий по работе 

с этой программой. При написании пособия были учтены совре-

менны требования и компетенции, предъявляемые к бакалавру. Ма-

териал был подобран так, чтобы не только можно было уловить суть 

предмета, но и понять его назначение в современном мире.  
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Лекция 1. Знакомство с программой Maple.  

Интерфейс программы.  

Подготовка к работе с графикой Maple 

1. Знакомство с программой Maple 
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Далее рассмотрим примеры оформления и работы программы 

в версии 2007 года: 
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Графики в Maple 7: 
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2. Примеры работы программы с графикой на плоскости 

 

Теперь рассмотрим работу с графиками в Maple 19: 

 

 
 

Как мы видим, изменился формат вводимых функций, они ста-

ли иметь более привычный нам вид. 

С помощь графических возможностей пакета уже можно со-

здавать обучающие программы с демонстрацией свойств фигур, фи-

зических объектов. 

Движение касательной и нормали по синусоиде: 
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Сопротивление пружины под воздействием силы: 

 

 

 

 
Появилась возможность создавать достаточно художественные 

картинки и мультипликацию: 
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3. Интерфейс программы 

 

Интерфейс программы приложения Maple представлен в виде 

графической оболочки, которая обеспечивает удобный доступ к фун-

кционалу программы. Основные элементы стартового окна вклю-

чают в себя: меню с панелью инструментов, рабочую область, боковую 

панель. Навигация интегрирована в интерфейс программы и предла-

гает пользователям быстрый и легкий доступ к необходи-мым функ-

циям. Благодаря расположению элементов управления и разумному 

использованию пространства, совершение операций становится про-

стым и эффективным.  
Ниже рассмотрим по отдельности каждый из элементов. 

Меню программы.  

В самом начале работы с приложением нас приветствует 

надпись “Start” в верхней части окна. Ниже расположено основное 

меню с различными категориями команд, где мы можем создать ра-

бочий лист программы, в котором будем работать в дальнейшем, по-

смотреть обновления, ознакомиться с документацией, прочитать по-

мощь.  

 

 
 

Здесь пользователь может найти все основные функции про-

граммы, такие как открытие и сохранение файлов, выполнение вы-

числений, настройка параметров, возможность быстро выполнить 

определенные действия, такие как создание нового документа, со-

хранение документа, изменение настроек и т. д. 

Рабочая область.  

После создания нового документа, перед нами открывается пу-

стая область, где мы будем работать. Это основное окно приложения, 
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где пользователь может вводить и редактировать математические 

выражения, выполнять вычисления и строить графики. Здесь отобра-

жается результат выполнения заданных команд и вводимых пользо-

вателем формул. 

 

 
 

Наиболее полные возможности управления предоставляет глав-

ное меню системы. Оно, как обычно, расположено непосредственно 

под строкой заголовка. Меню предоставляет доступ к основным опе-

рациям и параметрам пользовательского интерфейса системы. Ниже 

дан перечень меню, доступных при наличии открытого документа: 

 File – работа с файлами и печатью документов; 

 Edit – команды редактирование документа и операции с бу-

фером обмена; 

 View – управление видом пользовательского интерфейса; 

 Insert – операции вставки; 

 Format – операции задания форматов; 

 Spreadsheet — операции задания таблиц; 

 Options – задание параметров; 

 Window – управление окнами; 

 Help – работа со справочной системой. 
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Настройка графического интерфейса содержит: режимы про-

смотра документа; графические примитивы; выделение и преобразо-

вание объектов; управление масштабом просмотра объектов; копи-

рование объектов; упорядочение размещения объектов; группировка 

объектов; соединение объектов.  

Оформление текста подразумевает: виды текста: простой, фи-

гурный текст; создание, редактирование, форматирование, предна-

значение; размещение текста вдоль кривой; редактирование геомет-

рической формы текста. 

Боковая панель.  

Слева от рабочей области расположена боковая панель с раз-

личными вкладками. В ней находятся специализированные инстру-

менты и окна, например, для работы с символьными выражениями, 

графиками, решением уравнений и т. д. 
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Панель включает в себя тригонометрические, логарифмичис-

кие, показательные и др. функции. Данная вкладка позволяет быстро 

переключаться между различными функциональными модулями, 

не вводя вручную часто используемые математические символы. 



20 

4. Основной синтаксис Maple 
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Работа с текстом в Maple очень похожа на работу в документе 

Word, но некоторая ограниченность присутствует, так же можно на-

бирать текст различными шрифтами (но разных вариантов меньше, 

чем в Word), различного размера, жирный, курсив, шрифтами раз-

ного цвета, работа с таблицами и др., различное выравнивание текста. 

Можно выделить текст знаками #. 
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Практическое занятие 1 

Задание 1. Написать эссе на свободную тему на 150–200 слов. 

Оформить текст: шрифт Times New Roman, цвет синий, 1,5 интервал, 

с применением 14-го размера шрифта, текст должен быть отформати-

рован по левому краю страницы, заголовок посередине. 

 

Задание 2. Задать формулы: 

∫ cos(𝑥) 𝑑𝑥
2

1
;                           {

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1
2𝑥1 + 3𝑥2 + 4𝑥3 + 5𝑥4 = 2
−2𝑥1 + 5𝑥2 − 𝑥3 + 𝑥4 = 0

; 

 

|𝐴𝐵⃗⃗⃗⃗  ⃗| = √(𝑥𝐵 − 𝑥𝐴)
2 + (𝑦𝐵 − 𝑦𝐴)

2; 

 

(
1
5
9

2
6
10

3
7
11

4
8
12

) ;                  lim
𝑥→0

sin⁡(𝑥)

𝑥
  ;                 ∑ 𝑎𝑛𝑏𝑛

∞
𝑛=1 ; 

 

 

Задание 3. Нарисовать треугольник АВС и его параметры: вы-

соту ВН,  

биссектрису BL и медиану BM, обозначить их на рисунке, под-

писать точки. 

 

Задание 4. Создать презентацию и включить в нее материал 

из предыдущих заданий. На последнем слайде сделать гиперссылку 

на первый слайд. 
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Лекция 2. Оформление графика функции 

В этой теме мы познакомимся с тем, как можно вводить функ-

цию для построения ее графика и работы с ней, а также какие графи-

ческие приложения Maple существуют. 

Для того, чтобы не только строить график, но и производить 

вычисления с данной функцией, необходимо задать ее функци-

онально: 

f ∶=x–>sin(4*x)/(x^2+1); 

 

Поставим в конце знак «;» нажмем кнопку Enter и программа 

отреагирует следующей записью, дав нам понять, что мы все пра-

вильно записали: 

 

Если в конце записи поставим «:», то действие будет сделано 

в компьютере, но на экране ничего отображаться не будет. Далее 

нарисуем график этой функции с помощью основной графической 

команды plot: 

plot ( f (x),x= −2..2,y= −2..2); 

 

 
 

Но можно рисовать графики непосредственно вписывая функ-

цию в команду plot: plot(x^2); 

 := f x
( )sin 4 x

x2 1
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Пример задания одного и того же графика сложной функции 

тремя различными способами: 

1 вариант: plot(arcsin(sin(x)),x= −4..4); 

2 вариант: h∶=arcsin(sin(x)):plot(h,x= −4..4); 

3 вариант: f ∶=x−>sin(x):g∶=arcsin( f (x)):plot(g,x= −4..4); 

График в каждом случае будет одинаковый: 
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Следующая особенность программы, связана с графиками раз-

рывных функций: по умолчанию такие графики Maple дополняет 

до непрерывных: 

plot(1/(x−1), x = −2 .. 2, y = −3 .. 3); 

 

 
 

Чтобы задать правильно, добавляем команду DISCONT: 

plot(1/(x−1), x = −2 .. 2, y = −3 .. 3, discont=true); 

 

 
 

plot(tan(x),x= −4*Pi..4*Pi,y= −4..4); 
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plot(tan(x),x= −4*Pi..4*Pi,y= −4..4,discont=true); 

 

 
 

Следующая интересная особенность программы Maple состоит 

в том, что можно нарисовать поведение графика функции на беско-

нечности, как одностороннюю, так и в обе стороны: 

 

f ∶=x−>x*sin(x): 

plot ( f (x),x=2..infinity); 
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g∶=sin(x)/x: 

plot(g(x),x= −infinity..infinity); 

 

 
 

Своеобразный синтаксис стандартных функций в Maple можно 

увидеть в следующих таблицах: 
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Познакомимся с основными опциями оформления графика 

функции: 
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Рассмотрим примеры применения этих опций. 

Возьмем знакомое нам уравнение параболы. Открываем новый 

файл и в самом начале пишем plot(x^2), где plot – это обязательное 

обращение к программе, в скобочках мы указываем нашу функцию, 

ставим точку с запятой и при нажатии клавиши Enter получаем ре-

зультат: 
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Ограничим нашу функцию в пределах x от −2 до 2. Для этого 

в скобочках через запятую напишем условие: 

plot(x^2, x = −2 .. 2); 
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Ограничим нашу функцию ещё и по y.  

Всё также в скобочках, через запятую, перечисляем условия:  

plot(x^2, x = −2 .. 2, y=0..1); 

 

 
 

Теперь добавим цвет. Цвета в Maple пишутся на английском 

языке и к ним идёт обращение color =... Для удобства выпишем не-

сколько цветов, которые можно использовать: red – красный, blue – 

синий, purple – фиолетовый и так далее. Пусть график нашей функ-

ции будет зелёным: 

plot(x^2, x = −2 .. 2, y=0..1,color=green); 
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Чтобы сделать наш график более понятным для стороннего 

пользователя, Maple позаботился об удобстве оформления.  

