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Введение

Данное учебно-методическое пособие подготовлено преподавателями ка-
федры математического анализа и отражает опыт при проведении занятий
и организации самостоятельной работы студентов Института нефти и газа
им. М.С.Гуцириева и Института экономики и управления в Удмуртском го-
сударственном университете.

Пособие предназначено для методического обеспечения раздела «Диф-
ференциальные уравнения» курса «Высшая математика», «Математика»,
«Математический анализ» при обучении русскоязычных и иностранных сту-
дентов.

В пособии содержатся краткие теоретические сведения о дифференци-
альных уравнениях и примеры их применения, алгоритмы решения диффе-
ренциальных уравнений разных типов. Пособие содержит большое количе-
ство примеров с решениями и варианты типовых заданий.

Индивидуальные задания могут быть использованы для организации ра-
боты на практических занятиях и в качестве заданий для самостоятельной
работы студентов.

Пособие предназначено обеспечить студентов наглядным вспомогатель-
ным материалом и индивидуальными заданиями при изучении курса и мо-
жет быть использовано для студентов других нематематических направлений
УдГУ.
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1 Основные определения и обозначения

Обыкновенным дифференциальным уравнением (Д У) называ-
ется соотношение вида

F
(
x, y, y′, . . . , y(n)

)
= 0,

связывающее независимую переменную x, функцию y(x) и ее производные
до n-го порядка включительно.

Уравнение
F (x, y, y′) = 0

называется дифференциальным уравнением первого порядка.
Дифференциальное уравнение вида

y′ = f(x, y) или
dy

dx
= f(x, y)

называется дифференциальным уравнением, разрешенным относи-
тельно производной.

Дифференциальное уравнение вида

M(x, y)dx+N(x, y)dy = 0

называется ДУ первого порядка в симметричной форме.
Решением дифференциального уравнения называется функция

y = φ(x),

которая, будучи подставлена в уравнение, обращает его в тождество.
Иногда решение ДУ y = φ(x) находят в неявном виде Ψ(x, y) = 0. Дан-

ное равенство неявно определяет функцию y = φ(x), являющуюся решением
заданного дифференциального уравнения.

График функции y = φ(x) называется интегральной кривой.
Процесс нахождения решения ДУ называется интегрированием. В об-

щем случае данный процесс приводит к бесконечному множеству решений
(функций), отличающихся некоторыми числовыми величинами.

Условие, что при некотором x0 функция принимает значение y0 или
y(x0) = y0 называется начальным условием.

Задача нахождения решения ДУ
dy

dx
= f(x, y), удовлетворяющего на-

чальному условию φ(x0) = y0, называется задачей Коши.
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Геометрически решить задачу Коши означает, что нужно найти инте-
гральную кривую, проходящую через заданную точку M0(x0, y0).
Теорема существования и единственности решения задачи Коши.
Пусть функция f(x, y) определена в некоторой области D на плоскости xOy.
Если существует окрестность Ω точки M0(x0, y0) ∈ D, в которой функция
непрерывна по совокупности переменных и имеет ограниченную частную про-

изводную
∂f

∂y
, то найдется интервал (x0 − h, x0 + h) на оси Ox, на котором

существует и, притом, единственное решение задачи Коши y = φ(x) уравне-
ния y′ = f(x, y), принимающее при x = x0 значение y0.

Общим решением ДУ
dy

dx
= f(x, y) в области Ω существования и един-

ственности решения задачи Коши называется однопараметрическое семей-
ство функций y = φ(x, C), такое что:

1. при любом допустимом числовом значении C функция y = φ(x, C)

является решением уравнения, т. е. φ′
x(x, C) ≡ f(x, y) при x ∈ (x0−h, x0+h);

2. каково бы ни было начальное условие y(x0) = y0, можно подобрать
такое значение C0, что решение y = φ(x, C0) будет удовлетворять начальному
условию φ(x0, C0) = y0.

Частным решением ДУ называется решение, получаемое из обще-
го решения при каком-то конкретном значении произвольной постоянной C

(включая ±∞).
В процессе интегрирования часто приходят к уравнению Φ(x, y, C) = 0,

неявно задающему общее решение. Это уравнение называется общим инте-
гралом.

1.1 Defenitions

A ordinary differential equation (D E) is an equation that relates
an independent variable x, an unknown function of this variable y(x) and the
derivatives of this function up to and including the n-th order.

The highest order of the derivative present in the differential equation is
called the order of the differential equation.

An equation F (x, y, y′) = 0, containing only first derevative is called an
equation of the first order and also

y′ = f(x, y) or
dy

dx
= f(x, y)

is called the reduced form of an ordinary first-order differential equation.
Example. Find the curve passing through M(2; 3) such that the part of the

tangent between the coordinate axes is bisected at the point of tangency.

7



Every tangent is bisected at the point of tangency. Let P (x; y) be the middle
point of the tangent AB.

