
Т.М. Банникова, А.К. Кощеева

ГРАФИКА MAPLE НА ПЛОСКОСТИ

Ижевск

2025

1

Министерство науки и высшего образования Российской Федерации

ФГБОУ ВО «Удмуртский государственный университет»

Институт математики, информационных технологий и физики

Кафедра алгебры и топологии

Т.М. Банникова, А.К. Кощеева

ГРАФИКА MAPLE НА ПЛОСКОСТИ

Учебно-методическое пособие

Ижевск

2025

2

УДК 004.92(075.8)

ББК 32.972.131.2я73

Б232

Рекомендовано к изданию Учебно-методическим советом УдГУ

Рецензент: канд. физ.-мат. наук, ст. науч. сотрудник ФТИ УдмФИЦ УрО

РАН О.М. Немцова

Банникова Т.М., Кощеева А.К.

Б232 Графика Maple на плоскости : учеб.-метод. пособие / Т.М. Бан-
никова, А.К. Кощеева. – Ижевск : Удмуртский университет, 2025. –
 8,2 Мб. – Текст : электронный.

Настоящее учебно-методическое пособие предназначено для бака-

лавров 1–2 курсов направлений подготовки 01.03.01 Математика, 01.03.02

Прикладная математика и информатика, 02.03.01 Математика и компьютер-

ные науки, очной формы обучения, изучающих дисциплины «Компьютер-

ная геометрия», «Компьютерная графика», «Компьютерная анимация»,

«Компьютерная геометрия и геометрическое моделирование», «Математи-

ческие пакеты в геометрии». Пособие может быть использовано при орга-

низации практических и самостоятельных работ студентов по этим дисци-

плинам. Учебно-методическое пособие также может быть полезно студен-

там различных специальностей высших учебных заведений при изучении

тем, связанных компьютерной графикой.

Минимальные системные требования:

Celeron 1600 Mhz; 128 Мб RAM; Windows XP/7/8 и выше;

разрешение экрана 1024×768 или выше; программа для просмотра pdf.

© Банникова Т.М., Кощеева А.К., 2025

© ФГБОУ ВО «Удмуртский

 государственный университет», 2024

Банникова Татьяна Михайловна, Кощеева Анна Константиновна

Графика Maple на плоскости

Учебно-методическое пособие

Подписано к использованию 30.12.2025

Объем электронного издания 8,2 Мб

Издательский центр «Удмуртский университет»

426034, г. Ижевск, ул. Ломоносова, д. 4Б, каб. 021

Тел. : +7(3412)916-364 E-mail: editorial@udsu.ru

__

mailto:editorial@udsu.ru

3

Введение

Пространственное представление человека всегда вначале мыс-

ленно создает некую объемную модель объекта, которая является ос-

новой для преобразования ее в ортогональные проекции. Идеология

двухмерного проектирования заключается в выполнении изображе-

ний на основе воображаемого человеком трехмерного объекта с помо-

щью набора различных линий и функций. Каждая проекция детали

строится отдельно в проекционной связи и, в данном случае, автома-

тизируется лишь сам процесс получения изображения и проставления

размеров.

Необходимость развития пространственного представления сту-

дентов требует такого подхода, при котором на начальном этапе изу-

чения программных продуктов желательно использование двухмерных

систем либо их двухмерных модулей.

Освоение студентами вузов компьютерной техники и програм-

мных графических продуктов позволяет:

– повысить уровень подготовки кадров для различных отрас-

лей промышленности;

– ускорить процесс выполнения и улучшить качество учебных

графических работ;

– использовать полученные знания и умения для разработки

курсовых и дипломных работ.

Одним из пакетов, в котором возможно изучение предметов,

связанных с компьютерной графикой, является студенческий пакет

Maple. Студенты имеют возможность использовать его бесплатные

версии.

Цель пособия – помощь в формировании у студентов необхо-

димых знаний, умений и навыков по компьютерной геометрии.

Задачи:

 приобретение теоретических знаний об основных элементах

и периферийных устройствах, определяющих эффективность ис-

пользования компьютера при работе с графическим материалом;

 приобретение базовых основ создания графических изобра-

жений. Растровая, векторная, фрактальная графика. Основные пред-

ставления о цветовых моделях (RGB, CMYK и т. д.);

 знакомство с современными стандартами компьютерной гра-

фики;

4

 приобретение теоретических знаний о способах хранения гра-

фической информации;

 приобретение прикладных знаний в области использования

векторной графики в практической деятельности;

 приобретение прикладных знаний в области верстки изданий

различного характера.

В результате изучения студент должен:

знать:

 основные требования, предъявляемые к компьютеру при ра-

боте с графическими редакторами;

 реализацию аппаратно-программных модулей графической

системы;

 основные приемы геометрического моделирования и решае-

мые им задачи;

 основы представления видеоинформации и ее машинной ге-

нерации;

 современные стандарты компьютерной графики;

 основные способы визуализации изображения: растровая

и векторная графика;

 основные форматы файлов, используемые при работе с гра-

фикой;

 основные принципы создания векторных графических изоб-

ражений;

 основные принципы создания растровых изображений и их

редактирования;


уметь:

 применять интерактивную графику в информационных си-

стемах;

 создавать двумерные растровые и векторные графические

изображения и их редактировать в наиболее распространенных гра-

фических редакторах;

 сохранять созданные изображения в необходимом формате;

владеть:

 методами решения задач геометрической графики.

5

При изучении данной темы формируются элементы следую-

щей совокупности профессиональных компетенций:

 способен принимать научно обоснованные решения на ос-

нове математического моделирования и методов системного ана-

лиза, осуществлять проверку их корректности, адекватности и эф-

фективности;

 способен самостоятельно изучать новые разделы фундамен-

тальных и прикладных наук.

Одной из форм оценки уровня сформированности заявленных

компетенций является проект, выполняемый в рамках самостоятель-

ной работы.

Цель проекта. Проект является самостоятельно выполняемым

заданием, предназначен для усвоения обучаемым современных гра-

фических технологий и графических инструментов, требует разра-

ботки учащимся целостного законченного проекта.

Тема проекта. Проект выполняется по темам, указанным в при-

ложении. Тема также может быть выбрана студентом самостоя-

тельно, если она согласована с преподавателем курса и руководите-

лем индивидуального обучения.

Проект выполняется студентом индивидуально. Допускается

выполнение работы в составе группы – два, три человека при усло-

вии увеличения объема работ в соответствующее число раз.

Предпочтителен отчет, подготовленный компьютерным спосо-

бом. При подготовке отчета следует учитывать требования ГОСТ

на техническую документацию.

Данное учебно-методическое пособие разработано на основе

опыта преподавания перечисленных дисциплин и современных ме-

тодик обучения.
Maple – это программный пакет, система компьютерной мате-

матики, предназначенная для символьных вычислений. Система

Maple имеет огромный спектр средств для численных решений. Этот

продукт используют в разных областях математики: при решении

дифференциальных уравнений, численных методов, теоретической

механики и так далее. Программа имеет собственный интегрируе-

мый язык программирования, легко усваиваемый для любого поль-

зователя. В этом пособии мы рассмотрим различные графические па-

кеты, которые предоставляет нам это приложение.

Учебно-методическое пособие написано в соответствии с тре-

бованиями государственных образовательных стандартов третьего

6

поколения направлений подготовки 01.03.01 Математика, 01.03.02

Прикладная математика и информатика, 02.03.01 Математика и ком-

пьютерные науки. Включает в себя всесторонне изложенный теоре-

тический материал с разобранными на каждую тему практическими

заданиями, с объяснением практического смысла каждого введен-

ного понятия. Данное пособие может быть использовано в качестве

основной литературы для проведения лекций и практических заня-

тий. Предпосылками написания данного пособия являлась необходи-

мость систематизировать накопленный материал при многолетнем

прочтении лекций и проведении практических занятий по работе

с этой программой. При написании пособия были учтены совре-

менны требования и компетенции, предъявляемые к бакалавру. Ма-

териал был подобран так, чтобы не только можно было уловить суть

предмета, но и понять его назначение в современном мире.

7

Лекция 1. Знакомство с программой Maple.

Интерфейс программы.

Подготовка к работе с графикой Maple

1. Знакомство с программой Maple

8

9

10

11

12

Далее рассмотрим примеры оформления и работы программы

в версии 2007 года:

13

Графики в Maple 7:

14

2. Примеры работы программы с графикой на плоскости

Теперь рассмотрим работу с графиками в Maple 19:

Как мы видим, изменился формат вводимых функций, они ста-

ли иметь более привычный нам вид.

С помощь графических возможностей пакета уже можно со-

здавать обучающие программы с демонстрацией свойств фигур, фи-

зических объектов.

Движение касательной и нормали по синусоиде:

15

Сопротивление пружины под воздействием силы:

Появилась возможность создавать достаточно художественные

картинки и мультипликацию:

16

3. Интерфейс программы

Интерфейс программы приложения Maple представлен в виде

графической оболочки, которая обеспечивает удобный доступ к фун-

кционалу программы. Основные элементы стартового окна вклю-

чают в себя: меню с панелью инструментов, рабочую область, боковую

панель. Навигация интегрирована в интерфейс программы и предла-

гает пользователям быстрый и легкий доступ к необходи-мым функ-

циям. Благодаря расположению элементов управления и разумному

использованию пространства, совершение операций становится про-

стым и эффективным.
Ниже рассмотрим по отдельности каждый из элементов.

Меню программы.

В самом начале работы с приложением нас приветствует

надпись “Start” в верхней части окна. Ниже расположено основное

меню с различными категориями команд, где мы можем создать ра-

бочий лист программы, в котором будем работать в дальнейшем, по-

смотреть обновления, ознакомиться с документацией, прочитать по-

мощь.

Здесь пользователь может найти все основные функции про-

граммы, такие как открытие и сохранение файлов, выполнение вы-

числений, настройка параметров, возможность быстро выполнить

определенные действия, такие как создание нового документа, со-

хранение документа, изменение настроек и т. д.

Рабочая область.

После создания нового документа, перед нами открывается пу-

стая область, где мы будем работать. Это основное окно приложения,

17

где пользователь может вводить и редактировать математические

выражения, выполнять вычисления и строить графики. Здесь отобра-

жается результат выполнения заданных команд и вводимых пользо-

вателем формул.

Наиболее полные возможности управления предоставляет глав-

ное меню системы. Оно, как обычно, расположено непосредственно

под строкой заголовка. Меню предоставляет доступ к основным опе-

рациям и параметрам пользовательского интерфейса системы. Ниже

дан перечень меню, доступных при наличии открытого документа:

 File – работа с файлами и печатью документов;

 Edit – команды редактирование документа и операции с бу-

фером обмена;

 View – управление видом пользовательского интерфейса;

 Insert – операции вставки;

 Format – операции задания форматов;

 Spreadsheet — операции задания таблиц;

 Options – задание параметров;

 Window – управление окнами;

 Help – работа со справочной системой.

18

Настройка графического интерфейса содержит: режимы про-

смотра документа; графические примитивы; выделение и преобразо-

вание объектов; управление масштабом просмотра объектов; копи-

рование объектов; упорядочение размещения объектов; группировка

объектов; соединение объектов.

Оформление текста подразумевает: виды текста: простой, фи-

гурный текст; создание, редактирование, форматирование, предна-

значение; размещение текста вдоль кривой; редактирование геомет-

рической формы текста.

Боковая панель.

Слева от рабочей области расположена боковая панель с раз-

личными вкладками. В ней находятся специализированные инстру-

менты и окна, например, для работы с символьными выражениями,

графиками, решением уравнений и т. д.