Выберем отдельные точки, благодаря которым построим гра-

фик функции: 

plot(sin(x), sample = [1, 2, 3, 4, 5, 6, 7, 8, 9], adaptive = false, 

scaling = constrained); 

 

 
 

Далее для примера возьмем уже знакомую нам функцию: 

f ∶= x− > sin(4 ∗ x)/( x^2 + 1): plot ( f (x), x = −2..2, y = −2..2); 

 
 

Изменим цвет: 

 plot ( f (x), x = −2..2, y = −2..2, color = green); 
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Теперь, когда мы построили график, давайте подпишем его. До-

бавим заголовок: 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12]); 

 
 

Сейчас поработаем над осями координат нашего графика:  

plot ( f (x), x = −2..2, y = −2..2, color =green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = FRAME); 
 

 

 
plot ( f (x), x = −2..2, y = −2..2, color =green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = BOXED); 
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Мы также можем убрать все оси, если они нам мешают:  

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NONE); 

 
 

Допустим нам нужно закрасить область, ограниченной графи-

ком и осью Ох заданным цветом. Используем функцию filled – закра-

шивание области, команду transparency для насыщенности закраски: 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, filled, 

transparency = 0.5); 

 
 

Теперь назовем оси, labels – задание названия осей: 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, labels = 

[”OX ”OY ”]); 
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Функция textplot − подписи и надписи к графику работает толь-

ко при подключении встроенного графического пакета PLOTS: 

with(plots):  

r1 ∶= textplot([0.2, 1.4, ‘‘график”], front = [TIMES, BOLD, 24], 

align = RIGHT):  

r2 ∶= textplot([1.4, 0.2, ‘‘линия”], front = [TIMES, BOLD, 24], 

align = LEFT):  

r3 ∶= plot ( f (x), x = −2..2, y = −2..2, color = green):  

display(r1, r2, r3); 
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Также у нас есть стиль линии; linestyle – тип линии графика: 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, linestyle 

= 0);  

Получается сплошная линия. 

 

 
 

Можем нарисовать линию с помощью точек: 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, linestyle 

=2); 
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plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, linestyle 

= 3);  

Получаем пунктир. 

 
 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, linestyle 

= 4);  

Получаем штрих-пунктир. 
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Можем задать стиль «точка»: 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, style = 

POINT);  

 
 

Чтобы выделить линию, мы можем указать её толщину: 

plot ( f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, thickness 

= 3);  

 
 



41 

Можем задать необходимый нам масштаб, указав нужное ко-

личество чисел на осях: 

plot ( f (x),x= −2..2,y= −2..2,tickmarks=[8,8]); 

 
 

Для выполнения практического задания нам понадобится зада-

ние точки:  

plot([[1, 2]], style = POINT); 

 
 

Точку можно задавать в виде различных фигур с заполнением 

и без, изменять ее размер, но об этом на следующей лекции. 
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Практическое задание 2 

Задание 1. Нарисовать график y=x^3 с соответствующим оформ-

лением. 

 
 

Задание 2. Нарисовать гриб, подписать. Какие простейшие 

функции вы использовали в работе? 

 
 

Задание 3. Нарисовать НЛО, подписать. Какие простейшие фун-

кции вы использовали в работе? 
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Задание 4. Нарисовать горы, чайку, волны, подписать. Какие 

простейшие функции вы использовали в работе? 

 
 

Задание 5. Нарисовать бабочку, подписать. Какие простейшие 

функции вы использовали в работе? 

 
Задание 6. Нарисовать лягушку. Какие простейшие функции 

вы использовали в работе? 
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Лекция 3. Построение графиков различных функций 

Для дальнейшей работы нам понадобится подключить графи-

ческий пакет with(plots).  

Теперь мы можем рассмотреть графики, когда функции заданы 

не только в явном виде, но и в других вариантах. 

Вспомним оформление графиков функций, заданных явно. За-

дадим параболу: 

plot(x^2, x = −2 .. 2, color = blue); 

 

 
 

Следующими рассмотрим функции заданные параметрически. 

Пусть заданы две функции x(t), y(t); при этом переменная 

t называется параметром.  

Тогда говорят, что y как функция от x задана параметрически.  

Пример: {
𝑥 = 𝑎⁡𝑐𝑜𝑠⁡𝑡,
𝑦 = ⁡𝑎⁡𝑠𝑖𝑛⁡𝑡, ⁡0 ≤ 𝑡 ≤ 2 ∙ 𝑃𝑖, это параметрические 

уравнения окружности: 𝑥2 + 𝑦2 = 𝑎2. 

Объявление параметрической функции задается практически 

аналогично функции в явном виде:  

plot([t^2*cos(t), t^3*sin(t) + 2, t = 0 .. 36]);  

Можно заметить появление квадратных скобок, что отличает 

два вида функций друг от друга. Получаем рисунок: 
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Далее изобразим известное уравнение окружности, но со сме-

щением по оси у: 

plot([cos(t), sin(t) + 2, t = 0 .. 2*Pi]); 

В некоторых версиях Maple вместо обещанной окружности мы 

можем увидеть эллипс. Дело в том, что по умолчанию во всех графи-

ческих командах используется значение UNCONSTRAINED пара-

метра scaling, и график растягивается по осям таким образом, чтобы 

полностью заполнить отводимое под него пространство на рабочем 

листе, что приводит к несоответствию единиц измерения по горизон-

тальной и вертикальной осям.  

Исправить данную неприятность можно с помощью команды 

scaling=CONSTRAINED: 

plot([cos(t), sin(t) + 2, t = 0 .. 2*Pi], scaling = constrained);  

И на выходе получим симпатичную окружность: 

 
 

Также, мы можем задавать цвет, всё также через запятую и спе-

циально не напишем опцию scaling:  

plot([t*cos(t), sin(t)+2, t = 0 .. 36], color = green); 
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Функции заданные полярно. 

Когда функция задаётся через полярные координаты, мы обра-

щаемся к команде polarplot. Переменную можно использовать лю-

бую (и даже оставить х), но мы сделаем стандартную 𝜑: 

polarplot(phi, phi = −2*Pi .. 2*Pi, scaling = constrained); 

 
 

Рассмотрим известную спираль Архимеда, систему координат 

удалим:  

polarplot (phi, phi=0..2*Pi, scaling= constrained, axes=NONE);  

 
 

Можно задать сразу несколько графиков: 

polarplot([2*phi, 3], phi = 0 .. 2*Pi, scaling = constrained); 
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Как задать в полярной системе координат окружность? 

polarplot(2*cos(phi),phi=0..Pi,scaling=constrained);  

Это окружность (𝑥 − 1)2 + 𝑦2 ⁡= ⁡1: 

 
 

Далее зададим отрезки, сначала вертикальный: 

polarplot(1/cos(phi), phi = 0 .. (1/3)*Pi, scaling = constrained); 

 
 

А теперь горизонтальный: 

polarplot(1/sin(phi), phi =0 .1 .. (1/2)*Pi, scaling = constrained); 
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Как видим, приходиться использовать определенные уловки 

в виде специальных промежутков переменной. 

Неявно заданные функции. 

Когда у нас есть уравнение, к которому надо построить график, 

но выражать функцию y через привычную нам переменную х затруд-

нительно, то мы пользуемся помощью команды implicitplot. Для того 

чтобы команда работала необходимо задавать интервалы на обе пе-

ременные.  

Давайте реализуем уравнение окружности: 𝑥2 + 𝑦2 − 9⁡ = ⁡0, 

в программу мы запишем: 

implicitplot(x^2+y^2−9 = 0, x = −5 .. 5, y = −5 .. 5, color = 

green); 

 
 

Конечно, мы могли выразить уравнение и записать в кодовую 

строку y=sqrt(9−x^2), нам даже не нужно было бы подключать пакет 

with(plots), достаточно знакомого нам plot, но в этом случае полу-

чили только половину окружности. 

Давайте чуть усложним нашу задачу и реализуем вот такое 

уравнение: 𝑥2 + 4 ∙ 𝑦2 ⁡= ⁡8 – эллипс: 

implicitplot(x^2+4*y^2 = 8, x = −10 .. 10, y = −10 .. 10); 
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Для правильности графика сгладим углы командой grid (коли-

чество точек графика по переменным) и выравним масштаб: 

implicitplot(x^2+4*y^2 = 8, x = −10 .. 10, y = −10 .. 10, 

grid = [60, 60], scaling = constrained); 

 
 

В неявном виде строятся очень необычные графики. 

Как насчёт вот такого симпатичного уравнения, заданного 

в неявном виде: 

 implicitplot((x^2+y^2)^3-(4*144)*x^2*y^2 = 0, x = -10 .. 10, y = 

-10 .. 10, thickness = 10, color = pink);  

Здесь мы добавили толщину линии, к которой обращаемся че-

рез thickness, и на выходе получаем красавицу-бабочку: 

 
 

Если вам также понравилась наша бабочка, то давайте реали-

зуем математическую валентинку: 

implicitplot((x^2+y^2−1)^3−x^2*y^3 = 0, x = −1.25 .. 1.25, 

y = −1.25 .. 1.25, grid = [100, 100], thickness = 10); 
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И снова опция grid поможет нам сгладить углы и очертить ри-

сунок, делая его более симпатичным на вид. 

Вернемся к заданию точки: 

plot([[1, 2]], style = POINT); 

 
 

Можно одной командой задать сразу несколько точек. Пере-

числяем координаты наших точек через запятую: 

 plot([[1,2],[4,3],[2,6]],style=POINT); 

 
 

По умолчанию точка имеет вид ромба и пустая внутри. 

Если нам нужно выделить какую-то точку, показать её более 

объемной, то используем solidCIRCLE (закрашенная точка, форма 

окружность) и укажем её размер с помощью опции symbolsize: 

 plot([[1, 2]], style = POINT, symbol = solidCIRCLE, symbolsize 

= 26, color = green); 
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Очень часто нам приходится сравнивать один график с другим. 

Определить какой промежуток лучше подходит для нашей матема-

тической задачи. Мы зададим сразу три графика, при этом один 

из них будет разрывным, созданным с помощью движения точки: 

f 1 ∶= sin((1/2)*x): f 2 ∶= sin(2*x): f 3 ∶= (1/2)*sin(x): 

plot([f 1(x), f 2(x), f 3(x)], x, color = [blue, red, green], style = [line, 

point], symbol = circle, thickness = [1, 0, 3]); 

 
 

Попробуем создать другой рисунок из известных любому 

школьнику уравнений, цвет программа задает по умолчанию: 

 plot([x^2, sin(x), 1+x], x = −2 .. 2); 
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Укажем цвет и толщину линии для каждого графика:  

plot([x^2, sin(x), 1/(x^2+1)], x = −2 .. 2, color = [black, green, 

red], thickness = [1, 2, 3]); 

 
 

Теперь изобразим одновременно точку и функцию: 

plot([sin(x), [[1, 2]]], x = 0 .. 2, style = [LINE, POINT], thickness 

= 2, symbol = CIRCLE, symbolsize = 16); 

 
 

Другой вариант соединить разные графики с помощью ко-

манды display: 

g1∶=plot(sin(x),x= −1..3,color=green,thickness=2): 

g2∶=plot([[1,4]],style=POINT,color=red): 

g3∶=plot(2*x,x= −1..2,color=blue,thickness=3): 

display([g1,g2,g3]); 



53 

 
 

Кусочно-заданная функция. 

К сожалению, в жизни не каждая функция непрерывная, даже 

для такого случая, как разрывная функция, Maple позаботилась 

о пользователях: 

f ∶=x−>piecewise(x<0, −1,x>=0 and x<=1,0,1<x,1); 

plot ( f (x),x= −5..5,color=green, discont=true, thickness=4); 

 
 

Задание отрезка, ломанной. 

Давайте для примера нарисуем с вами прямую с помощью двух 

точек: 

 plot([[1, 2], [2, 1]], color = green); 
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Теперь зададим ломанную на 4 точках: 

plot([[1, 2], [2, 1], [5, 5], [10, 1]], color = green); 

 
 

Закрасим получившуюся область: 

 plot([[1, 2], [2, 1], [5, 5], [10, 1]], color = green, filled); 
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Практическое занятие 3 

Задание 1. Нарисовать графики функций с соответствующим 

оформлением:  𝑎)⁡𝑦 = 𝑥3 + 5; 𝑏)⁡𝑦^2⁡ = ⁡ (2 ∗ 𝑥); 

 
 

 

Задание 2. Нарисовать графики функций с соответствующим 

оформлением:⁡𝑎)⁡𝑥^2⁡– ⁡2 ∗ 𝑥⁡ + ⁡𝑦^2⁡– ⁡2 ∗ 𝑦⁡– ⁡2 = ⁡0; 

𝑏)⁡⁡𝑥^(2/3) ⁡+ ⁡𝑦^(2/3) ⁡= ⁡1; 

 

 

 
 

 

Задание 3. Нарисовать графики функций с соответствующим 

оформлением:⁡𝑎)⁡{`𝑥 = 𝑐𝑜𝑠2(𝑡), 𝑦 = 𝑠𝑖𝑛2(𝑥)};⁡⁡ 
𝑏)⁡{𝑥 = 1 − 𝑠𝑖𝑛(𝑡), 𝑦 = 1 − 𝑐𝑜𝑠(𝑡)}; 

𝑐)⁡{𝑥 = 𝑡2, 𝑦 = 𝑡 + 5};⁡ 
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Задание 4. Нарисовать графики функций с соответствующим 

оформлением:𝑎)⁡𝑟 = 𝑝ℎ𝑖; ⁡⁡𝑏)⁡𝑟 = 1 + cos⁡(𝑝ℎ𝑖); 
 

 
 

Задание 5. Нарисовать графики функций с соответствующим 

оформлением: 𝑎)⁡𝑟 = 𝑐𝑜𝑠(3 ∗ 𝑡); ⁡⁡𝑏)⁡𝑟⁡ = ⁡𝑐𝑜𝑠(3 ∗ 𝑡) ⁡+ ⁡𝑠𝑖𝑛(3 ∗ 𝑡); 
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Задание 6. Нарисовать график функции с соответствующим 

оформлением: 𝑦 = {
𝑥 + 1, 𝑥 < 0
2,⁡⁡⁡0 ≤ 𝑥 ≤ 1
𝑥 + 2,⁡⁡⁡𝑥 > 1

; 

 
 

Задание 7. Нарисовать графики функций: 
 

1)⁡𝑦 = 𝑥^(2) + 1/(𝑥)⁡⁡⁡`трезубец`⁡`Ньютона`⁡⁡ 

2)⁡𝑦 =
1

1 + 𝑥2
⁡⁡⁡`кривая`⁡`Аньези`⁡⁡ 

3)⁡𝑦 =
2⁡𝑥

1 + 𝑥2
⁡⁡`серпантин`⁡`Ньютона`⁡⁡ 

4⁡)⁡𝑦^(2) = 𝑥^(3)⁡⁡⁡⁡⁡⁡⁡⁡⁡`парабола`⁡`Нейля`⁡⁡ 

5)⁡𝑦2 =
𝑥3

10 − 𝑥
⁡`циссоида`⁡ 

⁡6)⁡𝑟 = 𝑝ℎ𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡спираль⁡Архимеда`⁡⁡  

7)⁡𝑟 = 1 + cos(𝑝ℎ𝑖) `кардиоида`⁡ 
⁡8)⁡𝑟 = 𝑒𝑝ℎ𝑖 ⁡⁡⁡⁡⁡⁡⁡`логарифмическая`⁡`спираль`⁡ 
⁡9)⁡{𝑥 = 𝑡 − sin(𝑡) , 𝑦 = 1 − cos(𝑡)}⁡`циклоида`⁡ 

⁡10)⁡{𝑥 = 𝑙𝑛(𝑡𝑔 (
𝑡

2
) + 𝑐𝑜𝑠(𝑡), 𝑦 = 𝑠𝑖𝑛(𝑡)}⁡`трактриса` 
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Лекция 4. Анимация графика функции 

Помимо статических картинок в приложении Maple возможно 

создавать динамический рисунок. Для этого мы воспользуемся функ-

цией animatic. Напишем явно заданную функцию: 

with(plots): 

animate( plot, [A*x^2,x= −4..4], A= −3..3); 

Теперь остаётся лишь нажать на картинку и в верхней панели 

появится проигрыватель. Нажимаем кнопку воспроизведения, и вет-

ви параболы плавно поднимутся вверх: 

 

 
 

В анимации есть возможность зацикливания, обратного хода, 

задание количества кадров. 

С помощью команды trace мы можем задавать, сколько и какие 

промежуточные кадры оставлять на экране: 

animate( plot, [A*x^2,x= −4..4], A= −3..3, trace=5); 

 

 
 

Команда trace – это промежуточные кадры, которые помогают 

рассмотреть картинку внимательнее. Попробуйте написать:  

animate( plot, [A*x^2,x= −4..4], A= −3..3, trace=[5,25]); 
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А теперь прибавим нашей анимации немного скорости, для это-

го воспользуемся командой frames:  

animate(plot,[A*x^2,x= −4..4],A= −3..3,frames=10, 

color=blue); 

И ветви параболы поднимаются в разы быстрее. 

Другой вариант анимации для параболы, так называемый «эф-

фект рисования»: 

animate(plot, [ x^2, x = −a .. a], a = 0 .. 10); 

 

   
 

Здесь «рисуем» обе веточки сразу. 

Возможен другой вариант оформления этой же анимации, 

по типу параметрического задания функции: 

animate(plot, [[x, x^2, x = −a .. a]], a = 0 .. 10); 

Анимацию получаем такую же. 

Для явно заданной функции есть возможность смены осей ме-

стами. Для этого достаточно поменять в последнем варианте задания 

анимации х и у местами: 

animate(plot, [[x^2, x, x = −a .. a]], a = 0 .. 10); 
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Другой пример: 

animate(plot, [[x, sin(x), x = −a .. a]], a = 0 .. 10, scaling = con-

strained); 

 
 

animate(plot, [[sin(x), x, x = −a .. a]], a = 0 .. 10, scaling = con-

strained); 

 

 
 

Рассмотрим полярно заданную функцию, уже знакомую нам 

спираль Архимеда: 

animate(polarplot, [[a*phi, phi, phi = 0 .. 2*Pi], color = green], 

 a = 1 .. 2, scaling = constrained); 
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Анимируем те же кривые, которые задавали ранее. 

Окружность: 

animate(polarplot, [[2*a*cos(phi), phi, phi = 0 .. 2*Pi]], a = 1/2 .. 2); 

 

 
 

Отрезок: 

animate(a/cos(phi), phi = 0 .. 0.2*Pi, a = 1/2 .. 2, coords = polar); 
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Кардиоида: 

animate (polarplot, [1+cos(phi), phi=x.. −Pi], x= −Pi..Pi); 

 
 

Команда numpoints задает количество точек, по которым стро-

ится график:  

animate(polarplot, [[sin(x*t), x, x = −4 .. 4], color = blue], t = 1 .. 

4, numpoints = 100, frames = 100); 
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animate(polarplot, [[10*sin(10*x) + sin(t), x, x = 0 .. 2*Pi], color 

= yellow, thickness = 5], t = 0 .. 6*Pi, frames = 240, axes = none); 

 
 

Теперь посмотрим, как будет себя вести неявно заданная функ-

ция в режиме анимации:  

animate(implicitplot, [x^2+y^2=r^2, x= −3..3, y= −3..3], 

r= −3..3, scaling=constrained );  

Если нажать на картинку, то мы увидим, как наша окружность 

быстро сужается. 
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animate(implicitplot, [x^2 + y^2 = r^2, x = −3 .. 3, y = −3 .. 3, 

color = blue], r = 3 .. 0, scaling = constrained, thickness = 5, trace = 

25); 

 
 

Закраска окружности происходит за счет наложения кадров. 

animate(implicitplot, [x^2 + y^2 = r^2, x = −3 .. 3, y = 0 .. 3],  

r = −3 .. 3, scaling = constrained, trace = 25, grid = 10000); 

 
Тоже самое проделаем с параметрически заданной функцией:  

animate(plot,[[cos(t)^3,sin(t)^3,t=0..x],color=green],x=0..2*Pi, 

scaling=constrained);  

Здесь опять есть «эффект рисования». На выходе мы получаем 

вот такую красивую звездочку, называемую астроидой: 
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Следующий график называется циклоидой. Циклоида демон-

стрирует траекторию точки колеса автомобиля при движении по пря-

мой. 

animate(plot,[[t−sin(t),1−cos(t),t=0..x]],x=0..12*Pi, frames=100, 

scaling=constrained); 

 
 

Нарисуем график точками: 

animate(plot, [[cos(t^2 − 2) + 3*t, t + sin(t + 2), t = 0 .. x],  

color = red], x = 0 .. 2*Pi, linestyle = 2, thickness = 4); 
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animate(plot, [[sin(t − 5)^3, cos(t + 2)^3, t = 0 .. x], color = green], 

x = 0 .. 2*Pi, scaling = constrained); 