19

Панель включает в себя тригонометрические, логарифмичис-

кие, показательные и др. функции. Данная вкладка позволяет быстро

переключаться между различными функциональными модулями,

не вводя вручную часто используемые математические символы.

20

4. Основной синтаксис Maple

21

Работа с текстом в Maple очень похожа на работу в документе

Word, но некоторая ограниченность присутствует, так же можно на-

бирать текст различными шрифтами (но разных вариантов меньше,

чем в Word), различного размера, жирный, курсив, шрифтами раз-

ного цвета, работа с таблицами и др., различное выравнивание текста.

Можно выделить текст знаками #.

22

Практическое занятие 1

Задание 1. Написать эссе на свободную тему на 150–200 слов.

Оформить текст: шрифт Times New Roman, цвет синий, 1,5 интервал,

с применением 14-го размера шрифта, текст должен быть отформати-

рован по левому краю страницы, заголовок посередине.

Задание 2. Задать формулы:

∫ cos(𝑥) 𝑑𝑥
2

1
; {

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1
2𝑥1 + 3𝑥2 + 4𝑥3 + 5𝑥4 = 2
−2𝑥1 + 5𝑥2 − 𝑥3 + 𝑥4 = 0

;

|𝐴𝐵⃗⃗⃗⃗ ⃗| = √(𝑥𝐵 − 𝑥𝐴)
2 + (𝑦𝐵 − 𝑦𝐴)

2;

(
1
5
9

2
6
10

3
7
11

4
8
12

) ; lim
𝑥→0

sin⁡(𝑥)

𝑥
 ; ∑ 𝑎𝑛𝑏𝑛

∞
𝑛=1 ;

Задание 3. Нарисовать треугольник АВС и его параметры: вы-

соту ВН,

биссектрису BL и медиану BM, обозначить их на рисунке, под-

писать точки.

Задание 4. Создать презентацию и включить в нее материал

из предыдущих заданий. На последнем слайде сделать гиперссылку

на первый слайд.

23

Лекция 2. Оформление графика функции

В этой теме мы познакомимся с тем, как можно вводить функ-

цию для построения ее графика и работы с ней, а также какие графи-

ческие приложения Maple существуют.

Для того, чтобы не только строить график, но и производить

вычисления с данной функцией, необходимо задать ее функци-

онально:

f ∶=x–>sin(4*x)/(x^2+1);

Поставим в конце знак «;» нажмем кнопку Enter и программа

отреагирует следующей записью, дав нам понять, что мы все пра-

вильно записали:

Если в конце записи поставим «:», то действие будет сделано

в компьютере, но на экране ничего отображаться не будет. Далее

нарисуем график этой функции с помощью основной графической

команды plot:

plot (f (x),x= −2..2,y= −2..2);

Но можно рисовать графики непосредственно вписывая функ-

цию в команду plot: plot(x^2);

 := f x
()sin 4 x

x2 1

24

Пример задания одного и того же графика сложной функции

тремя различными способами:

1 вариант: plot(arcsin(sin(x)),x= −4..4);

2 вариант: h∶=arcsin(sin(x)):plot(h,x= −4..4);

3 вариант: f ∶=x−>sin(x):g∶=arcsin(f (x)):plot(g,x= −4..4);

График в каждом случае будет одинаковый:

25

Следующая особенность программы, связана с графиками раз-

рывных функций: по умолчанию такие графики Maple дополняет

до непрерывных:

plot(1/(x−1), x = −2 .. 2, y = −3 .. 3);

Чтобы задать правильно, добавляем команду DISCONT:

plot(1/(x−1), x = −2 .. 2, y = −3 .. 3, discont=true);

plot(tan(x),x= −4*Pi..4*Pi,y= −4..4);

26

plot(tan(x),x= −4*Pi..4*Pi,y= −4..4,discont=true);

Следующая интересная особенность программы Maple состоит

в том, что можно нарисовать поведение графика функции на беско-

нечности, как одностороннюю, так и в обе стороны:

f ∶=x−>x*sin(x):

plot (f (x),x=2..infinity);

27

g∶=sin(x)/x:

plot(g(x),x= −infinity..infinity);

Своеобразный синтаксис стандартных функций в Maple можно

увидеть в следующих таблицах:

28

Познакомимся с основными опциями оформления графика

функции:

29

30

31

Рассмотрим примеры применения этих опций.

Возьмем знакомое нам уравнение параболы. Открываем новый

файл и в самом начале пишем plot(x^2), где plot – это обязательное

обращение к программе, в скобочках мы указываем нашу функцию,

ставим точку с запятой и при нажатии клавиши Enter получаем ре-

зультат:

32

Ограничим нашу функцию в пределах x от −2 до 2. Для этого

в скобочках через запятую напишем условие:

plot(x^2, x = −2 .. 2);

33

Ограничим нашу функцию ещё и по y.

Всё также в скобочках, через запятую, перечисляем условия:

plot(x^2, x = −2 .. 2, y=0..1);

Теперь добавим цвет. Цвета в Maple пишутся на английском

языке и к ним идёт обращение color =... Для удобства выпишем не-

сколько цветов, которые можно использовать: red – красный, blue –

синий, purple – фиолетовый и так далее. Пусть график нашей функ-

ции будет зелёным:

plot(x^2, x = −2 .. 2, y=0..1,color=green);

34

Чтобы сделать наш график более понятным для стороннего

пользователя, Maple позаботился об удобстве оформления.

Выберем отдельные точки, благодаря которым построим гра-

фик функции:

plot(sin(x), sample = [1, 2, 3, 4, 5, 6, 7, 8, 9], adaptive = false,

scaling = constrained);

Далее для примера возьмем уже знакомую нам функцию:

f ∶= x− > sin(4 ∗ x)/(x^2 + 1): plot (f (x), x = −2..2, y = −2..2);

Изменим цвет:

 plot (f (x), x = −2..2, y = −2..2, color = green);

35

Теперь, когда мы построили график, давайте подпишем его. До-

бавим заголовок:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12]);

Сейчас поработаем над осями координат нашего графика:

plot (f (x), x = −2..2, y = −2..2, color =green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = FRAME);

plot (f (x), x = −2..2, y = −2..2, color =green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = BOXED);

36

Мы также можем убрать все оси, если они нам мешают:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NONE);

Допустим нам нужно закрасить область, ограниченной графи-

ком и осью Ох заданным цветом. Используем функцию filled – закра-

шивание области, команду transparency для насыщенности закраски:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, filled,

transparency = 0.5);

Теперь назовем оси, labels – задание названия осей:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, labels =

[”OX ”OY ”]);

37

Функция textplot − подписи и надписи к графику работает толь-

ко при подключении встроенного графического пакета PLOTS:

with(plots):

r1 ∶= textplot([0.2, 1.4, ‘‘график”], front = [TIMES, BOLD, 24],

align = RIGHT):

r2 ∶= textplot([1.4, 0.2, ‘‘линия”], front = [TIMES, BOLD, 24],

align = LEFT):

r3 ∶= plot (f (x), x = −2..2, y = −2..2, color = green):

display(r1, r2, r3);

38

Также у нас есть стиль линии; linestyle – тип линии графика:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, linestyle

= 0);

Получается сплошная линия.

Можем нарисовать линию с помощью точек:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, linestyle

=2);

39

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, linestyle

= 3);

Получаем пунктир.

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, linestyle

= 4);

Получаем штрих-пунктир.

40

Можем задать стиль «точка»:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont =[HELVETICA, 12], axes = NORMAL, style =

POINT);

Чтобы выделить линию, мы можем указать её толщину:

plot (f (x), x = −2..2, y = −2..2, color = green, title = Пример за-

дания\nопций, titlefont = [HELVETICA, 12], axes = NORMAL, thickness

= 3);

41

Можем задать необходимый нам масштаб, указав нужное ко-

личество чисел на осях:

plot (f (x),x= −2..2,y= −2..2,tickmarks=[8,8]);

Для выполнения практического задания нам понадобится зада-

ние точки:

plot([[1, 2]], style = POINT);

Точку можно задавать в виде различных фигур с заполнением

и без, изменять ее размер, но об этом на следующей лекции.

42

Практическое задание 2

Задание 1. Нарисовать график y=x^3 с соответствующим оформ-

лением.

Задание 2. Нарисовать гриб, подписать. Какие простейшие

функции вы использовали в работе?

Задание 3. Нарисовать НЛО, подписать. Какие простейшие фун-

кции вы использовали в работе?

43

Задание 4. Нарисовать горы, чайку, волны, подписать. Какие

простейшие функции вы использовали в работе?

Задание 5. Нарисовать бабочку, подписать. Какие простейшие

функции вы использовали в работе?

Задание 6. Нарисовать лягушку. Какие простейшие функции

вы использовали в работе?

44

Лекция 3. Построение графиков различных функций

Для дальнейшей работы нам понадобится подключить графи-

ческий пакет with(plots).

Теперь мы можем рассмотреть графики, когда функции заданы

не только в явном виде, но и в других вариантах.

Вспомним оформление графиков функций, заданных явно. За-

дадим параболу:

plot(x^2, x = −2 .. 2, color = blue);

Следующими рассмотрим функции заданные параметрически.

Пусть заданы две функции x(t), y(t); при этом переменная

t называется параметром.

Тогда говорят, что y как функция от x задана параметрически.

Пример: {
𝑥 = 𝑎⁡𝑐𝑜𝑠⁡𝑡,
𝑦 = ⁡𝑎⁡𝑠𝑖𝑛⁡𝑡, ⁡0 ≤ 𝑡 ≤ 2 ∙ 𝑃𝑖, это параметрические

уравнения окружности: 𝑥2 + 𝑦2 = 𝑎2.

Объявление параметрической функции задается практически

аналогично функции в явном виде:

plot([t^2*cos(t), t^3*sin(t) + 2, t = 0 .. 36]);

Можно заметить появление квадратных скобок, что отличает

два вида функций друг от друга. Получаем рисунок:

45

Далее изобразим известное уравнение окружности, но со сме-

щением по оси у:

plot([cos(t), sin(t) + 2, t = 0 .. 2*Pi]);

В некоторых версиях Maple вместо обещанной окружности мы

можем увидеть эллипс. Дело в том, что по умолчанию во всех графи-

ческих командах используется значение UNCONSTRAINED пара-

метра scaling, и график растягивается по осям таким образом, чтобы

полностью заполнить отводимое под него пространство на рабочем

листе, что приводит к несоответствию единиц измерения по горизон-

тальной и вертикальной осям.

Исправить данную неприятность можно с помощью команды

scaling=CONSTRAINED:

plot([cos(t), sin(t) + 2, t = 0 .. 2*Pi], scaling = constrained);

И на выходе получим симпатичную окружность:

Также, мы можем задавать цвет, всё также через запятую и спе-

циально не напишем опцию scaling:

plot([t*cos(t), sin(t)+2, t = 0 .. 36], color = green);

46

Функции заданные полярно.

Когда функция задаётся через полярные координаты, мы обра-

щаемся к команде polarplot. Переменную можно использовать лю-

бую (и даже оставить х), но мы сделаем стандартную 𝜑:

polarplot(phi, phi = −2*Pi .. 2*Pi, scaling = constrained);

Рассмотрим известную спираль Архимеда, систему координат

удалим:

polarplot (phi, phi=0..2*Pi, scaling= constrained, axes=NONE);

Можно задать сразу несколько графиков:

polarplot([2*phi, 3], phi = 0 .. 2*Pi, scaling = constrained);

47

Как задать в полярной системе координат окружность?

polarplot(2*cos(phi),phi=0..Pi,scaling=constrained);

Это окружность (𝑥 − 1)2 + 𝑦2 ⁡= ⁡1:

Далее зададим отрезки, сначала вертикальный:

polarplot(1/cos(phi), phi = 0 .. (1/3)*Pi, scaling = constrained);

А теперь горизонтальный:

polarplot(1/sin(phi), phi =0 .1 .. (1/2)*Pi, scaling = constrained);

48

Как видим, приходиться использовать определенные уловки

в виде специальных промежутков переменной.