  
 

С помощью display мы можем обьединять несколько функций 

на одну картинку: 

g1 ∶= animate(plot, [A*(x^2 + 4), x = −4 .. 4, color = green],  

A = −3 .. 3); 

g2 ∶= animate(plot, [A*(−x^2 + 4), x = −4 .. 4], A = −3 .. 3); 

display(g1, g2); 

 

 
 

Еще пример: 

g1∶=animate(0.2*a*x^2,x= −4..4,a= −4..4,color=blue): 

g2∶=animate(a*phi,phi=0..2*Pi,a=1..2,coords=polar,scal-

ing=constrained): 

display(g1,g2); 
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Анимация отрезка: 

animate(plot, [[[1, 1], [t, t]]], t = 1 .. 10); 

 
animate(plot, [[[−t, −t], [t, t]], color = blue, thickness = 5], t = 0 

.. 10); 
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Так же можно задавать анимацию точек: 

g1 ∶= animate(pointplot, [[a, a]], a = 0 .. 10): 

g2 ∶= animate(pointplot, [[−a, a]], a = 0 .. 10): 

g3 ∶= animate(pointplot, [[2*cos(p), 2*sin(p)]], p = 0 .. 2*Pi): 

g5 ∶= animate(pointplot, [[[x, sin(x)]]], x = 0 .. 10): 

g4 ∶= animate(pointplot, [[x, x^2]], x = −10 .. 10): 

display(g1, g2, g3, g4, g5, scaling = constrained); 

 

 
 

Еще вариант: 

g5 ∶= animate(pointplot, [[a, a]], a = 0 .. 10, symbol = solidCIRCLE, 

symbolsize = 15, color = red); 

g6 ∶= animate(pointplot, [[a, 2*a]], a = 0 .. 10, symbol = solidCIRCLE, 

symbolsize = 15, color = blue); 

g7 ∶= animate(pointplot, [[−a, 2*a]], a = 0 .. 10, symbol = solidCIRCLE, 

symbolsize = 15, color = green); 

g8 ∶= animate(pointplot, [[−a, a]], a = 0 .. 10, symbol = solidCIRCLE, 

symbolsize = 15, color = gold); 

g9 ∶= animate(pointplot, [[−2*a, a]], a = 0 .. 10, symbol = solidCIRCLE, 

symbolsize = 15, color = pink); 

g10 ∶= animate(pointplot, [[2*a, a]], a = 0 .. 10, symbol = solidCIRCLE, 

symbolsize = 15, color = yellow); 

display(g5, g6, g7, g8, g9, g10, scaling = constrained); 
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С помощью команды filled мы можем закрашивать наши 

функции в процессе анимации: 

animate (polarplot, ([sin(10*x), x=0..t, filled, color=blue], 

t=0..2*Pi, frames=120)); 

 

   

   
 

f ∶=piecewise (x<−5,x+10,x<5 and x>−5, sin(x),x>5, −x): 

animate (plot, [ f , x= −10..y, color=gold,filled], y= −10..10); 
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animate (plot, [sin(t)^2+cos(t) −3, t= −6..x,filled,color=green], 

x= −5..5, frames=40); 

 

 
 

animate(plot, [[1+sin(t), 1+cos(t), t=0..x],color=green, thickness 

= 5,filled = [color = "Blue", transparency = 0.5]], x=0..2*Pi); 

 

   
 

Так как мы потратили уже много памяти компьютера, то мо-

жем ее «обнулить» командой restart: 

restart: with (plots): 

animate (implicitplot, [x^3+y^3=3, x= −5..t, y= −5..t, filled, 

color= green, thickness = 5],t=0..5); 
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Теперь мы научились с вами анимировать графики, а значит 

совсем скоро мы сможем попробовать себя в мультипликационном 

деле и создать короткий мультик, например: 
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Практическое задание 4 

Задание 1. «Нарисовать» синусоиду с эффектом рисования: 

 
 

Задание 2. Нарисовать вращающийся отрезок: 

 
 

Задание 3. Окружность «катится»: 

 
 

Задание 4. Окружность с диаметром «катится»

 
 

Задание 5. Движение окружности в окружности: 
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Задание 6. Движение окружности с диаметром в окружности: 

 
 

Задание 7. Движение двух окружностей: 

 
 

Задание 8. Ручкой рисуем окружность: 
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Лекции 5, 6. Построение геометрических фигур  

по встроенным опциям 

Подключим знакомый нам пакет графики и новый пакет гра-

фических встроенных опций: 

with(plots): 

with(plottools): 

 

Когда в конце записи ставим «;», то можно увидеть список тех 

самых опций: 

[annulus, arc, arrow, circle, cone, cuboid, curve, cutin, cutout, cyl-

inder, disk, dodecahedron, ellipse, ellipticArc, exportplot, extrude, get-

data, hemisphere, hexahedron, homothety, hyperbola, icosahedron, im-

portplot, line, octahedron, parallelepiped, pieslice, point, polygon, 

polygonbyname, prism, project, rectangle, reflect, rotate, scale, sector, 

semitorus, sphere, stellate, tetrahedron, torus, transform, translate] 

 

Ознакомимся с геометрическими фигурами этого пакета. 

Круг задается по координатам центра и радиусу: 

 g1 ∶= disk([1, 1], 1, color = "Chocolate"): 

PLOT(g1); 

 
 

Следующая фигура кольцо, оно по умолчанию находится в цен-

тре координат, а задаются только два радиуса: 

g2 ∶= annulus(2..3, color= “YellowGreen”): 

PLOT(g2); 

 



75 

 
 

Часть круга или кольца:  

a1 ∶= sector([1,1], 0.5 ..2, Pi/3..Pi/2, color = “SkyBlue”): 

PLOT(а1); 

 
 

Соединим круг и сегмент: 

display(a1,g1, scaling = constrained); 
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Можно создать полноценную круговую диаграмму аналогич-

ным образом: 

c ∶= sector([1, 1], 5, 0..(1/4)*Pi, color = blue):  

d ∶= sector([1, 1], 5, (1/4)*Pi .. 4*Pi*(1/3), color = red): 

e ∶= sector([1, 1], 5, 4*Pi*(1/3) .. 35*Pi*(1/18), color = green): 

f ∶= sector([1, 1], 5, 35*Pi*(1/18) .. 2*Pi, color = yellow): 

display(c, d, e, f, axes = none, scaling = constrained); 

 
 

Следующая линия ломаная: 

g3 ∶= curve([[0, 0], [1, 3], [2, 1], [0, 0]], thickness = 2, 

 color = khaki): 

PLOT(g3); 

 
 

Эллипс или по-простому овал: 

g4 ∶= ellipse([1, 3], 2, 1, thickness = 3, color = "DodgerBlue"): 

PLOT(g4, SCALING(CONSTRAINED)); 
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Овал, в отличие от ломаной, можно закрасить: 

g5 ∶= ellipse([1, 3], 2, 1, filled, color = "Bisque"): 

PLOT(g5, SCALING(CONSTRAINED)); 

 
 

Окружность. Ее тоже нельзя закрасить, но можно задать тол-

щину: 

g6 ∶= circle([1,2], 2, thickness = 3, color = brown): 

PLOT(g6); 

 
 

А теперь удалим часть линии: 

a ∶= arc([3,0], 1, 0..(5*Pi/4)): 

display(a, color = red, thickness = 3, scaling = constrained); 
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Гипербола: 

g7 ∶= hyperbola([3, 1], 1, 2, thickness = 3, color = gold):  

PLOT(g7); 

 
 

Сектор: 

g8 ∶= pieslice([0, 0], 1, (1/4)*Pi .. 3*Pi*(1/4), color = violet): 

PLOT(g8); 

 
 

Часть эллипса: 

g9 ∶= ellipticArc([0, 0], 1, 2, −(1/4)*Pi .. 3*Pi*(1/4), 

 color = magenta): 

PLOT(g9, SCALING(CONSTRAINED)); 
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Закрасим получившуюся область: 

g10 ∶= ellipticArc([0, 0], 1, 2, −(1/4)*Pi .. 3*Pi*(1/4), filled,  

color = pink): 

PLOT(g10); 

 
 

Отрезок задается по координатам концов: 

g11 ∶= line([0, 0], [1, 2], thickness = 5, color = aquamarine): 

PLOT(g11); 

 
 

Прямоугольник по координатам двух противоположных вер-

шин: 

g12 ∶= rectangle([−1, −1], [1, 2], color = orange): 

PLOT(g12, SCALING(CONSTRAINED)); 
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Самая универсальная фигура многоугольник: 

g13 ∶= polygonplot([[0, 2], [2, −1], [2, −2], [1, −2], [1, −1]],  

color = coral): display(g13); 

 

 
 

Теперь поиграемся с фигурами: 

display(g12, g13); 

 
 

display(g13, g12);  

 
 

Становится понятным, что фигуры накладываются «с конца». 

Можно получить наложение «с начала», поставив дополнительные 

скобки: 

display([g12, g13]); 
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Можно задать прозрачность: 

g121 ∶= rectangle([−1, −1], [1, 2], color = orange,  

transparency= .5); display(g121, g13); 

 

 
 

Можно удалить оси и убрать черный контур фигур: 

display(g121, g13, style = polygon, axes = NONE); 

 
 

Можно задать правильный многоугольник через цикл (коман-

да seq) и вводимую функцию: 

ngon ∶= n −> [seq([cos(2*Pi*i/n), sin(2*Pi*i/n)], i = 1 .. n)]: 

display([polygonplot(ngon(8), color = blue),  

textplot([0, 0, Octagon])], axes = none);  
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s1 ∶= display([polygonplot(ngon(5), color = green)],  

axes = none);  

s2 ∶= circle([0, 0], 1, thickness = 5, color = red);  

display(s1, s2); 

 

 
 

Многоугольники можно рисовать при помощи матриц: 

one_poly ∶= Matrix([[0, 0], [0, 1], [0.5, 0.5], [1, 1], [1, 0.05], [0.95, 

0.05], [0.95, 0]], datatype = float): 

polygonplot(one_poly, axes = boxed, colour = "Magenta", trans-

parency = 0.7, gridlines); 
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Мы можем воссоздать многоугольник выписывая координаты 

точек отдельно от опции: 

poly ∶= [[0, 1], [0, 2], [0.5, 2.75], [1.25, 3], [2, 2.75], [2.5, 2.25], 

[1.75, 1.5], [2.5, 0.75], [2, 0.25], [1.25, 0], [0.5, 0.25]]: 

polygonplot(poly, axes = boxed, color = "DarkGreen", transpar-

ency = 0.5); 

 
 

Еще одно задание прямоугольника: 

display(polygonbyname("rectangle", inbox = [16, 9],  

color = "Red"), scaling = constrained); 

 
 

Если вам пресытились часто используемые цвета, то введите 

в рабочее окно эти две функции и сможете увидеть все доступные 

оттенки: 

with(ColorTools):  

Palette(GetColorNames()); 
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Практические занятия 5, 6. 