Неявно заданные функции.

Когда у нас есть уравнение, к которому надо построить график,

но выражать функцию y через привычную нам переменную х затруд-

нительно, то мы пользуемся помощью команды implicitplot. Для того

чтобы команда работала необходимо задавать интервалы на обе пе-

ременные.

Давайте реализуем уравнение окружности: 𝑥2 + 𝑦2 − 9⁡ = ⁡0,

в программу мы запишем:

implicitplot(x^2+y^2−9 = 0, x = −5 .. 5, y = −5 .. 5, color =

green);

Конечно, мы могли выразить уравнение и записать в кодовую

строку y=sqrt(9−x^2), нам даже не нужно было бы подключать пакет

with(plots), достаточно знакомого нам plot, но в этом случае полу-

чили только половину окружности.

Давайте чуть усложним нашу задачу и реализуем вот такое

уравнение: 𝑥2 + 4 ∙ 𝑦2 ⁡= ⁡8 – эллипс:

implicitplot(x^2+4*y^2 = 8, x = −10 .. 10, y = −10 .. 10);

49

Для правильности графика сгладим углы командой grid (коли-

чество точек графика по переменным) и выравним масштаб:

implicitplot(x^2+4*y^2 = 8, x = −10 .. 10, y = −10 .. 10,

grid = [60, 60], scaling = constrained);

В неявном виде строятся очень необычные графики.

Как насчёт вот такого симпатичного уравнения, заданного

в неявном виде:

 implicitplot((x^2+y^2)^3-(4*144)*x^2*y^2 = 0, x = -10 .. 10, y =

-10 .. 10, thickness = 10, color = pink);

Здесь мы добавили толщину линии, к которой обращаемся че-

рез thickness, и на выходе получаем красавицу-бабочку:

Если вам также понравилась наша бабочка, то давайте реали-

зуем математическую валентинку:

implicitplot((x^2+y^2−1)^3−x^2*y^3 = 0, x = −1.25 .. 1.25,

y = −1.25 .. 1.25, grid = [100, 100], thickness = 10);

50

И снова опция grid поможет нам сгладить углы и очертить ри-

сунок, делая его более симпатичным на вид.

Вернемся к заданию точки:

plot([[1, 2]], style = POINT);

Можно одной командой задать сразу несколько точек. Пере-

числяем координаты наших точек через запятую:

 plot([[1,2],[4,3],[2,6]],style=POINT);

По умолчанию точка имеет вид ромба и пустая внутри.

Если нам нужно выделить какую-то точку, показать её более

объемной, то используем solidCIRCLE (закрашенная точка, форма

окружность) и укажем её размер с помощью опции symbolsize:

 plot([[1, 2]], style = POINT, symbol = solidCIRCLE, symbolsize

= 26, color = green);

51

Очень часто нам приходится сравнивать один график с другим.

Определить какой промежуток лучше подходит для нашей матема-

тической задачи. Мы зададим сразу три графика, при этом один

из них будет разрывным, созданным с помощью движения точки:

f 1 ∶= sin((1/2)*x): f 2 ∶= sin(2*x): f 3 ∶= (1/2)*sin(x):

plot([f 1(x), f 2(x), f 3(x)], x, color = [blue, red, green], style = [line,

point], symbol = circle, thickness = [1, 0, 3]);

Попробуем создать другой рисунок из известных любому

школьнику уравнений, цвет программа задает по умолчанию:

 plot([x^2, sin(x), 1+x], x = −2 .. 2);

52

Укажем цвет и толщину линии для каждого графика:

plot([x^2, sin(x), 1/(x^2+1)], x = −2 .. 2, color = [black, green,

red], thickness = [1, 2, 3]);

Теперь изобразим одновременно точку и функцию:

plot([sin(x), [[1, 2]]], x = 0 .. 2, style = [LINE, POINT], thickness

= 2, symbol = CIRCLE, symbolsize = 16);

Другой вариант соединить разные графики с помощью ко-

манды display:

g1∶=plot(sin(x),x= −1..3,color=green,thickness=2):

g2∶=plot([[1,4]],style=POINT,color=red):

g3∶=plot(2*x,x= −1..2,color=blue,thickness=3):

display([g1,g2,g3]);

53

Кусочно-заданная функция.

К сожалению, в жизни не каждая функция непрерывная, даже

для такого случая, как разрывная функция, Maple позаботилась

о пользователях:

f ∶=x−>piecewise(x<0, −1,x>=0 and x<=1,0,1<x,1);

plot (f (x),x= −5..5,color=green, discont=true, thickness=4);

Задание отрезка, ломанной.

Давайте для примера нарисуем с вами прямую с помощью двух

точек:

 plot([[1, 2], [2, 1]], color = green);

54

Теперь зададим ломанную на 4 точках:

plot([[1, 2], [2, 1], [5, 5], [10, 1]], color = green);

Закрасим получившуюся область:

 plot([[1, 2], [2, 1], [5, 5], [10, 1]], color = green, filled);

55

Практическое занятие 3

Задание 1. Нарисовать графики функций с соответствующим

оформлением: 𝑎)⁡𝑦 = 𝑥3 + 5; 𝑏)⁡𝑦^2⁡ = ⁡ (2 ∗ 𝑥);

Задание 2. Нарисовать графики функций с соответствующим

оформлением:⁡𝑎)⁡𝑥^2⁡– ⁡2 ∗ 𝑥⁡ + ⁡𝑦^2⁡– ⁡2 ∗ 𝑦⁡– ⁡2 = ⁡0;

𝑏)⁡⁡𝑥^(2/3) ⁡+ ⁡𝑦^(2/3) ⁡= ⁡1;

Задание 3. Нарисовать графики функций с соответствующим

оформлением:⁡𝑎)⁡{`𝑥 = 𝑐𝑜𝑠2(𝑡), 𝑦 = 𝑠𝑖𝑛2(𝑥)};⁡⁡
𝑏)⁡{𝑥 = 1 − 𝑠𝑖𝑛(𝑡), 𝑦 = 1 − 𝑐𝑜𝑠(𝑡)};

𝑐)⁡{𝑥 = 𝑡2, 𝑦 = 𝑡 + 5};⁡

56

Задание 4. Нарисовать графики функций с соответствующим

оформлением:𝑎)⁡𝑟 = 𝑝ℎ𝑖; ⁡⁡𝑏)⁡𝑟 = 1 + cos⁡(𝑝ℎ𝑖);

Задание 5. Нарисовать графики функций с соответствующим

оформлением: 𝑎)⁡𝑟 = 𝑐𝑜𝑠(3 ∗ 𝑡); ⁡⁡𝑏)⁡𝑟⁡ = ⁡𝑐𝑜𝑠(3 ∗ 𝑡) ⁡+ ⁡𝑠𝑖𝑛(3 ∗ 𝑡);

57

Задание 6. Нарисовать график функции с соответствующим

оформлением: 𝑦 = {
𝑥 + 1, 𝑥 < 0
2,⁡⁡⁡0 ≤ 𝑥 ≤ 1
𝑥 + 2,⁡⁡⁡𝑥 > 1

;

Задание 7. Нарисовать графики функций:

1)⁡𝑦 = 𝑥^(2) + 1/(𝑥)⁡⁡⁡`трезубец`⁡`Ньютона`⁡⁡

2)⁡𝑦 =
1

1 + 𝑥2
⁡⁡⁡`кривая`⁡`Аньези`⁡⁡

3)⁡𝑦 =
2⁡𝑥

1 + 𝑥2
⁡⁡`серпантин`⁡`Ньютона`⁡⁡

4⁡)⁡𝑦^(2) = 𝑥^(3)⁡⁡⁡⁡⁡⁡⁡⁡⁡`парабола`⁡`Нейля`⁡⁡

5)⁡𝑦2 =
𝑥3

10 − 𝑥
⁡`циссоида`⁡

⁡6)⁡𝑟 = 𝑝ℎ𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡спираль⁡Архимеда`⁡⁡

7)⁡𝑟 = 1 + cos(𝑝ℎ𝑖) `кардиоида`⁡
⁡8)⁡𝑟 = 𝑒𝑝ℎ𝑖 ⁡⁡⁡⁡⁡⁡⁡`логарифмическая`⁡`спираль`⁡
⁡9)⁡{𝑥 = 𝑡 − sin(𝑡) , 𝑦 = 1 − cos(𝑡)}⁡`циклоида`⁡

⁡10)⁡{𝑥 = 𝑙𝑛(𝑡𝑔 (
𝑡

2
) + 𝑐𝑜𝑠(𝑡), 𝑦 = 𝑠𝑖𝑛(𝑡)}⁡`трактриса`

58

Лекция 4. Анимация графика функции

Помимо статических картинок в приложении Maple возможно

создавать динамический рисунок. Для этого мы воспользуемся функ-

цией animatic. Напишем явно заданную функцию:

with(plots):

animate(plot, [A*x^2,x= −4..4], A= −3..3);

Теперь остаётся лишь нажать на картинку и в верхней панели

появится проигрыватель. Нажимаем кнопку воспроизведения, и вет-

ви параболы плавно поднимутся вверх:

В анимации есть возможность зацикливания, обратного хода,

задание количества кадров.

С помощью команды trace мы можем задавать, сколько и какие

промежуточные кадры оставлять на экране:

animate(plot, [A*x^2,x= −4..4], A= −3..3, trace=5);

Команда trace – это промежуточные кадры, которые помогают

рассмотреть картинку внимательнее. Попробуйте написать:

animate(plot, [A*x^2,x= −4..4], A= −3..3, trace=[5,25]);

59

А теперь прибавим нашей анимации немного скорости, для это-

го воспользуемся командой frames:

animate(plot,[A*x^2,x= −4..4],A= −3..3,frames=10,

color=blue);

И ветви параболы поднимаются в разы быстрее.

Другой вариант анимации для параболы, так называемый «эф-

фект рисования»:

animate(plot, [x^2, x = −a .. a], a = 0 .. 10);

Здесь «рисуем» обе веточки сразу.

Возможен другой вариант оформления этой же анимации,

по типу параметрического задания функции:

animate(plot, [[x, x^2, x = −a .. a]], a = 0 .. 10);

Анимацию получаем такую же.

Для явно заданной функции есть возможность смены осей ме-

стами. Для этого достаточно поменять в последнем варианте задания

анимации х и у местами:

animate(plot, [[x^2, x, x = −a .. a]], a = 0 .. 10);

60

Другой пример:

animate(plot, [[x, sin(x), x = −a .. a]], a = 0 .. 10, scaling = con-

strained);

animate(plot, [[sin(x), x, x = −a .. a]], a = 0 .. 10, scaling = con-

strained);

Рассмотрим полярно заданную функцию, уже знакомую нам

спираль Архимеда:

animate(polarplot, [[a*phi, phi, phi = 0 .. 2*Pi], color = green],

 a = 1 .. 2, scaling = constrained);

61

Анимируем те же кривые, которые задавали ранее.

Окружность:

animate(polarplot, [[2*a*cos(phi), phi, phi = 0 .. 2*Pi]], a = 1/2 .. 2);

Отрезок:

animate(a/cos(phi), phi = 0 .. 0.2*Pi, a = 1/2 .. 2, coords = polar);

62

Кардиоида:

animate (polarplot, [1+cos(phi), phi=x.. −Pi], x= −Pi..Pi);

Команда numpoints задает количество точек, по которым стро-

ится график:

animate(polarplot, [[sin(x*t), x, x = −4 .. 4], color = blue], t = 1 ..

4, numpoints = 100, frames = 100);

63

animate(polarplot, [[10*sin(10*x) + sin(t), x, x = 0 .. 2*Pi], color

= yellow, thickness = 5], t = 0 .. 6*Pi, frames = 240, axes = none);

Теперь посмотрим, как будет себя вести неявно заданная функ-

ция в режиме анимации:

animate(implicitplot, [x^2+y^2=r^2, x= −3..3, y= −3..3],

r= −3..3, scaling=constrained);

Если нажать на картинку, то мы увидим, как наша окружность

быстро сужается.

64

animate(implicitplot, [x^2 + y^2 = r^2, x = −3 .. 3, y = −3 .. 3,

color = blue], r = 3 .. 0, scaling = constrained, thickness = 5, trace =

25);

Закраска окружности происходит за счет наложения кадров.

animate(implicitplot, [x^2 + y^2 = r^2, x = −3 .. 3, y = 0 .. 3],

r = −3 .. 3, scaling = constrained, trace = 25, grid = 10000);

Тоже самое проделаем с параметрически заданной функцией:

animate(plot,[[cos(t)^3,sin(t)^3,t=0..x],color=green],x=0..2*Pi,

scaling=constrained);

Здесь опять есть «эффект рисования». На выходе мы получаем

вот такую красивую звездочку, называемую астроидой:

65

Следующий график называется циклоидой. Циклоида демон-

стрирует траекторию точки колеса автомобиля при движении по пря-

мой.

animate(plot,[[t−sin(t),1−cos(t),t=0..x]],x=0..12*Pi, frames=100,

scaling=constrained);

Нарисуем график точками:

animate(plot, [[cos(t^2 − 2) + 3*t, t + sin(t + 2), t = 0 .. x],

color = red], x = 0 .. 2*Pi, linestyle = 2, thickness = 4);

66

animate(plot, [[sin(t − 5)^3, cos(t + 2)^3, t = 0 .. x], color = green],

x = 0 .. 2*Pi, scaling = constrained);

С помощью display мы можем обьединять несколько функций

на одну картинку:

g1 ∶= animate(plot, [A*(x^2 + 4), x = −4 .. 4, color = green],

A = −3 .. 3);

g2 ∶= animate(plot, [A*(−x^2 + 4), x = −4 .. 4], A = −3 .. 3);

display(g1, g2);

Еще пример:

g1∶=animate(0.2*a*x^2,x= −4..4,a= −4..4,color=blue):

g2∶=animate(a*phi,phi=0..2*Pi,a=1..2,coords=polar,scal-

ing=constrained):

display(g1,g2);

67

Анимация отрезка:

animate(plot, [[[1, 1], [t, t]]], t = 1 .. 10);

animate(plot, [[[−t, −t], [t, t]], color = blue, thickness = 5], t = 0

.. 10);

68

Так же можно задавать анимацию точек:

g1 ∶= animate(pointplot, [[a, a]], a = 0 .. 10):

g2 ∶= animate(pointplot, [[−a, a]], a = 0 .. 10):

g3 ∶= animate(pointplot, [[2*cos(p), 2*sin(p)]], p = 0 .. 2*Pi):

g5 ∶= animate(pointplot, [[[x, sin(x)]]], x = 0 .. 10):

g4 ∶= animate(pointplot, [[x, x^2]], x = −10 .. 10):

display(g1, g2, g3, g4, g5, scaling = constrained);

Еще вариант:

g5 ∶= animate(pointplot, [[a, a]], a = 0 .. 10, symbol = solidCIRCLE,

symbolsize = 15, color = red);

g6 ∶= animate(pointplot, [[a, 2*a]], a = 0 .. 10, symbol = solidCIRCLE,

symbolsize = 15, color = blue);

g7 ∶= animate(pointplot, [[−a, 2*a]], a = 0 .. 10, symbol = solidCIRCLE,

symbolsize = 15, color = green);

g8 ∶= animate(pointplot, [[−a, a]], a = 0 .. 10, symbol = solidCIRCLE,

symbolsize = 15, color = gold);

g9 ∶= animate(pointplot, [[−2*a, a]], a = 0 .. 10, symbol = solidCIRCLE,

symbolsize = 15, color = pink);

g10 ∶= animate(pointplot, [[2*a, a]], a = 0 .. 10, symbol = solidCIRCLE,

symbolsize = 15, color = yellow);

display(g5, g6, g7, g8, g9, g10, scaling = constrained);

69

С помощью команды filled мы можем закрашивать наши

функции в процессе анимации:

animate (polarplot, ([sin(10*x), x=0..t, filled, color=blue],

t=0..2*Pi, frames=120));

f ∶=piecewise (x<−5,x+10,x<5 and x>−5, sin(x),x>5, −x):

animate (plot, [f , x= −10..y, color=gold,filled], y= −10..10);

70

animate (plot, [sin(t)^2+cos(t) −3, t= −6..x,filled,color=green],

x= −5..5, frames=40);

animate(plot, [[1+sin(t), 1+cos(t), t=0..x],color=green, thickness

= 5,filled = [color = "Blue", transparency = 0.5]], x=0..2*Pi);

Так как мы потратили уже много памяти компьютера, то мо-

жем ее «обнулить» командой restart:

restart: with (plots):

animate (implicitplot, [x^3+y^3=3, x= −5..t, y= −5..t, filled,

color= green, thickness = 5],t=0..5);

71

Теперь мы научились с вами анимировать графики, а значит

совсем скоро мы сможем попробовать себя в мультипликационном

деле и создать короткий мультик, например:

72

Практическое задание 4

Задание 1. «Нарисовать» синусоиду с эффектом рисования:

Задание 2. Нарисовать вращающийся отрезок:

Задание 3. Окружность «катится»:

Задание 4. Окружность с диаметром «катится»

Задание 5. Движение окружности в окружности:

73

Задание 6. Движение окружности с диаметром в окружности:

Задание 7. Движение двух окружностей:

Задание 8. Ручкой рисуем окружность:

74

Лекции 5, 6. Построение геометрических фигур

по встроенным опциям

Подключим знакомый нам пакет графики и новый пакет гра-

фических встроенных опций:

with(plots):

with(plottools):

Когда в конце записи ставим «;», то можно увидеть список тех

самых опций:

[annulus, arc, arrow, circle, cone, cuboid, curve, cutin, cutout, cyl-

inder, disk, dodecahedron, ellipse, ellipticArc, exportplot, extrude, get-

data, hemisphere, hexahedron, homothety, hyperbola, icosahedron, im-

portplot, line, octahedron, parallelepiped, pieslice, point, polygon,

polygonbyname, prism, project, rectangle, reflect, rotate, scale, sector,

semitorus, sphere, stellate, tetrahedron, torus, transform, translate]

Ознакомимся с геометрическими фигурами этого пакета.

Круг задается по координатам центра и радиусу:

 g1 ∶= disk([1, 1], 1, color = "Chocolate"):

PLOT(g1);

Следующая фигура кольцо, оно по умолчанию находится в цен-

тре координат, а задаются только два радиуса:

g2 ∶= annulus(2..3, color= “YellowGreen”):

PLOT(g2);

75

Часть круга или кольца:

a1 ∶= sector([1,1], 0.5 ..2, Pi/3..Pi/2, color = “SkyBlue”):

PLOT(а1);

Соединим круг и сегмент:

display(a1,g1, scaling = constrained);

76

Можно создать полноценную круговую диаграмму аналогич-

ным образом:

c ∶= sector([1, 1], 5, 0..(1/4)*Pi, color = blue):

d ∶= sector([1, 1], 5, (1/4)*Pi .. 4*Pi*(1/3), color = red):

e ∶= sector([1, 1], 5, 4*Pi*(1/3) .. 35*Pi*(1/18), color = green):

f ∶= sector([1, 1], 5, 35*Pi*(1/18) .. 2*Pi, color = yellow):

display(c, d, e, f, axes = none, scaling = constrained);

Следующая линия ломаная:

g3 ∶= curve([[0, 0], [1, 3], [2, 1], [0, 0]], thickness = 2,

 color = khaki):

PLOT(g3);

Эллипс или по-простому овал:

g4 ∶= ellipse([1, 3], 2, 1, thickness = 3, color = "DodgerBlue"):

PLOT(g4, SCALING(CONSTRAINED));

77

Овал, в отличие от ломаной, можно закрасить:

g5 ∶= ellipse([1, 3], 2, 1, filled, color = "Bisque"):

PLOT(g5, SCALING(CONSTRAINED));

Окружность. Ее тоже нельзя закрасить, но можно задать тол-

щину:

g6 ∶= circle([1,2], 2, thickness = 3, color = brown):

PLOT(g6);

А теперь удалим часть линии:

a ∶= arc([3,0], 1, 0..(5*Pi/4)):

display(a, color = red, thickness = 3, scaling = constrained);

78

Гипербола:

g7 ∶= hyperbola([3, 1], 1, 2, thickness = 3, color = gold):

PLOT(g7);

Сектор:

g8 ∶= pieslice([0, 0], 1, (1/4)*Pi .. 3*Pi*(1/4), color = violet):

PLOT(g8);

Часть эллипса:

g9 ∶= ellipticArc([0, 0], 1, 2, −(1/4)*Pi .. 3*Pi*(1/4),

 color = magenta):

PLOT(g9, SCALING(CONSTRAINED));

79

Закрасим получившуюся область:

g10 ∶= ellipticArc([0, 0], 1, 2, −(1/4)*Pi .. 3*Pi*(1/4), filled,

color = pink):

PLOT(g10);

Отрезок задается по координатам концов:

g11 ∶= line([0, 0], [1, 2], thickness = 5, color = aquamarine):

PLOT(g11);

Прямоугольник по координатам двух противоположных вер-

шин:

g12 ∶= rectangle([−1, −1], [1, 2], color = orange):

PLOT(g12, SCALING(CONSTRAINED));

80

Самая универсальная фигура многоугольник:

g13 ∶= polygonplot([[0, 2], [2, −1], [2, −2], [1, −2], [1, −1]],

color = coral): display(g13);

Теперь поиграемся с фигурами:

display(g12, g13);

display(g13, g12);

Становится понятным, что фигуры накладываются «с конца».

Можно получить наложение «с начала», поставив дополнительные

скобки:

display([g12, g13]);

81

Можно задать прозрачность:

g121 ∶= rectangle([−1, −1], [1, 2], color = orange,

transparency= .5); display(g121, g13);

Можно удалить оси и убрать черный контур фигур:

display(g121, g13, style = polygon, axes = NONE);

Можно задать правильный многоугольник через цикл (коман-

да seq) и вводимую функцию:

ngon ∶= n −> [seq([cos(2*Pi*i/n), sin(2*Pi*i/n)], i = 1 .. n)]:

display([polygonplot(ngon(8), color = blue),

textplot([0, 0, Octagon])], axes = none);

82

s1 ∶= display([polygonplot(ngon(5), color = green)],

axes = none);

s2 ∶= circle([0, 0], 1, thickness = 5, color = red);

display(s1, s2);

Многоугольники можно рисовать при помощи матриц:

one_poly ∶= Matrix([[0, 0], [0, 1], [0.5, 0.5], [1, 1], [1, 0.05], [0.95,

0.05], [0.95, 0]], datatype = float):

polygonplot(one_poly, axes = boxed, colour = "Magenta", trans-

parency = 0.7, gridlines);

83

Мы можем воссоздать многоугольник выписывая координаты

точек отдельно от опции:

poly ∶= [[0, 1], [0, 2], [0.5, 2.75], [1.25, 3], [2, 2.75], [2.5, 2.25],

[1.75, 1.5], [2.5, 0.75], [2, 0.25], [1.25, 0], [0.5, 0.25]]:

polygonplot(poly, axes = boxed, color = "DarkGreen", transpar-

ency = 0.5);

Еще одно задание прямоугольника:

display(polygonbyname("rectangle", inbox = [16, 9],

color = "Red"), scaling = constrained);

Если вам пресытились часто используемые цвета, то введите

в рабочее окно эти две функции и сможете увидеть все доступные

оттенки:

with(ColorTools):

Palette(GetColorNames());

84

Практические занятия 5, 6.