Задание 1. Нарисовать треугольник: 

 
 

Задание 2. Из четырех треугольников составить цветной квадрат: 

 
 

Задание 3. Из шести треугольников составить цветной правиль-

ный шестиугольник: 

 
 

Задание 4. Из четырех секторов составить цветной круг: 
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Задание 5. Нарисуйте полосатый эллипс. Как получить такую 

закраску? 

 
 

Задание 6. Нарисуйте рожицу. Задайте анимацию ее улыбки: 

 
 

Задание 7. Нарисуйте снеговика. Можно свой вариант: 
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Задание 8. Если у вас есть желание, то можете нарисовать муль-

тяшного героя. Например: 
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Лекция 7. Анимация встроенных фигур 

Попробуем объединить изученные ранее нами две темы: ани-

мация и встроенные фигуры. Набираем в рабочее окно нужные нам 

для работы встроенные пакеты:  

with(plots): with(plottools): 

Не все встроенные фигуры можно анимировать командой ani-

mate. Этой команде лучше всего подчиняется многоугольник. 

Анимируем цветной квадрат, состоящий из четырех маленьких 

треугольников, задавая анимацию каждого треугольника по отдель-

ности:  

ani-

mate(polygonplot,[[[cos(Pi/4+t),sin(Pi/4+t)],[0,0],[cos(Pi/4+t),sin(Pi/4

+ t)]],color=red],t=0..2*Pi ); 

 
 

А теперь добавим ещё три, но других цвета (обратите внима-

ние на чередование знаков внутри функции): 

Желтый:  

g1∶=animate(polygonplot,[[[cos(−(3/4)*Pi+t/4),sin(−(3/4)*Pi+ 

t/4)],[0,0],[cos(−(1/4)*Pi+t/4), sin((1/4)*Pi+t/4)]],color=yellow], 

t=0..2*Pi ): 
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Синий: 

g2∶=ani-

mate(polygonplot,[[[cos((3/4)*Pi+t/4),sin((3/4)*Pi+t/4)],[0,0],[cos(−(3/

4)*Pi+t/4),sin(−(3/4)*Pi+t/4)]],color=blue],t=0..2*Pi ): 

Зеленый: 

g3∶=animate(polygonplot,[[[cos(Pi/4+t/4),sin(Pi/4+t/4)],[0,0], 

[cos((3/4)*Pi+t/4),sin((3/4)*Pi+t/4)]], color=green],t=0..2*Pi ): 

Красный: 

g4∶=animate(polygonplot,[[[cos(−Pi/4+t/4),sin(−Pi/4+t/4)], 

[0,0],[cos(Pi/4+t/4),sin(Pi/4+t/4)]],color=red],t=0..2*Pi ): 

И наконец-то запускаем: 

display(g1,g2,g3,g4); 

 
 

 

Вот такая красота у нас вышла. Если вам нужен единый квад-

рат, то дело обстоит куда серьёзнее, ведь здесь не будет раздельных 

функций и нужно быть как можно внимательнее при наборе текста: 

ani-

mate(polygonplot,[[[2*cos(Pi/4+t)+cos(Pi/4+t),2*sin(Pi/4+t)+sin(Pi/4

+t)],[2*cos(Pi/4+t)+cos(3*Pi/4+t),2*sin(Pi/4+t)+sin(3*Pi/4+t)],[2*cos

(Pi/4+t)+cos(5*Pi/4+t),2*sin(Pi/4+t)+sin(5*Pi/4+t)], 
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[2*cos(Pi/4+t)+cos(−Pi/4+t),2*sin(Pi/4+t)+sin(−Pi/4+t)]]], 

t=0..2*Pi, color=yellow); 

 

 
 

Следующий анимационный график – это график кривой линии 

curve. Нарисуем синусоиду с эффектом «рисования»: 

animatecurve(sin(x), x = −Pi .. Pi, frames = 50); 

 
 

 

Кстати, если нам нужно изобразить график по оси у, то после 

указания нашей функции, просто, через запятую пишем нужную ось:  

animatecurve([sin(x), x, x = −Pi .. Pi], frames = 50); 
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А теперь зададим окружность:  

animatecurve([sin(x), cos(x), x = −Pi .. Pi]); 

 
 

Давайте добавим дополнительные параметры, чтобы посмот-

реть, как поведёт себя график: 

animatecurve([sin(x), cos(x), x = −Pi .. Pi], view = [−1..2, −2..2], 

scaling = constrained); 

Теперь изобразим на координатной плоскости несколько функ-

ций одновременно:  

animatecurve({x, cos(x), sin(x)}, x = −Pi .. Pi, color = green, 

frames = 50); 
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Давайте выделим каждое уравнение отдельным цветом:  

animatecurve({x, cos(x), sin(x)}, x = −Pi .. Pi, color = [blue, red, 

green], frames = 50);  

Заметьте, что цвет мы указываем через запятую в  специальном 

месте кода. 

Или иначе: каждое уравнение обозначим через отдельную пе-

ременную: 

q1 ∶= animatecurve(sin(x), x = −Pi .. Pi, color = green,  

frames = 50);  

q2 ∶= animatecurve(x, x = −Pi .. Pi, color = blue, frames = 50);  

q3 ∶= animatecurve(cos(x), x = −Pi .. Pi, frames = 50);  

display(q1, q2, q3); 
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Практическое занятие 7 

Задание 1. Нарисовать вращающийся треугольник 

 

 
 

Задание 2. Нарисовать одновременную анимацию двух сину-

соид  

 

 

 
 

Задание 3. Нарисовать встречную анимацию двух синусоид  
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Задание 4. Нарисовать анимацию окружности 

 

 
 

 

Задание 5. Нарисовать параллельную анимацию окружностей 

 

 
 

 

Задание 6. Нарисовать анимацию окружностей со сдвигом 
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Лекции 8, 9. Встроенная анимация 

Для изучения темы в рабочее окно введём новую функцию: 

with(plots);  

with(plottools); 

Данная функция поможет нам при дальнейшей работе, чтобы 

использовать новые опции. Начнём: 

Rotate (Поворот) 

Иногда на графике нам требуется посмотреть на одну и ту же 

фигуру под разным углом, желательно, чтобы изображен был как ис-

ходный рисунок, так и перевернутый под углом. Возьмём знакомый 

нам эллипс или по-простому овал: 

s1 ∶= ellipse([0, 0], 2, 1, filled, color = red);  

s11 ∶= display(rotate(s1, (1/6)*Pi));  

display(s1, s11, scaling = constrained);  

 

 
 

Под s1 мы рисуем эллипс, а затем создаем дополнительную 

функцию s11. В скобках, после указания опции rotate, мы берем нашу 

фигуру s1 и через запятую указываем на какой угол нам стоит её по-

вернуть. Давайте ещё раз: 

s2 ∶= ellipse([1, 3], 2, 1, filled, color = yellow);  

s22 ∶= display(rotate(s2, (1/6)*Pi));  

display(s2, s22, scaling = constrained); 
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Теперь воспользуемся с знакомыми нами ранее функциями 

и объединим их с нашей темой: 

s2 ∶= implicitplot((x−2)^2+y^2 = 1, x = −2 .. 5, y = −5 .. 5, color 

= blue);  

animate(rotate, [s2, t], t = 0 .. 4*Pi); 

 
 

А теперь подобным образом анимируем треугольник: 

s3 ∶= polygonplot([[[0, 0], [2, 1], [1, 2], [0, 0]]], color = green); 

animate(rotate, [s3, t], t = 0 .. 4*Pi); 
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Ну что же, мы вспомнили опцию анимации, даже построение 

фигуры по точкам. Теперь научимся зацикливать наши фигуры, 

чтобы при воспроизведении рисунок делал одно и то же движение 

несколько раз: 

c ∶= circle([1, 1], .5, color = blue);  

r1 ∶= seq(rotate(c, (1/3)*Pi*i), i = 1 .. 6);  

r2 ∶= display(r1, r1); display(r2); 

 

 
 

Немного напоминает кабинки из-под колеса обозрения, не так 

ли? Давайте заставим наши окружности двигаться по одной траек-

тории, и всё что нам для этого нужно − приписать маленькую 

строчку кода: 

animate(rotate, [r2, t], t = 0 .. 4*Pi); 

Ну а теперь вернёмся к знакомой параболе и заставим дви-

гаться её по траектории окружности, не сдвигая центра. 

s4 ∶= plot(x^2, x = −3 .. 3); 

animate(rotate, [s4, t], t = 0 .. 4*Pi); 
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Сейчас, зная этот трюк, мы попробуем создать цветок, для это-

го возьмем график синуса, анимируем и зафиксируем некоторые её 

положения на плоскости: 

a1 ∶= plot(sin(x), x = 0 .. Pi, filled = true,color=red);  

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15); 

 

 

 
 

Теперь мы можем создавать различные варианты этого приема: 

a1 ∶= plot(sin(x^2), x = 0 .. 2*Pi, color = pink, filled = true);  

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15); 
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a1 ∶= plot(sin(x/2), x = 0 .. Pi, filled, color = green); 

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15); 

 

 
 

a1 ∶= plot(sin(x + 2), x = 0 .. Pi, filled, color = gold); 

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15); 

 

 
 

a1 ∶= plot(sin(2*x), x = 0 .. Pi, filled, color = blue); 

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15); 
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a1 ∶= plot(sin(2 + x), x = 0 .. 2*Pi, color = yellow, filled = true); 

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15,axes=none); 

 

 
 

a1 ∶= plot(2 − sin(x), x = 0 .. 2*Pi, color = magenta, filled = true); 

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15); 

 

 
 

Попробуйте и вы сделать подобный цветок, изменив цвет или 

формулу изначального графика. 