Задание 1. Нарисовать треугольник:

Задание 2. Из четырех треугольников составить цветной квадрат:

Задание 3. Из шести треугольников составить цветной правиль-

ный шестиугольник:

Задание 4. Из четырех секторов составить цветной круг:

85

Задание 5. Нарисуйте полосатый эллипс. Как получить такую

закраску?

Задание 6. Нарисуйте рожицу. Задайте анимацию ее улыбки:

Задание 7. Нарисуйте снеговика. Можно свой вариант:

86

Задание 8. Если у вас есть желание, то можете нарисовать муль-

тяшного героя. Например:

87

Лекция 7. Анимация встроенных фигур

Попробуем объединить изученные ранее нами две темы: ани-

мация и встроенные фигуры. Набираем в рабочее окно нужные нам

для работы встроенные пакеты:

with(plots): with(plottools):

Не все встроенные фигуры можно анимировать командой ani-

mate. Этой команде лучше всего подчиняется многоугольник.

Анимируем цветной квадрат, состоящий из четырех маленьких

треугольников, задавая анимацию каждого треугольника по отдель-

ности:

ani-

mate(polygonplot,[[[cos(Pi/4+t),sin(Pi/4+t)],[0,0],[cos(Pi/4+t),sin(Pi/4

+ t)]],color=red],t=0..2*Pi);

А теперь добавим ещё три, но других цвета (обратите внима-

ние на чередование знаков внутри функции):

Желтый:

g1∶=animate(polygonplot,[[[cos(−(3/4)*Pi+t/4),sin(−(3/4)*Pi+

t/4)],[0,0],[cos(−(1/4)*Pi+t/4), sin((1/4)*Pi+t/4)]],color=yellow],

t=0..2*Pi):

88

Синий:

g2∶=ani-

mate(polygonplot,[[[cos((3/4)*Pi+t/4),sin((3/4)*Pi+t/4)],[0,0],[cos(−(3/

4)*Pi+t/4),sin(−(3/4)*Pi+t/4)]],color=blue],t=0..2*Pi):

Зеленый:

g3∶=animate(polygonplot,[[[cos(Pi/4+t/4),sin(Pi/4+t/4)],[0,0],

[cos((3/4)*Pi+t/4),sin((3/4)*Pi+t/4)]], color=green],t=0..2*Pi):

Красный:

g4∶=animate(polygonplot,[[[cos(−Pi/4+t/4),sin(−Pi/4+t/4)],

[0,0],[cos(Pi/4+t/4),sin(Pi/4+t/4)]],color=red],t=0..2*Pi):

И наконец-то запускаем:

display(g1,g2,g3,g4);

Вот такая красота у нас вышла. Если вам нужен единый квад-

рат, то дело обстоит куда серьёзнее, ведь здесь не будет раздельных

функций и нужно быть как можно внимательнее при наборе текста:

ani-

mate(polygonplot,[[[2*cos(Pi/4+t)+cos(Pi/4+t),2*sin(Pi/4+t)+sin(Pi/4

+t)],[2*cos(Pi/4+t)+cos(3*Pi/4+t),2*sin(Pi/4+t)+sin(3*Pi/4+t)],[2*cos

(Pi/4+t)+cos(5*Pi/4+t),2*sin(Pi/4+t)+sin(5*Pi/4+t)],

89

[2*cos(Pi/4+t)+cos(−Pi/4+t),2*sin(Pi/4+t)+sin(−Pi/4+t)]]],

t=0..2*Pi, color=yellow);

Следующий анимационный график – это график кривой линии

curve. Нарисуем синусоиду с эффектом «рисования»:

animatecurve(sin(x), x = −Pi .. Pi, frames = 50);

Кстати, если нам нужно изобразить график по оси у, то после

указания нашей функции, просто, через запятую пишем нужную ось:

animatecurve([sin(x), x, x = −Pi .. Pi], frames = 50);

90

А теперь зададим окружность:

animatecurve([sin(x), cos(x), x = −Pi .. Pi]);

Давайте добавим дополнительные параметры, чтобы посмот-

реть, как поведёт себя график:

animatecurve([sin(x), cos(x), x = −Pi .. Pi], view = [−1..2, −2..2],

scaling = constrained);

Теперь изобразим на координатной плоскости несколько функ-

ций одновременно:

animatecurve({x, cos(x), sin(x)}, x = −Pi .. Pi, color = green,

frames = 50);

91

Давайте выделим каждое уравнение отдельным цветом:

animatecurve({x, cos(x), sin(x)}, x = −Pi .. Pi, color = [blue, red,

green], frames = 50);

Заметьте, что цвет мы указываем через запятую в специальном

месте кода.

Или иначе: каждое уравнение обозначим через отдельную пе-

ременную:

q1 ∶= animatecurve(sin(x), x = −Pi .. Pi, color = green,

frames = 50);

q2 ∶= animatecurve(x, x = −Pi .. Pi, color = blue, frames = 50);

q3 ∶= animatecurve(cos(x), x = −Pi .. Pi, frames = 50);

display(q1, q2, q3);

92

93

Практическое занятие 7

Задание 1. Нарисовать вращающийся треугольник

Задание 2. Нарисовать одновременную анимацию двух сину-

соид

Задание 3. Нарисовать встречную анимацию двух синусоид

94

Задание 4. Нарисовать анимацию окружности

Задание 5. Нарисовать параллельную анимацию окружностей

Задание 6. Нарисовать анимацию окружностей со сдвигом

95

Лекции 8, 9. Встроенная анимация

Для изучения темы в рабочее окно введём новую функцию:

with(plots);

with(plottools);

Данная функция поможет нам при дальнейшей работе, чтобы

использовать новые опции. Начнём:

Rotate (Поворот)

Иногда на графике нам требуется посмотреть на одну и ту же

фигуру под разным углом, желательно, чтобы изображен был как ис-

ходный рисунок, так и перевернутый под углом. Возьмём знакомый

нам эллипс или по-простому овал:

s1 ∶= ellipse([0, 0], 2, 1, filled, color = red);

s11 ∶= display(rotate(s1, (1/6)*Pi));

display(s1, s11, scaling = constrained);

Под s1 мы рисуем эллипс, а затем создаем дополнительную

функцию s11. В скобках, после указания опции rotate, мы берем нашу

фигуру s1 и через запятую указываем на какой угол нам стоит её по-

вернуть. Давайте ещё раз:

s2 ∶= ellipse([1, 3], 2, 1, filled, color = yellow);

s22 ∶= display(rotate(s2, (1/6)*Pi));

display(s2, s22, scaling = constrained);

96

Теперь воспользуемся с знакомыми нами ранее функциями

и объединим их с нашей темой:

s2 ∶= implicitplot((x−2)^2+y^2 = 1, x = −2 .. 5, y = −5 .. 5, color

= blue);

animate(rotate, [s2, t], t = 0 .. 4*Pi);

А теперь подобным образом анимируем треугольник:

s3 ∶= polygonplot([[[0, 0], [2, 1], [1, 2], [0, 0]]], color = green);

animate(rotate, [s3, t], t = 0 .. 4*Pi);

97

Ну что же, мы вспомнили опцию анимации, даже построение

фигуры по точкам. Теперь научимся зацикливать наши фигуры,

чтобы при воспроизведении рисунок делал одно и то же движение

несколько раз:

c ∶= circle([1, 1], .5, color = blue);

r1 ∶= seq(rotate(c, (1/3)*Pi*i), i = 1 .. 6);

r2 ∶= display(r1, r1); display(r2);

Немного напоминает кабинки из-под колеса обозрения, не так

ли? Давайте заставим наши окружности двигаться по одной траек-

тории, и всё что нам для этого нужно − приписать маленькую

строчку кода:

animate(rotate, [r2, t], t = 0 .. 4*Pi);

Ну а теперь вернёмся к знакомой параболе и заставим дви-

гаться её по траектории окружности, не сдвигая центра.

s4 ∶= plot(x^2, x = −3 .. 3);

animate(rotate, [s4, t], t = 0 .. 4*Pi);

98

Сейчас, зная этот трюк, мы попробуем создать цветок, для это-

го возьмем график синуса, анимируем и зафиксируем некоторые её

положения на плоскости:

a1 ∶= plot(sin(x), x = 0 .. Pi, filled = true,color=red);

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15);

Теперь мы можем создавать различные варианты этого приема:

a1 ∶= plot(sin(x^2), x = 0 .. 2*Pi, color = pink, filled = true);

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15);

99

a1 ∶= plot(sin(x/2), x = 0 .. Pi, filled, color = green);

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15);

a1 ∶= plot(sin(x + 2), x = 0 .. Pi, filled, color = gold);

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15);

a1 ∶= plot(sin(2*x), x = 0 .. Pi, filled, color = blue);

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15);

100

a1 ∶= plot(sin(2 + x), x = 0 .. 2*Pi, color = yellow, filled = true);

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15,axes=none);

a1 ∶= plot(2 − sin(x), x = 0 .. 2*Pi, color = magenta, filled = true);

animate(rotate, [a1, t], t = 0 .. 4*Pi, trace = 15);

Попробуйте и вы сделать подобный цветок, изменив цвет или

формулу изначального графика.

Такой же трюк сработает и в полярных координатах:

a3 ∶= polarplot(cos(3*x), x = 0 .. 5*Pi, color = blue); ani-

mate(rotate, [a3, t], t = 0 .. 4*Pi, trace = 5);

101

a2 ∶= polarplot(x, x = 0 .. 3*Pi, color = green);

animate(rotate, [a2, t], t = 0 .. 4*Pi);

102

Повторим материал прошлого параграфа и объединим наши

три фигуры:

a ∶= display(a1, a3, s3); animate(rotate, [a, t], t = 0 .. 4*Pi);

Посмотрим как происходит вращение надписи:

t1 ∶= plot(x^2, x = −3 .. 3, color = blue):

t2 ∶= textplot([2, 3, 'xjfvgdkjghlfhg'], align = ABOVE):

t3 ∶= textplot([−2, 3, 'xjfvgdkjghlfhg'], align = BELOW):

t4 ∶= display(t1, t2, t3):

animate(rotate, [t4, t], t = 0 .. 2*Pi);

103

Видим, что надпись, в отличие от графика не переворачива-

ется.