Такой же трюк сработает и в полярных координатах: 

a3 ∶= polarplot(cos(3*x), x = 0 .. 5*Pi, color = blue); ani-

mate(rotate, [a3, t], t = 0 .. 4*Pi, trace = 5); 
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a2 ∶= polarplot(x, x = 0 .. 3*Pi, color = green);  

animate(rotate, [a2, t], t = 0 .. 4*Pi); 
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Повторим материал прошлого параграфа и объединим наши 

три фигуры:  

a ∶= display(a1, a3, s3); animate(rotate, [a, t], t = 0 .. 4*Pi); 

 
 

 
 

Посмотрим как происходит вращение надписи: 

t1 ∶= plot(x^2, x = −3 .. 3, color = blue): 

t2 ∶= textplot([2, 3, 'xjfvgdkjghlfhg'], align = ABOVE): 

t3 ∶= textplot([−2, 3, 'xjfvgdkjghlfhg'], align = BELOW): 

t4 ∶= display(t1, t2, t3): 

animate(rotate, [t4, t], t = 0 .. 2*Pi); 
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Видим, что надпись, в отличие от графика не переворачива-

ется. 

Опция scale (масштабирование) 

Иногда нам требуется изменить размер графика, его длину, 

ширину и так далее. Для этого совсем необязательно создавать но-

вый график или переписывать старый, достаточно воспользоваться 

опцией scale. Начнём знакомство с параболы: 

with(plots); with(plottools); 

s1 ∶= plot(x^2, x = −3 .. 3);  

s2 ∶= scale(s1, 2, 1);  

display(s1, s2); 
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a3 ∶= scale(s1, 2, 2); display(s1, a3); 

 
 

Теперь соеденим эти графики в одном рисунке: 

s3 ∶= display(s1, s2); s4 ∶= scale(s3, 6, 1/2); display(s4, s3); 

 
 

Сейчас добавим параметр, обратите внимание, что функция s4 

повторяется дважды. 

 

s4 ∶= animate(scale, [s1, t, t], t = −5 .. 5); 

display(s4, s4); 
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Если вам нужно зафиксировать некоторые положения этой па-

раболы, то нужно добавить лишь функцию trace 

s4 ∶= animate(scale, [s1, t, 2], t = 1 .. 5, trace = 15); 

display(s4, s4); 

 
 

Заставим наш график поворачиватся по оси x, с условием, что 

мы находимся в трехмерном пространстве: 

animate(scale, [s1, t^2, 2], t = −5 .. 5); 

 
 

Попробуем проделать аналогичные действия с окружностью: 

b1 ∶= implicitplot(x^2+y^2 = 1, x = −3 .. 3, y = −3 .. 3, 

 color = green); 

b2 ∶= animate(scale, [b1, t, t], t = −5 .. 5); 
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А если мы воспроизведём две эти функции одновременно, 

то  на выходе получим вот такую забавную анимацию: 

 

 
 

Опция translate (параллельный перенос) 

Очень часто нам требуется перенести объект из одного места 

в другое. Сдвинуть линию на пару сантиметров вниз, перенести центр 

окружности влево, перенести вершину параболы правее изначаль-

ного положения. Конечно, можно просто пересчитать координаты 

и перестроить уравнение заново, но что делать, если нам нужно уви-

деть два графика одновременно?  

Для этого на помощь приходит опция translate. 

 

 
 

И снова вернёмся к нашей любимой параболе: 

with(plots); with(plottools); 

s1 ∶= plot(x^2, x = −3 .. 3); s2 ∶= translate(s1, 1, 2);  

a ∶= plot([[1, 2]],  
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style = point, color = blue, symbol = DIAMOND,  

symbolsize = 15);  

display(s1, s2, a); 

 
 

a2 ∶= translate(s1, −10, 0); display(s1, a2); 

 
 

Добавим третью и четвертую параболу: 

s3 ∶= display(s1, s2);  

s4 ∶= translate(s3, −2, 6);  

display(s4, s3); 

 
 

Перенос параболы вдоль прямой y = x: 

s4 ∶= animate(translate, [s1, t, t], t = −5 .. 5): 

s5 ∶= plot(x, x = −10 .. 10, color = green): 

display(s4, s5); 
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Перемещение параболы с отрицательным коэффициентом 

по другой параболе: 

a1 ∶= plot(−x^2, x = −3 .. 3): 

s4 ∶= animate(translate, [a1, t, t^2], t = −10 .. 10): 

s5 ∶= plot(x^2, x = −10 .. 10): 

display(s4, s5); 

 
 

Соединим обе команды rotate и translate: 

s3 ∶= polygonplot([[[0.5, 0.5], [1.5, 1.5]]]): 

s4 ∶= animate(rotate, [s3, t], t = 0 .. 4*Pi, trace = 15): 

s5 ∶= translate(s4, 1, 1): 
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display(s5, s5); 

  

  
 

Так мы получаем вращение в любой точке плоскости. 

Опция homothety (подобие) 

Когда нам нужная точно такая же функция или объект, но в дру-

гом месте, на помощь приходит данная функция. 

with(plots); with(plottools); 

s1 ∶= plot(x^2, x = −3 .. 3);  

s2 ∶= homothety(s1, 2);  

display(s1, s2); 
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Добавив знак минус координате у, мы отразим её вниз: 

a3 ∶= homothety(s1, −2); display(s1, a3); 

 
 

Такой трюк можно провернуть не только с обычной функ-

цией, но и с объектом: 

b1 ∶= polygonplot([[0, 0], [1, 2], [2, 1]], color = red); 

b2 ∶= animate(homothety, [b1, t], t = 1 .. 5); 

display(b2, b2); 

  
 

s1 ∶= display(disk([0, 0], 1, color = yellow, style = polygon)); 

s2 ∶= animate(homothety, [s1, t], t = −5 .. 5); 

display(s2, s1, axes = NONE); 

 
 

Опция project (проекция) 

Не секрет, что в математике мы очень часто проецируем какой-

нибудь объект на прямую, данная функция применяется во многих 

областях. 
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В начертательной геометрии, черчении, географии (специаль-

ные виды проектирования на плоскость, сферу и другие поверхности 

используются для составления карт), астрономии (устройство астро-

лябии, с помощью которой можно измерять углы между направлени-

ями на поверхности Земли и фиксировать координаты космических 

тел на небесной сфере), фотографии (используется для отображения 

сферических панорам).  

with(plots); with(plottools); 

s1 ∶= implicitplot(x^2+y^2 = 1, x = −3 .. 3, y = −3 .. 3, color = 

green);  

s2 ∶= project(s1, [[1, 1], [3, 6]]);  

display(s1, s2); 

 
 

d1 ∶= plot(x^2, x = −3 .. 3, color = green);  

d2 ∶= project(d1, [[1, 1], [3, 6]]);  

display(d1, d2); 

 
 

Опция reflect (симметрия относительно точки) 

Симметрия окружает нас повсюду, любому студенту физмата 

ясно как день, что природа полна примерами симметрии: форма ли-

стьев, цветов, бабочки и многое другое. Неудивительно, что такое 

многообразие помогает нам создать красивый эстетический образ 

в дизайне, архитектуре или в декоративно-прикладном искусстве. 

with(plots); with(plottools); 

s1 ∶= plot(x^2, x = −3 .. 3);  
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s2 ∶= reflect(s1, [1, 2]);  

a ∶= plot([[1, 2]], style = point, color = blue, symbol = DIA-

MOND, symbolsize = 15);  

display(s1, s2, a); 

 
 

s3 ∶= display(s1, s2); s4 ∶= reflect(s3, [−2, 6]); display(s4, s3); 

 
 

#Анимация вращения параболы 

b1 ∶= animate(rotate, [s5, t], t = 0 .. 4*Pi): 

#Дублирование вращающейся параболы 

b2 ∶= reflect(b1, [2, 2]): 

#Перемещение сдублированной параболы 

b3 ∶= translate(b1, −4, 9): 

display(s5, b2, b3); 
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«Самолетики летают»: 

f 1 ∶= polygonplot([[1, 1], [1.5, 1+(1/2)*sqrt(3)], [2, 1]],  

color = red); 

f 2 ∶= animate(rotate, [f 1, t], t = 0 .. 4*Pi);  

f 3 ∶= reflect(f 2, [2, 2]);  

f 4 ∶= translate(f 2, 4, 9);  

display(f 1, f 3, f 2, f 4); 
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В заключении рассмотрим симметрию относительно прямой: 

r1 ∶= plot((x−4)^3, x = −5 .. 7, y = −10 .. 10, color = green);  

r2 ∶= reflect(r1, [[0, 0], [0, 1]]);  

display(r1, r2); 
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Здесь прямой выступает ось ОУ, а далее наклонная прямая: 

r1 ∶= polygonplot([[1, 1], [1, 2], [2, 3]], color = red);  

r2 ∶= reflect(r1, [[0, 0], [1, 2]]);  

r3 ∶= plot(2*x, x = 0 .. 2, color = green);  

display(r1, r2, r3, scaling = constrained); 

 

 
 

Теперь мы освоили основные приемы работы с графикой 

в Maple, а значит, сможем попробовать себя в мультипликационном 

деле и создать короткий мультик, попробуйте! 
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Практические задания 8, 9 

Задание 1. Нарисовать вращающуюся параболу, зафиксировать 5 

положений 

 
 

Задание 2. Нарисовать вращающийся цветок 

 
 

Задание 3. Нарисовать вращающийся квадрат с кругом, зафик-

сировать 15 положений 
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Задание 4. Нарисовать вращающийся треугольник, зафиксиро-

вать 15 положений 

 
 

Задание 5. Нарисовать вращающийся круг 

 
 

Задание 6. Нарисовать вращающийся цветной квадрат 
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Задание 7. Нарисовать вращающийся цветной круг 

 
 

Задание 8. Нарисовать вращающуюся картинку 

 
 

Задание 9. Нарисовать вращающуюся картинку с надписью 
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Задание 10. Нарисовать елочки с демонстрацией встроенных 

преобразований. Сделать надписи. 