Опция scale (масштабирование)

Иногда нам требуется изменить размер графика, его длину,

ширину и так далее. Для этого совсем необязательно создавать но-

вый график или переписывать старый, достаточно воспользоваться

опцией scale. Начнём знакомство с параболы:

with(plots); with(plottools);

s1 ∶= plot(x^2, x = −3 .. 3);

s2 ∶= scale(s1, 2, 1);

display(s1, s2);

104

a3 ∶= scale(s1, 2, 2); display(s1, a3);

Теперь соеденим эти графики в одном рисунке:

s3 ∶= display(s1, s2); s4 ∶= scale(s3, 6, 1/2); display(s4, s3);

Сейчас добавим параметр, обратите внимание, что функция s4

повторяется дважды.

s4 ∶= animate(scale, [s1, t, t], t = −5 .. 5);

display(s4, s4);

105

Если вам нужно зафиксировать некоторые положения этой па-

раболы, то нужно добавить лишь функцию trace

s4 ∶= animate(scale, [s1, t, 2], t = 1 .. 5, trace = 15);

display(s4, s4);

Заставим наш график поворачиватся по оси x, с условием, что

мы находимся в трехмерном пространстве:

animate(scale, [s1, t^2, 2], t = −5 .. 5);

Попробуем проделать аналогичные действия с окружностью:

b1 ∶= implicitplot(x^2+y^2 = 1, x = −3 .. 3, y = −3 .. 3,

 color = green);

b2 ∶= animate(scale, [b1, t, t], t = −5 .. 5);

106

А если мы воспроизведём две эти функции одновременно,

то на выходе получим вот такую забавную анимацию:

Опция translate (параллельный перенос)

Очень часто нам требуется перенести объект из одного места

в другое. Сдвинуть линию на пару сантиметров вниз, перенести центр

окружности влево, перенести вершину параболы правее изначаль-

ного положения. Конечно, можно просто пересчитать координаты

и перестроить уравнение заново, но что делать, если нам нужно уви-

деть два графика одновременно?

Для этого на помощь приходит опция translate.

И снова вернёмся к нашей любимой параболе:

with(plots); with(plottools);

s1 ∶= plot(x^2, x = −3 .. 3); s2 ∶= translate(s1, 1, 2);

a ∶= plot([[1, 2]],

107

style = point, color = blue, symbol = DIAMOND,

symbolsize = 15);

display(s1, s2, a);

a2 ∶= translate(s1, −10, 0); display(s1, a2);

Добавим третью и четвертую параболу:

s3 ∶= display(s1, s2);

s4 ∶= translate(s3, −2, 6);

display(s4, s3);

Перенос параболы вдоль прямой y = x:

s4 ∶= animate(translate, [s1, t, t], t = −5 .. 5):

s5 ∶= plot(x, x = −10 .. 10, color = green):

display(s4, s5);

108

Перемещение параболы с отрицательным коэффициентом

по другой параболе:

a1 ∶= plot(−x^2, x = −3 .. 3):

s4 ∶= animate(translate, [a1, t, t^2], t = −10 .. 10):

s5 ∶= plot(x^2, x = −10 .. 10):

display(s4, s5);

Соединим обе команды rotate и translate:

s3 ∶= polygonplot([[[0.5, 0.5], [1.5, 1.5]]]):

s4 ∶= animate(rotate, [s3, t], t = 0 .. 4*Pi, trace = 15):

s5 ∶= translate(s4, 1, 1):

109

display(s5, s5);

Так мы получаем вращение в любой точке плоскости.

Опция homothety (подобие)

Когда нам нужная точно такая же функция или объект, но в дру-

гом месте, на помощь приходит данная функция.

with(plots); with(plottools);

s1 ∶= plot(x^2, x = −3 .. 3);

s2 ∶= homothety(s1, 2);

display(s1, s2);

110

Добавив знак минус координате у, мы отразим её вниз:

a3 ∶= homothety(s1, −2); display(s1, a3);

Такой трюк можно провернуть не только с обычной функ-

цией, но и с объектом:

b1 ∶= polygonplot([[0, 0], [1, 2], [2, 1]], color = red);

b2 ∶= animate(homothety, [b1, t], t = 1 .. 5);

display(b2, b2);

s1 ∶= display(disk([0, 0], 1, color = yellow, style = polygon));

s2 ∶= animate(homothety, [s1, t], t = −5 .. 5);

display(s2, s1, axes = NONE);

Опция project (проекция)

Не секрет, что в математике мы очень часто проецируем какой-

нибудь объект на прямую, данная функция применяется во многих

областях.

111

В начертательной геометрии, черчении, географии (специаль-

ные виды проектирования на плоскость, сферу и другие поверхности

используются для составления карт), астрономии (устройство астро-

лябии, с помощью которой можно измерять углы между направлени-

ями на поверхности Земли и фиксировать координаты космических

тел на небесной сфере), фотографии (используется для отображения

сферических панорам).

with(plots); with(plottools);

s1 ∶= implicitplot(x^2+y^2 = 1, x = −3 .. 3, y = −3 .. 3, color =

green);

s2 ∶= project(s1, [[1, 1], [3, 6]]);

display(s1, s2);

d1 ∶= plot(x^2, x = −3 .. 3, color = green);

d2 ∶= project(d1, [[1, 1], [3, 6]]);

display(d1, d2);

Опция reflect (симметрия относительно точки)

Симметрия окружает нас повсюду, любому студенту физмата

ясно как день, что природа полна примерами симметрии: форма ли-

стьев, цветов, бабочки и многое другое. Неудивительно, что такое

многообразие помогает нам создать красивый эстетический образ

в дизайне, архитектуре или в декоративно-прикладном искусстве.

with(plots); with(plottools);

s1 ∶= plot(x^2, x = −3 .. 3);

112

s2 ∶= reflect(s1, [1, 2]);

a ∶= plot([[1, 2]], style = point, color = blue, symbol = DIA-

MOND, symbolsize = 15);

display(s1, s2, a);

s3 ∶= display(s1, s2); s4 ∶= reflect(s3, [−2, 6]); display(s4, s3);

#Анимация вращения параболы

b1 ∶= animate(rotate, [s5, t], t = 0 .. 4*Pi):

#Дублирование вращающейся параболы

b2 ∶= reflect(b1, [2, 2]):

#Перемещение сдублированной параболы

b3 ∶= translate(b1, −4, 9):

display(s5, b2, b3);

113

«Самолетики летают»:

f 1 ∶= polygonplot([[1, 1], [1.5, 1+(1/2)*sqrt(3)], [2, 1]],

color = red);

f 2 ∶= animate(rotate, [f 1, t], t = 0 .. 4*Pi);

f 3 ∶= reflect(f 2, [2, 2]);

f 4 ∶= translate(f 2, 4, 9);

display(f 1, f 3, f 2, f 4);

114

В заключении рассмотрим симметрию относительно прямой:

r1 ∶= plot((x−4)^3, x = −5 .. 7, y = −10 .. 10, color = green);

r2 ∶= reflect(r1, [[0, 0], [0, 1]]);

display(r1, r2);

115

Здесь прямой выступает ось ОУ, а далее наклонная прямая:

r1 ∶= polygonplot([[1, 1], [1, 2], [2, 3]], color = red);

r2 ∶= reflect(r1, [[0, 0], [1, 2]]);

r3 ∶= plot(2*x, x = 0 .. 2, color = green);

display(r1, r2, r3, scaling = constrained);

Теперь мы освоили основные приемы работы с графикой

в Maple, а значит, сможем попробовать себя в мультипликационном

деле и создать короткий мультик, попробуйте!

116

Практические задания 8, 9

Задание 1. Нарисовать вращающуюся параболу, зафиксировать 5

положений

Задание 2. Нарисовать вращающийся цветок

Задание 3. Нарисовать вращающийся квадрат с кругом, зафик-

сировать 15 положений

117

Задание 4. Нарисовать вращающийся треугольник, зафиксиро-

вать 15 положений

Задание 5. Нарисовать вращающийся круг

Задание 6. Нарисовать вращающийся цветной квадрат

118

Задание 7. Нарисовать вращающийся цветной круг

Задание 8. Нарисовать вращающуюся картинку

Задание 9. Нарисовать вращающуюся картинку с надписью

119

Задание 10. Нарисовать елочки с демонстрацией встроенных

преобразований. Сделать надписи.

Задание 11. Нарисовать улитку в движении

120

Задание 12. Нарисовать рост гриба

Задание 13. Нарисовать остров с мельницей, деревьями и сол-

нцем. Задать анимацию

120

Лекция 10. Смена кадров и слайдов

Следующая интересная графическая возможность пакета

Maple, это смена кадра, команда insequence. Она позволяет

быстро менять кадры, задающие разные функции:

q1 ∶= plot(1/(x − 1), x = −2 .. 2, y = −3 .. 3, color = red, dis-

cont = true);

q2 ∶= plot(x, x = −2 .. 2, y = −3 .. 3, color = blue);

q4 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = green);

display(q1, q2, q4, insequence = true);

Создается эффект анимации, хотя здесь ее нет.

А теперь посмотрим те же функции, добавим еще одну

и сделаем добовление графиков:

q1 ∶= plot(1/(x − 1), x = −2 .. 2, y = −3 .. 3, discont = true);

q2 ∶= plot(x, x = −2 .. 2, y = −3 .. 3, color = blue);

q3 ∶= plot(cos(x), x = −2 .. 2, y = −3 .. 3, color = red);

q4 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = green);

q11 ∶= display(q1, q2);

q12 ∶= display(q1, q2, q3);

q13 ∶= display(q1, q2, q3, q4);

display(q1, q11, q12, q13, insequence = true);

121

С помощью смены кадра можно получить эффект смены

цвета, задавая одну и ту же функцию:

q1 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = green);

q2 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = red);

q3 ∶= plot(x^2, x = −2 .. 2, y = −3 .. 3, color = blue);

display(q1, q2, q3, insequence = true);

122

Все происходит очень быстро, смена цвета едва улавливается.

Можем замедлить переключение задавая интервал анимации

через параметр:

q1 ∶= animate(plot, [x^2, x = −2 .. 2, y = −3 .. 3, color = green,

thickness = 3], a = 0 .. 10);

q2 ∶= animate(plot, [x^2, x = −2 .. 2, y = −3 .. 3, color = red,

thickness = 3], a = 0 .. 10);

q3 ∶= animate(plot, [x^2, x = −2 .. 2, y = −3 .. 3, color = blue,

thickness = 3], a = 0 .. 10);

display([q1, q2, q3], insequence);

Теперь соединим две анимации, при которых одна функция

плавно перейдет в другую с помощью смены кадра. Возьмем уже

известные нам анимации:

a1 ∶= animate(polarplot, [[sin(x*t), x, x = −4 .. 4], color = blue],

t = 1 .. 4);

a3 ∶= polarplot(sin(4*x), x = 0 .. 2*Pi, color = blue);

a2 ∶= animate(rotate, [a3, t], t = 0 .. −4*Pi);

display([a1, a2], insequence = true);

123

Следующая функция позволит сделать смену кадра дискрет-

ной, а не непрерывной. Как было до этого. Это функция trunc(t),

задающая целую часть числа, график этой функции мы рисовали

на первых занятиях.Смотрим первый пример, дискретное движение

прямой:

animate(plot, [trunc(t)], t = 0 .. 5, scaling = constrained);

Следующий пример: точка, прыгающая по синусоидной тра-

ектории:

 animate(pointplot, [[trunc(t), sin(trunc(t))]], t = 0 .. 5,

 scaling = constrained);

124

Скачкообразное изменение треугольника:

animate(polygonplot, [[[trunc(t), trunc(t)], [1, 2], [3, −1]],

color = green], t = 0 .. 3, scaling = constrained);

Теперь, движение одной точки по прямой меняется на движе-

ние другой точки по другой прямой:

s1∶=animate(pointplot,([[Pi/2,trunc(t/62)*(t/120)]]),t=0..120

,symbol = solidCIRCLE, symbolsize = 15):

s2∶=animate(pointplot,([[(1−trunc(t/62))*Pi*(t)/60,

sin((1−trunc(t/62))*Pi*(t)/60)]]),t=0..120):

display(s1,s2);

125

Соединим фнкцию trunc(t) и команду insequence, получим

целый мультфильм о преобразовании многоугольников:

r1 ∶= animate(polygonplot, [[[0, 0], [3, 0], [3, 3],

 [3 − trunc(t)/2, trunc(t)/2]], color = blue], t = 0 .. 6.9);

r2 ∶= animate(polygonplot, [[[0, 0], [3, 0], [trunc(t)/2, trunc(t)/2],

[3 − trunc(t)/2, trunc(t)/2]], color = red], t = 6.9 .. 3);

r3 ∶= animate(polygonplot, [[[0, 0.75*trunc(t/4) + trunc(t/6)/2],

[1.5, 0 + trunc(t/6)/2], [3, 0.75*trunc(t/4) + trunc(t/6)/2],

 [1.5, 1.5 + trunc(t/6)/2]], color = yellow], t = 3 .. 7);

r4 ∶= animate(polygonplot, [[[0, 1.25], [1.5, 2 + 0.5*trunc(t/4)],

[3, 1.25], [1.5, 0.5 − 0.5*trunc(t/4)]], color = yellow], t = 0 .. 6);

display([r1, r2, r3, r4], insequence = true);

126

Следующий дискретный эффект анимации получим с помощью

известной нам кусочно-заданной функции:

vel2 ∶= t −> rectangle([t, t], [t + 10, t + 10], color = green);

vel3 ∶= t −> vel2(piecewise(t <= 25, 0, t <= 50, 10, t <= 75, 20,

t <= 100, 30));

disp2 ∶= t −> display(vel3(t));

animate(disp2, [t], t = 0 .. 100);

Здесь просто дискретное перемещение квадрата, а далее уве-

личение квадрата, при помощи аналогичной кусочно-заданной

функции:

vel2 ∶= t −> rectangle([t, t], [0, 0], color = orange);

vel3 ∶= t −> vel2(piecewise(t <= 25, t, t <= 40, t + 10, t <= 55,

 t + 50, t <= 100, −t + 100));

127

disp2 ∶= t −> display(vel3(t));

animate(disp2, [t], t = 0 .. 100);

Следующий пример очень сложный, создает мультфильм, ис-

пользуя предложенный материал:

128

Практическое задание 10

Нарисовать звездное небо с последовательным появлением

звезд и движение месяца:

129

Лекция 11. Простейшее программирование в графике

1. Построение касательной к графику функции

Одной из классических задач математического анализа явля-

ется задача нахождения и построения касательной к графику функ-

ции. Рассмотрим эту задачу. Сначала проделаем вычисления сами

«вручную» и зададим графики. Для параболы:

plot([x^2, 2*x − 1, [[1, 1]]], x = −5 .. 5, y = −5 .. 5, style = [line,

line, point], symbolsize = [15]);

Для синусоиды:

plot([sin(x), sin(1) + cos(1)*(x − 1), [[1, sin(1)]]], x = −10 .. 10,

style = [line, line, point], thickness = [3, 3], symbolsize = [20]);

Теперь будем использовать умение программы вычислять про-

изводную для построения касательной к графику функции:

f ∶=x−>x^3+2:

g∶=diff(f(x),x):

a∶=1/3:

130

b∶=eval(g,x=a):

g1∶=plot (f (x),x= −2..2,thickness=3):

g2∶=plot([[a,f (a)]],style=POINT,symbol=[CIRCLE],

symbolsize=[15],color=black):

g3∶=plot (f (a)+b*(x−a),x= −2*Pi..2*Pi, color=blue):

display(g1,g2,g3,scaling=constrained);

Продемонстрируем геометрический смысл производной через

анимацию перехода секущей в касательную:

g4∶=plot([[1,1]],style=POINT,color=blue):

g3∶=animate(pointplot,([[1+d,(1+d)^2]]),d=1.5..0):

g1∶=plot(x^2,x= −0.5..2.5,color=green):

g2∶=animate(implicit-

plot,[(x−1)/d=(y−1)/((1+d)^2−1),x= −5..6.5,y= −5..6.5],d=1.5..0,trace

=24):

display(g1,g2,g3,g4);

131

Далее сделаем анимацию касательной и нормали к синусоиде:

a1 ∶= plot(sin(x), scaling = constrained);

a2 ∶= animate(plot, [cos(t)*(x − t) + sin(t), x = t − 1 .. t + 1,

 color = blue], t = −10 .. 10, trace = 6);

a3 ∶= animate(plot, [− (x − t)/cos(t) + sin(t), x = t − 1 .. t + 1,

color = green], t = −10 .. 10, trace = 6);

display(a1, a2, a3);

2. Условия и циклы

if `булево` `выражение` then `последовательность` `операто-

ров` [elif `булево` `выражение` `последовательность` `операторов`]

[else `последовательность` `операторов`] end if `оператор` `ветвле-

ния`;`операция"if"` "if" (`условие`, `операнд` 1,`операнд` 2); `опера-

ции`*`тернарного`*`условия``цикл` [for `имя`] [from `выражение`]

[by `выражение`][to `выражение`] [while `булево` `выражение`] do

`последовательность` `операторов` end do;

#Пример1

x∶=5:

if x<0 then print("yes");

else print("no");

end if;

 "no"

132

#Пример2

x∶=2; if x>2 then print("no");

elif x<1 then print("yes");

else print("gol"):

end if;

 "gol"

#Пример3

x∶=1.3;

if x<=1 then print("no");

elif x<2 then print("yes");

else print("no"):

end if;

 "yes"

#Пример4

x∶=1.5;if x<=1 then f=0;

elif x<2 then f=1;

elif x<3 then f=2;

else f=3

end if;

 1.5

 f = 1

#Пример5

x∶=4;

if x>0 then print("yes")end if;

 4

 "yes"

#Пример6

a∶=1:b∶=3:

c∶=`if `(a<b,a,b);

 1

#Пример7

a∶=1:b∶=3:

c∶=`if `(a>b,cos(a),sin(b));

 sin(3)

#Пример8

a∶=4:b∶=3:

c∶=`if `(a<=1,cos(1),sin(2));

 sin(2)

133

Далее рассмотрим примеры использования циклов и условий

для построения графиков:

for i from 1 to 2 do plot(i*s,s= −2..2,h= −2..2,color=green)end

do;

Для того, чтобы соединить полученные графики на одну кар-

тинку, необходимо перечислить результат в display:

for i from 1 to 2 do s(i)∶=plot(i*s,s= −2..2,h= −2..2,

color=green)end do;

display(s(1),s(2));

for i from 1 to 3 do s(i)∶=plot(i*s,s= −2..2,h= −2..2,color

=COLOR(RGB,i−1, −i,3−i))end do:display(s(1),s(2),s(3));

134

Далее еще два примера:

for n to 5 do

 s[n] ∶= polarplot([[0, 0], [n, n*Pi/3]], color = green);

end do;

display(s[1], s[2], s[3], s[4], s[5], axes = none);

for n to 5 do

s[n] ∶= plot([[[0, 0], [n, 2*n − 3]]], color = green);

end do;

display(s[1], s[2], s[3], s[4], s[5], axes = none);

А теперь с анимацией:

s ∶= disk([0, 0], 1, color = yellow);

f 1 ∶= plot(x, x = 1 .. 1.5, color = yellow);

for i to 20 do

 d[i] ∶= rotate(f 1, Pi/6*i);

end do;

f 2 ∶= animate(rotate, [f 1, t], t = 0 .. 2*Pi);

a ∶= display(d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9],

d[10], d[11], d[12], d[13], d[14], d[15], d[16], d[17], d[18], d[19], d[20],

s, scaling = constrained);

animate(rotate, [a, t], t = 0 .. 2*Pi);

135

3. Процедуры

Далее познакомимся с простейшими процедурами:

Пример1

lc ∶= proc(s, u, t, v) u*s + t*v; end proc;

lc(Pi, x, −i, y);

lc(1, 2, 3, 4);

 Pi x − i y

 14

Пример2

Y ∶= proc(x) if 0 < sin(x) then sin(x); else −sin(x); end if; end

proc;

plot(Y, −6 .. 6, color = blue, scaling = constrained);

Пример3

restart;

ad ∶= proc(a, b) local x, s, i; x ∶= b; s ∶= 0; for i to a do s ∶= s +

i; end do; s ∶= s*x; end proc;

ad(5, 2);

 30

Пример4

s ∶= proc(f , x0) local f1; f1 ∶= f ^2; plot([f 1(x), f (x), [[x0, f (x0)]]],

x = −3 .. 3, y = −5 .. 5, style = [LINE, LINE, POINT], scaling = con-

strained, color = [blue, green, red]); end proc;

s(x −> x^2, 1);

136

Пример5

with(plots):

s ∶= proc(f , x0) local f1; f1 ∶= D(f); plot([f 1(x0)*f (x)], x = −3 ..

3, y = −5 .. 5, scaling = constrained, color = blue); end proc;

animate(s, [x −> x^2, t], t = −2 .. 2);

137

А теперь пример анимации касательной и нормали через про-

цедуру. Сначала для параболы, потом для синусоиды:

tangentline ∶= proc(f , x0) local f1; f 1 ∶= D(f); plot([f (x),

f 1(x0)*(x − x0) + f (x0), − (x − x0)/f 1(x0) + f (x0)], x = x0 − 2 .. x0 + 2,

scaling = constrained); end proc;

tangentline(x −> x^2, 1);

tangentline(x −> sin(x), 1);

Процедура удобна тем, что задав ее один раз, мы можем полу-

чать результат для любой функции, изменяя функцию и начальную

точку.

138

Практическое задание 11

Задание 1. Нарисовать «фонтан»:

Задание 2. Нарисовать мыльные пузыри:

Задание 3. Нарисовать синусоиду из треугольников:

139

Задание 4. Задать анимацию касательной и нормали для куби-

ческой параболы:

140

Лекция 12. Анимация цвета

В программе существует своя цифровая система цветов, назы-

ваемая RGB, где каждый цвет задается тремя числами. Это можно

использовать для анимации цвета. Рассмотрим пример:

animate(polygonplot, [[[2, 1], [0, 0], [1, 3]],

color = COLOR(RGB, 3*r, r, −r)], r = −2*Pi .. 2*Pi);

Можем сделать одновременную анимацию движения треуголь-

ника и смены его цвета:

animate(polygonplot, [[[cos(−Pi/4 + r), sin(−Pi/4 + r)], [0, 0],

[cos(Pi/4 + r), sin(Pi/4 + r)]], color = COLOR(RGB, −r, r, −r)], r =

−2*Pi .. 2*Pi);

141

В следующих примерах пробуем разные перемены цвета:

animate(polygonplot, [[[2, 1], [0, 0], [1, 3]], color =

COLOR(RGB, trunc(3*r), trunc(r), trunc(−r))], r = −5 .. 5);

142

Другой вариант:

animate(polygonplot, [[[2, 1], [0, 0], [1, 3]], color = COLOR

(RGB, trunc(5 + r), trunc(r), trunc(−r))], r = −5 .. 5);

А теперь зададим разноцветный цветок с переливами цвета:

a1∶=animate(polygonplot,[[[2,1.5],[0,0],[1,4],[3,5]],

color=COLOR(RGB,r, −r, −r)], r= −2*Pi..2*Pi):

a2∶=animate(polygonplot,[[[−2,1.5],[0,0],[−1,4],[−3,5]],

color=COLOR(RGB,r,r, −r)], r= −2*Pi..2*Pi):

a3∶=animate(polygonplot,[[[2, −1.5],[0,0],[1, −4],[3, −5]],

color=COLOR(RGB,r, −r,r)], r= −2*Pi..2*Pi):

a4∶=animate(polygonplot,[[[−2, −1.5],[0,0],[−1, −4],[−3, −5]],

color=COLOR(RGB, −r,r,r)], r= −2*Pi..2*Pi):

a5∶=animate(polygonplot,[[[−1,4],[0,0],[1,4],[0,7]],

color=COLOR(RGB, −r, −r,r)], r= −2*Pi..2*Pi):

a6∶=animate(polygonplot,[[[2,1.5],[0,0],[2, −1.5],[4,0]],

color=COLOR(RGB, −r, −r,r)], r= −2*Pi..2*Pi):

a7∶=animate(polygonplot,[[[−2,1.5],[0,0],[−2, −1.5],[−4,0]],

color=COLOR(RGB,r, −r,r)], r= −2*Pi..2*Pi):

143

a8∶=animate(polygonplot,[[[−1,−4],[0,0],[1,−4],[0,−7]],

color=COLOR(RGB,r,−r,−r)], r= −2*Pi..2*Pi):

display(a1,a2,a3,a4,a5,a6,a7,a8);

144

Практическое задание 12

Нарисовать цветик-шестицветик, он меняет цвет, вращается

относительно центра и перемещается по экрану:

145

Список литературы

1. Аммерал Л. Принципы программирования в машинной гра-

фике: Пер. с англ./ Л. Аммерал. – Москва: Сол-Систем, 1992. – 224 с.