 
 
Задание 11. Нарисовать улитку в движении 
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Задание 12. Нарисовать рост гриба 

   
 

 

Задание 13. Нарисовать остров с мельницей, деревьями и сол-

нцем. Задать анимацию 
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Лекция 10. Смена кадров и слайдов 

Следующая интересная графическая возможность пакета 

Maple, это смена кадра, команда insequence. Она позволяет 

быстро менять кадры, задающие разные функции: 

q1 ∶= plot(1/(x − 1), x = −2 .. 2, y = −3 .. 3, color = red, dis-

cont = true); 

q2 ∶= plot(x, x = −2 .. 2, y = −3 .. 3, color = blue); 

q4 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = green); 

display(q1, q2, q4, insequence = true); 

 

 
 

Создается эффект анимации, хотя здесь ее нет.  

А теперь посмотрим те же функции, добавим еще одну 

и сделаем добовление графиков: 

q1 ∶= plot(1/(x − 1), x = −2 .. 2, y = −3 .. 3, discont = true); 

q2 ∶= plot(x, x = −2 .. 2, y = −3 .. 3, color = blue); 

q3 ∶= plot(cos(x), x = −2 .. 2, y = −3 .. 3, color = red); 

q4 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = green); 

q11 ∶= display(q1, q2); 

q12 ∶= display(q1, q2, q3); 

q13 ∶= display(q1, q2, q3, q4); 

display(q1, q11, q12, q13, insequence = true); 
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С помощью смены кадра можно получить эффект смены 

цвета, задавая одну и ту же функцию: 

q1 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = green); 

q2 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = red); 

q3 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = blue); 

display(q1, q2, q3, insequence = true); 
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Все происходит очень быстро, смена цвета едва улавливается. 

Можем замедлить переключение задавая интервал анимации 

через параметр: 

q1 ∶= animate(plot, [x^2, x = −2 .. 2, y = −3 .. 3, color = green, 

thickness = 3], a = 0 .. 10); 

q2 ∶= animate(plot, [x^2, x = −2 .. 2, y = −3 .. 3, color = red, 

thickness = 3], a = 0 .. 10); 

q3 ∶= animate(plot, [x^2, x = −2 .. 2, y = −3 .. 3, color = blue, 

thickness = 3], a = 0 .. 10); 

display([q1, q2, q3], insequence); 

 

   
 

Теперь соединим две анимации, при которых одна функция 

плавно перейдет в другую с помощью смены кадра. Возьмем уже 

известные нам анимации: 

a1 ∶= animate(polarplot, [[sin(x*t), x, x = −4 .. 4], color = blue], 

t = 1 .. 4); 

a3 ∶= polarplot(sin(4*x), x = 0 .. 2*Pi, color = blue); 

a2 ∶= animate(rotate, [a3, t], t = 0 .. −4*Pi); 

display([a1, a2], insequence = true); 
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Следующая функция позволит сделать смену кадра дискрет-

ной, а не непрерывной. Как было до этого. Это функция trunc(t), 

задающая целую часть числа, график этой функции мы рисовали 

на первых занятиях.Смотрим первый пример, дискретное движение 

прямой: 

animate(plot, [trunc(t)], t = 0 .. 5, scaling = constrained); 

 

 
 

Следующий пример: точка, прыгающая по синусоидной тра-

ектории: 

 animate(pointplot, [[trunc(t), sin(trunc(t))]], t = 0 .. 5, 

 scaling = constrained); 

 



124 

 
 

Скачкообразное изменение треугольника: 

animate(polygonplot, [[[trunc(t), trunc(t)], [1, 2], [3, −1]],  

color = green], t = 0 .. 3, scaling = constrained); 

 
 

Теперь, движение одной точки по прямой меняется на движе-

ние другой точки по другой прямой: 

s1∶=animate(pointplot,([[Pi/2,trunc(t/62)*(t/120)]]),t=0..120 

,symbol = solidCIRCLE, symbolsize = 15): 

s2∶=animate(pointplot,([[(1−trunc(t/62))*Pi*(t)/60, 

sin((1−trunc(t/62))*Pi*(t)/60)]]),t=0..120): 

display(s1,s2); 
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Соединим фнкцию trunc(t) и команду insequence, получим 

целый мультфильм о преобразовании многоугольников: 

r1 ∶= animate(polygonplot, [[[0, 0], [3, 0], [3, 3], 

 [3 − trunc(t)/2, trunc(t)/2]], color = blue], t = 0 .. 6.9); 

r2 ∶= animate(polygonplot, [[[0, 0], [3, 0], [trunc(t)/2, trunc(t)/2], 

[3 − trunc(t)/2, trunc(t)/2]], color = red], t = 6.9 .. 3); 

r3 ∶= animate(polygonplot, [[[0, 0.75*trunc(t/4) + trunc(t/6)/2],  

[1.5, 0 + trunc(t/6)/2], [3, 0.75*trunc(t/4) + trunc(t/6)/2], 

 [1.5, 1.5 + trunc(t/6)/2]], color = yellow], t = 3 .. 7); 

r4 ∶= animate(polygonplot, [[[0, 1.25], [1.5, 2 + 0.5*trunc(t/4)], 

[3, 1.25], [1.5, 0.5 − 0.5*trunc(t/4)]], color = yellow], t = 0 .. 6); 

display([r1, r2, r3, r4], insequence = true); 
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Следующий дискретный эффект анимации получим с помощью 

известной нам кусочно-заданной функции: 

vel2 ∶= t −> rectangle([t, t], [t + 10, t + 10], color = green); 

vel3 ∶= t −> vel2(piecewise(t <= 25, 0, t <= 50, 10, t <= 75, 20, 

t <= 100, 30)); 

disp2 ∶= t −> display(vel3(t)); 

animate(disp2, [t], t = 0 .. 100); 

 

 
 

Здесь просто дискретное перемещение квадрата, а далее уве-

личение квадрата, при помощи аналогичной кусочно-заданной 

функции: 

vel2 ∶= t −> rectangle([t, t], [0, 0], color = orange); 

vel3 ∶= t −> vel2(piecewise(t <= 25, t, t <= 40, t + 10, t <= 55, 

 t + 50, t <= 100, −t + 100)); 
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disp2 ∶= t −> display(vel3(t)); 

animate(disp2, [t], t = 0 .. 100); 

 

 
 

Следующий пример очень сложный, создает мультфильм, ис-

пользуя предложенный материал: 
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Практическое задание 10 

Нарисовать звездное небо с последовательным появлением 

звезд и движение месяца: 
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Лекция 11. Простейшее программирование в графике 

1. Построение касательной к графику функции 

Одной из классических задач математического анализа явля-

ется задача нахождения и построения касательной к графику функ-

ции. Рассмотрим эту задачу. Сначала проделаем вычисления сами 

«вручную» и зададим графики. Для параболы: 

plot([x^2, 2*x − 1, [[1, 1]]], x = −5 .. 5, y = −5 .. 5, style = [line, 

line, point], symbolsize = [15]);  

 
 

Для синусоиды: 

plot([sin(x), sin(1) + cos(1)*(x − 1), [[1, sin(1)]]], x = −10 .. 10, 

style = [line, line, point], thickness = [3, 3], symbolsize = [20]); 

 
 

Теперь будем использовать умение программы вычислять про-

изводную для построения касательной к графику функции: 

f ∶=x−>x^3+2: 

g∶=diff(f(x),x): 

a∶=1/3: 
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b∶=eval(g,x=a): 

g1∶=plot ( f (x),x= −2..2,thickness=3): 

g2∶=plot([[a,f (a)]],style=POINT,symbol=[CIRCLE], 

symbolsize=[15],color=black): 

g3∶=plot ( f (a)+b*(x−a),x= −2*Pi..2*Pi, color=blue): 

display(g1,g2,g3,scaling=constrained); 

 
 

Продемонстрируем геометрический смысл производной через 

анимацию перехода секущей в касательную: 

g4∶=plot([[1,1]],style=POINT,color=blue): 

g3∶=animate(pointplot,([[1+d,(1+d)^2]]),d=1.5..0): 

g1∶=plot(x^2,x= −0.5..2.5,color=green): 

g2∶=animate(implicit-

plot,[(x−1)/d=(y−1)/((1+d)^2−1),x= −5..6.5,y= −5..6.5],d=1.5..0,trace

=24): 

display(g1,g2,g3,g4); 
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Далее сделаем анимацию касательной и нормали к синусоиде: 

a1 ∶= plot(sin(x), scaling = constrained); 

a2 ∶= animate(plot, [cos(t)*(x − t) + sin(t), x = t − 1 .. t + 1, 

 color = blue], t = −10 .. 10, trace = 6); 

a3 ∶= animate(plot, [− (x − t)/cos(t) + sin(t), x = t − 1 .. t + 1, 

color = green], t = −10 .. 10, trace = 6); 

display(a1, a2, a3); 

 
 

2. Условия и циклы 

if  `булево` `выражение` then `последовательность` `операто-

ров`  [elif `булево` `выражение` `последовательность` `операторов`]  

[else `последовательность` `операторов`]  end if  `оператор` `ветвле-

ния`;`операция"if"` "if" (`условие`, `операнд` 1,`операнд` 2); `опера-

ции`*`тернарного`*`условия``цикл`  [for `имя`] [from `выражение`] 

[by `выражение`][to `выражение`]  [while `булево` `выражение`]  do 

`последовательность` `операторов` end do; 

 

#Пример1 

x∶=5: 

if x<0 then print("yes"); 

else print("no"); 

end if; 

                              "no" 
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#Пример2 

x∶=2; if x>2 then print("no"); 

elif x<1 then print("yes"); 

else print("gol"): 

end if; 

                             "gol" 

#Пример3 

x∶=1.3; 

if x<=1 then print("no"); 

elif x<2 then print("yes"); 

else print("no"): 

end if; 

                             "yes" 

#Пример4 

x∶=1.5;if x<=1 then f=0; 

elif x<2 then f=1; 

elif x<3 then f=2; 

else f=3 

end if; 

                              1.5 

                             f = 1 

#Пример5 

x∶=4; 

if x>0 then print("yes")end if; 

                               4 

                             "yes" 

#Пример6 

a∶=1:b∶=3: 

c∶=`if `(a<b,a,b); 

                               1 

#Пример7 

a∶=1:b∶=3: 

c∶=`if `(a>b,cos(a),sin(b)); 

                             sin(3) 