2. Васильев А.Н. Maple 8. Самоучитель./ А.Н. Васильев. –

Москва: Издательский дом «Вильямс», 2003. –352 с.

3. Гилев В.Г. Современные пакеты прикладных программ. Ос-

новы работы в Maple [Электронный ресурс]: учебное пособие / сост.

В. Г. Гилев; Пермский государственный национальный исследова-

тельский университет. – Электронные данные. – Пермь, 2022 –

2,61 Мб; 95 с. – Режим доступа:

http://www.psu.ru/files/docs/science/books/uchebnie-posobiya/Gilev-

Sovremennye-Pakety-Prikladnyh-Programm-Osnovy-Raboty-V-

Maple.pdf.

4. Дьяконов В.П. Maple 11.10.12/13/14 в математических рас-

четах: самоучитель/ В.П. Дьяконов. – Москва: ДМК-пресс, 2011. –

699–701 с.

5. Егоров А.И. Обыкновенные дифференциальные уравнения

и система Maple / А.И. Егоров. – Москва: СОЛОН-ПРЕСС, 2016. –

392 с.

6. Ефремов Ю.С. Методы математической физики в пакете

символьной математики Maple: уч. пособие для академического ба-

калавриата/ Ю.С. Ефремов. – Москва: Юрайт, 2019. – 302 с.

7. Левин В.А. Элементы линейной алгебры и аналитической

геометрии на базе пакета "Mathematica": [учеб.пособие для вузов] /

В.А. Левин, В.В. Калинин, Е.В. Рыбалка. – Москва: ФИЗМАТЛИТ,

2007. – 191 с.

8. Матрос Д.Ш. Элементы абстрактной и компьютерной ал-

гебры: учеб.пособие для вузов рек. УМО по образованию по спец.

пед. образования./ Д.Ш. Матрос, Г.Б. Поднебесова. – Москва: Акаде-

мия, 2004. – 237 с.

9. Матросов А.В. Maple 6. Решение задач высшей математики

и механики./ А.В. Матросов. – Санкт-Петербург: BHV-Санкт-Петер-

бург, 2001. – 528 с.

10. Миронов Д. CorelDraw 11. Учебный курс. / Д. Миронов. –

Санкт-Петербург: Питер, 2003. – 448 с.

11. Могилев А.В. Информатика: учеб.пособие для вузов рек.

МО РФ; под ред. А. В. Могилева./ А.В. Могилев, Е.К. Хеннер,

Н.И. Пак. – 2-е изд., стер. – Москва: Академия, 2008. – 325 с.

146

12. Петров М.Н. Компьютерная графика. Учебник для ВУЗов./

М.Н. Петров, В.П. Молочков. – Санкт-Петербург: Питер, 2003. –

736 с.

13. Порев В.Н. Компьютерная графика. / В.Н. Порев. – Санкт-

Петербург: БХВ – Петербург, 2002. – 432 с.

14. Примеры выполнения лабораторных работ по алгоритмам

компьютерной графики: Метод. указания. (Сост.: Хайдаров Г.Г.,

Алексеев С.Ю.) – Санкт-Петербург: СПбГТИ(ТУ), 2005. – 30 c.

15. Савотченко С.Е. Методы решения математических задач

в Maple: учебное пособие/ С.Е. Савотченко, Т.Г. Кузьмичева. – Бел-

город: Белаудит, 2001. – 155 с.

16. Тимофеев Г.С. Графический дизайн. Учебный курс/ Г.С. Ти-

мофеев, Е.В. Тимофеева. – Ростов-на-Дону: Феникс, 2002. – 320 с.

17. Шикин А.В. Компьютерная графика. Динамика, реалисти-

ческие изображения./ А.В. Шикин, А.В. Боресков. – Москва: ДИА-

ЛОГ-МИФИ, 1996. – 288 с.

18. Шикин А.В. Компьютерная графика. Полигональные мо-

дели./ А.В. Шикин, А.В. Боресков. – Москва: ДИАЛОГ-МИФИ,

2001. – 464 с.

147

Приложения

Приложение 1

Темы проектов

1. Отображение баз данных на карту местности. Взаимодей-

ствие графического объекта и его описания.

2. Система отображения статистических данных.

3. Фракталы (визуальная математика).

4. Начертательная и аналитическая геометрия (конструктор).

5. Интерпретатор синтаксического описания динамической

картинки.

6. Формирование среды (туман, пламя, снег, салют, облака, ви-

деоэффекты, дождь, вода, смывка и так далее) и взаимодействие ее

с битовой картой.

7. Лаборатория мультипликации (взаимодействие карт, управ-

ление лентой).

8. Создатель образов (стиля) мультипликации.

9. Управление элементами поверхности (человеческое тело,

лицо).

10. Построения в неэвклидовых геометриях.

11. Имитация нетрадиционных графических курсоров (напри-

мер, грифель, пушок, мазок, размыв и так далее).

12. Эволюция вида растений, животных.

13. Синтез элементов ландшафта.

14. Выделение контура образа на динамической сцене и слеже-

ние за ним.

15. Обработка растровых картинок.

16. Построение объектов в проекции (прямая, обратная, стерео,

рыбий глаз, цилиндрическая).

17. Синтезатор двухмерных композиций.

18. Преобразователь классических картин.

19. Карикатура.

20. Создание компьютерного ролика.

148

Приложение 2

Примерные варианты контрольных работ

Контрольная работа № 1

(Первый рубежный контроль)

1. Описать основные элементы интерфейса используемого па-

кета.

2. Каким образом можно задать цвета: желтый, оранжевый, зо-

лотой, хаки?

3. Запишите часть стихотворения 14 шрифтом, Times New Ro-

man, синим цветом: Если мальчик любит мыло и зубной порошок,

Этот мальчик очень милый поступает хорошо.

4. Нарисуйте на одной картине разным цветом графики функ-

ций: заданной явно; заданной параметрически; неявно заданной; ку-

сочно-заданной.

5. Нарисуйте функцию y=sin(x+231) в бесконечности.

6. Задайте синий круг, зеленый прямоугольник, серую ломан-

ную с пятью звеньями.

Контрольная работа № 2

(Второй рубежный контроль)

1. Создайте анимацию на одной картине графиков функций: за-

данной явно с движением вдоль оси OX; заданной параметрически

вдоль оси OY; неявно заданной по диагонали относительно начала

координат; кусочно-заданной по диагонали.

2. Создайте анимацию функции y=sin(x) в виде рисунка каран-

дашом.

3. Задайте анимацию фигур произвольным образом: синий круг,

зеленый прямоугольник, серая ломанная с пятью звеньями.

Примерный перечень заданий к зачету:

Индивидуальное задание: нарисовать анимационную картину

на плоскости на любую тему с заданными требованиями (не менее 2-х

анимаций по встроенным опциям, не менее одной анимации функ-

ции).

149

Содержание

Введение .. 3

Лекция 1. Знакомство с программой Maple. Интерфейс программы.

Подготовка к работе с графикой Maple .. 7

Практическое занятие 1. .. 22

Лекция 2. Оформление графика функции .. 23

Практическое задание 2 ... 42

Лекция 3. Построение графиков различных функций 44

Практическое занятие 3 ... 55

Лекция 4. Анимация графика функции .. 58

Практическое задание 4 ... 72

Лекции 5, 6. Построение геометрических фигур по встроенным

опциям ... 74

Практические занятия 5, 6. .. 84

Лекция 7. Анимация встроенных фигур ... 87

Практическое занятие 7 ... 93

Лекции 8, 9. Встроенная анимация ... 95

Практические задания 8, 9 ... 116

Лекция 10. Смена кадров и слайдов ... 120

Практическое задание 10 ... 128

Лекция 11. Простейшее программирование в графике 129

Практическое задание 11 ... 138

Лекция 12. Анимация цвета ... 140

Практическое задание 12 ... 144

Список литературы ... 145

Приложения .. 147

Темы проектов .. 147

Примерные варианты контрольных работ 148

150

ОПИСАНИЕ ФУНКЦИОНАЛЬНОСТИ ИЗДАНИЯ:

Интерфейс электронного издания (в формате pdf) можно

условно разделить на 2 части.

Левая навигационная часть (закладки) включает в себя содер-

жание книги с возможностью перехода к тексту соответствующей

главы по левому щелчку компьютерной мыши.

Центральная часть отображает содержание текущего раз-

дела. В тексте могут использоваться ссылки, позволяющие более по-

дробно раскрыть содержание некоторых понятий.

МИНИМАЛЬНЫЕ СИСТЕМНЫЕ ТРЕБОВАНИЯ:

 Celeron 1600 Mhz; 128 Мб RAM; Windows XP/7/8 и выше;

разрешение экрана 1024×768 или выше; программа для просмотра

pdf.

СВЕДЕНИЯ О ЛИЦАХ, ОСУЩЕСТВЛЯВШИХ ТЕХНИЧЕ-

СКУЮ ОБРАБОТКУ И ПОДГОТОВКУ МАТЕРИАЛОВ:

Оформление электронного издания : Издательский центр

«Удмуртский университет».

Компьютерная верстка: Т.В. Опарина.
Авторская редакция.

Подписано к использованию 30.12.2025

Объем электронного издания 8,2 Мб

Издательский центр «Удмуртский университет»

426034, г. Ижевск, ул. Ломоносова, д. 4Б, каб. 021

Тел. : +7(3412)916-364 E-mail: editorial@udsu.ru

__

mailto:editorial@udsu.ru

	Введение
	Лекция 1. Знакомство с программой Maple. Интерфейс программы. Подготовка к работе с графикой Maple
	Практическое занятие 1

	Лекция 2. Оформление графика функции
	Практическое задание 2

	Лекция 3. Построение графиков различных функций
	Практическое занятие 3

	Лекция 4. Анимация графика функции
	Практическое задание 4

	Лекции 5, 6. Построение геометрических фигур по встроенным опциям
	Практические занятия 5, 6.

	Лекция 7. Анимация встроенных фигур
	Практическое занятие 7

	Лекции 8, 9. Встроенная анимация
	Практические задания 8, 9

	Лекция 10. Смена кадров и слайдов
	Практическое задание 10

	Лекция 11. Простейшее программирование в графике
	Практическое задание 11

	Лекция 12. Анимация цвета
	Практическое задание 12

	Список литературы
	Приложения
	Темы проектов
	Примерные варианты контрольных работ