#Пример8 

a∶=4:b∶=3: 

c∶=`if `(a<=1,cos(1),sin(2)); 

                             sin(2) 
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Далее рассмотрим примеры использования циклов и  условий 

для построения графиков: 

for i from 1 to 2 do plot(i*s,s= −2..2,h= −2..2,color=green)end 

do; 

 
 

Для того, чтобы соединить полученные графики на одну кар-

тинку, необходимо перечислить результат в display: 

for i from 1 to 2 do s(i)∶=plot(i*s,s= −2..2,h= −2..2, 

color=green)end do; 

display(s(1),s(2)); 

 
 

for i from 1 to 3 do s(i)∶=plot(i*s,s= −2..2,h= −2..2,color 

=COLOR(RGB,i−1, −i,3−i))end do:display(s(1),s(2),s(3)); 
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Далее еще два примера: 

for n to 5 do 

 s[n] ∶= polarplot([[0, 0], [n, n*Pi/3]], color = green); 

end do; 

display(s[1], s[2], s[3], s[4], s[5], axes = none); 

 
 

for n to 5 do 

s[n] ∶= plot([[[0, 0], [n, 2*n − 3]]], color = green); 

end do; 

display(s[1], s[2], s[3], s[4], s[5], axes = none); 

 
 

А теперь с анимацией: 

s ∶= disk([0, 0], 1, color = yellow); 

f 1 ∶= plot(x, x = 1 .. 1.5, color = yellow); 

for i to 20 do 

    d[i] ∶= rotate(f 1, Pi/6*i); 

end do; 

f 2 ∶= animate(rotate, [f 1, t], t = 0 .. 2*Pi); 

a ∶= display(d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], 

d[10], d[11], d[12], d[13], d[14], d[15], d[16], d[17], d[18], d[19], d[20], 

s, scaling = constrained); 

animate(rotate, [a, t], t = 0 .. 2*Pi); 
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3. Процедуры 

Далее познакомимся с простейшими процедурами: 

Пример1 

lc ∶= proc(s, u, t, v) u*s + t*v; end proc; 

lc(Pi, x, −i, y); 

lc(1, 2, 3, 4); 

                           Pi x − i y 

                               14 

Пример2 

Y ∶= proc(x) if 0 < sin(x) then sin(x); else −sin(x); end if; end 

proc; 

plot(Y, −6 .. 6, color = blue, scaling = constrained); 

 
Пример3 

restart; 

ad ∶= proc(a, b) local x, s, i; x ∶= b; s ∶= 0; for i to a do s ∶= s + 

i; end do; s ∶= s*x; end proc; 

ad(5, 2); 

                                30 

Пример4 

s ∶= proc(f , x0) local f1; f1 ∶= f ^2; plot([f 1(x), f (x), [[x0, f (x0)]]], 

x = −3 .. 3, y = −5 .. 5, style = [LINE, LINE, POINT], scaling = con-

strained, color = [blue, green, red]); end proc; 

s(x −> x^2, 1); 



136 

 
 

Пример5 

with(plots): 

s ∶= proc(f , x0) local f1; f1 ∶= D(f ); plot([f 1(x0)*f (x)], x = −3 .. 

3, y = −5 .. 5, scaling = constrained, color = blue); end proc; 

animate(s, [x −> x^2, t], t = −2 .. 2); 
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А теперь пример анимации касательной и нормали через про-

цедуру. Сначала для параболы, потом для синусоиды: 

tangentline ∶= proc(f , x0) local f1; f 1 ∶= D(f ); plot([f (x), 

f 1(x0)*(x − x0) + f (x0), − (x − x0)/f 1(x0) + f (x0)], x = x0 − 2 .. x0 + 2, 

scaling = constrained); end proc; 

tangentline(x −> x^2, 1); 

tangentline(x −> sin(x), 1); 

  
 

Процедура удобна тем, что задав ее один раз, мы можем полу-

чать результат для любой функции, изменяя функцию и начальную 

точку. 
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Практическое задание 11 

Задание 1. Нарисовать «фонтан»: 

 
 

Задание 2. Нарисовать мыльные пузыри: 

 

 
 

Задание 3. Нарисовать синусоиду из треугольников: 
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Задание 4. Задать анимацию касательной и нормали для куби-

ческой параболы: 
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Лекция 12. Анимация цвета 

В программе существует своя цифровая система цветов, назы-

ваемая RGB, где каждый цвет задается тремя числами. Это можно 

использовать для анимации цвета. Рассмотрим пример: 

animate(polygonplot, [[[2, 1], [0, 0], [1, 3]],  

color = COLOR(RGB, 3*r, r, −r)], r = −2*Pi .. 2*Pi); 

 

 
 

Можем сделать одновременную анимацию движения треуголь-

ника и смены его цвета: 

animate(polygonplot, [[[cos(−Pi/4 + r), sin(−Pi/4 + r)], [0, 0], 

[cos(Pi/4 + r), sin(Pi/4 + r)]], color = COLOR(RGB, −r, r, −r)], r = 

−2*Pi .. 2*Pi); 
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В следующих примерах пробуем разные перемены цвета: 

animate(polygonplot, [[[2, 1], [0, 0], [1, 3]], color = 

COLOR(RGB, trunc(3*r), trunc(r), trunc(−r))], r = −5 .. 5); 
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Другой вариант: 

animate(polygonplot, [[[2, 1], [0, 0], [1, 3]], color = COLOR 

(RGB, trunc(5 + r), trunc(r), trunc(−r))], r = −5 .. 5); 

 

 
 

А теперь зададим разноцветный цветок с переливами цвета: 

a1∶=animate(polygonplot,[[[2,1.5],[0,0],[1,4],[3,5]], 

color=COLOR(RGB,r, −r, −r)], r= −2*Pi..2*Pi): 

a2∶=animate(polygonplot,[[[ −2,1.5],[0,0],[ −1,4],[ −3,5]], 

color=COLOR(RGB,r,r, −r)], r= −2*Pi..2*Pi): 

a3∶=animate(polygonplot,[[[2, −1.5],[0,0],[1, −4],[3, −5]], 

color=COLOR(RGB,r, −r,r)], r= −2*Pi..2*Pi): 

a4∶=animate(polygonplot,[[[ −2, −1.5],[0,0],[ −1, −4],[ −3, −5]], 

color=COLOR(RGB, −r,r,r)], r= −2*Pi..2*Pi): 

a5∶=animate(polygonplot,[[[ −1,4],[0,0],[1,4],[0,7]], 

color=COLOR(RGB, −r, −r,r)], r= −2*Pi..2*Pi): 

a6∶=animate(polygonplot,[[[2,1.5],[0,0],[2, −1.5],[4,0]], 

color=COLOR(RGB, −r, −r,r)], r= −2*Pi..2*Pi): 

a7∶=animate(polygonplot,[[[ −2,1.5],[0,0],[ −2, −1.5],[ −4,0]], 

color=COLOR(RGB,r, −r,r)], r= −2*Pi..2*Pi): 
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a8∶=animate(polygonplot,[[[ −1,−4],[0,0],[1,−4],[0,−7]], 

color=COLOR(RGB,r,−r,−r)], r= −2*Pi..2*Pi): 

display(a1,a2,a3,a4,a5,a6,a7,a8); 
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Практическое задание 12 

Нарисовать цветик-шестицветик, он меняет цвет, вращается 

относительно центра и перемещается по экрану: 
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Приложения 

Приложение 1 

Темы проектов 

1. Отображение баз данных на карту местности. Взаимодей-

ствие графического объекта и его описания.  

2. Система отображения статистических данных.  

3. Фракталы (визуальная математика).  

4. Начертательная и аналитическая геометрия (конструктор).  

5. Интерпретатор синтаксического описания динамической 

картинки.  

6. Формирование среды (туман, пламя, снег, салют, облака, ви-

деоэффекты, дождь, вода, смывка и так далее) и взаимодействие ее 

с битовой картой.  

7. Лаборатория мультипликации (взаимодействие карт, управ-

ление лентой).  

8. Создатель образов (стиля) мультипликации.  

9. Управление элементами поверхности (человеческое тело, 

лицо).  

10. Построения в неэвклидовых геометриях.  

11. Имитация нетрадиционных графических курсоров (напри-

мер, грифель, пушок, мазок, размыв и так далее).  

12. Эволюция вида растений, животных.  

13. Синтез элементов ландшафта.  

14. Выделение контура образа на динамической сцене и слеже-

ние за ним.  

15. Обработка растровых картинок.  

16. Построение объектов в проекции (прямая, обратная, стерео, 

рыбий глаз, цилиндрическая).  

17. Синтезатор двухмерных композиций.  

18. Преобразователь классических картин.  

19. Карикатура.  

20. Создание компьютерного ролика.  
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Приложение 2 

Примерные варианты контрольных работ 

Контрольная работа № 1 

(Первый рубежный контроль) 

1. Описать основные элементы интерфейса используемого па-

кета. 

2. Каким образом можно задать цвета: желтый, оранжевый, зо-

лотой, хаки? 

3. Запишите часть стихотворения 14 шрифтом, Times New Ro-

man, синим цветом: Если мальчик любит мыло и зубной порошок, 

Этот мальчик очень милый поступает хорошо. 

4. Нарисуйте на одной картине разным цветом графики функ-

ций: заданной явно; заданной параметрически; неявно заданной; ку-

сочно-заданной. 

5. Нарисуйте функцию y=sin(x+231) в бесконечности. 

6. Задайте синий круг, зеленый прямоугольник, серую ломан-

ную с пятью звеньями. 

 

Контрольная работа № 2 

(Второй рубежный контроль) 

1. Создайте анимацию на одной картине графиков функций: за-

данной явно с движением вдоль оси OX; заданной параметрически 

вдоль оси OY; неявно заданной по диагонали относительно начала 

координат; кусочно-заданной по диагонали. 

2. Создайте анимацию функции y=sin(x) в виде рисунка каран-

дашом. 

3. Задайте анимацию фигур произвольным образом: синий круг, 

зеленый прямоугольник, серая ломанная с пятью звеньями. 

 

Примерный перечень заданий к зачету: 

Индивидуальное задание: нарисовать анимационную картину 

на плоскости на любую тему с заданными требованиями (не менее 2-х 

анимаций по встроенным опциям, не менее одной анимации функ-

ции). 
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