Then by similar triangles OA = 2y, OB = 2x. the slope of the curve at

P (x; y) is
dy

dx
= −OA

OB
= −y

x
.

This can be written

dx

x
+

dy

y
= 0 ⇒ xy = C.

Since the curve passed through M(2; 3) we must the have C = 2 · 3 = 6.
Hence the equation of curve is xy = 6.
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2 Основные типы уравнений первого порядка

2.1 Уравнения с разделенными и разделяющимися пе-
ременными

Уравнение f1(x) dx = f2(y) dy называется дифференциальным урав-
нением с разделенными переменными.

Формула
∫

f1(x) dx =

∫
f2(y) dy+C — общий интеграл этого уравнения.

Уравнение f1(x) ·g1(y) ·dx+f2(x) ·g2(y) ·dy = 0 называется уравнением
с разделяющимися переменными.

Путем деления на g1(y) · f2(x) уравнение с разделяющимися перемен-
ными приводится к уравнению с разделенными переменными. При делении
на g1(y) · f2(x) могут потеряться решения, обращающие функции g1(y), f2(x)
в ноль.

Пример 1.
Проинтегрировать уравнение x ·

√
1− y2 · dx+ y ·

√
1− x2 · dy = 0.

Дифференциальное уравнение определено в области D :


y2 ≤ 1,

x2 ≤ 1,

x2 + y2 ̸= 0.

Делим на
√
1− y2 ·

√
1− x2, где

√
1− y2 ̸= 0 и

√
1− x2 ̸= 0. В результате

получаем уравнение с разделенными переменными

x√
1− x2

dx+
y√

1− y2
dy = 0.

Интегрируя, получаем
√
1− x2 +

√
1− y2 = C.

При разделении переменных потеряны решения x = ±1 и y = ±1.
Пример 2. Решить ДУ y′ = xy2 + 2xy.

Перепишем уравнение в виде:
dy

dx
= x · (y2 + 2y) и произведем разделе-

ние переменных, поделив обе части на (y2 + 2y) и умножив на dx. Тогда
dy

y2 + 2y
= xdx (далее необходимо проверить возможные решения y = 0

и y = −2).
Вычисляем интеграл от рациональной дроби∫

dy

y2 + 2y
=

∫ (
A

y
+

B

y + 2

)
dy.
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Методом неопределенных коэффициентов получаем A =
1

2
, B = −1

2
;

∫
dy

y2 + 2y
=

1

2

∫
dy

y
− 1

2

∫
dy

y + 2
=

1

2
(ln |y| − ln |y + 2)|+ C1.

Находим
∫

x dx =
x2

2
+ C2. Таким образом,

1

2

(
ln |y| − ln |y + 2|

)
+ C1 =

1

2
x2 + C2

или
ln

∣∣∣∣ y

y + 2

∣∣∣∣ = x2 + ln |C3| , ln |C3| = (C2 − C1) · 2.

Общий интеграл удобно преобразовать к виду

ln

∣∣∣∣ y

y + 2

∣∣∣∣ = ln
(
|C3| · ex

2
)
.

Полученное равенство можно упростить

y

y + 2
= C · ex2

, C = ±C3.

Потерянные решения уравнения y = 0 и y = −2 проверяем подстановкой
в исходное дифференциальное уравнение.

Некоторые уравнения, например, уравнения вида y′ = f(ax + by + c)

можно привести к дифференциальным уравнениям с разделяющимися пере-
менными заменой z = ax+ by + c.

Пример 1. Проинтегрировать уравнение y′ = (x+ y)2.
Пусть z = x+ y, тогда z′ = 1+ y′. Решаем дифференциальное уравнение

z′ = 1 + z2 ⇒ dz

1 + z2
= dx ⇒ arctg z = x+ C ⇒

arctg(x+ y) = x+ C или y = tg(x+ C)− x.

Пример 2. Решить уравнение y′ =
√
2x+ y + 1.

Используя замену z = 2x+ y + 1, находим z′.

z′ = 2 + y′ ⇔ y′ = z′ − 2.

Уравнение примет вид z′ − 2 =
√
z.
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Разделяя переменные, получаем
dz√
z + 2

= dx. Вычислим интеграл

∫
dz√
z + 2

=

[
z = t2,

dz = 2t dt

]
=

∫
2t dt

t+ 2
= 2

∫
(t+ 2− 2) dt

t+ 2
=

= 2

∫
1 dt− 2

∫
2 d(t+ 2)

t+ 2
= 2
(
t− 2 ln |t+ 2|

)
+ C =

= 2
√
z − 4 ln(

√
z + 2) + C.

Интегрируя уравнение с разделяющимися переменными, получаем

2
√
z − 4 ln

(√
z + 2

)
= x+ C.

Обратная замена z на 2x+ y + 1 позволяет записать общий интеграл√
2x+ y + 1− 4 ln

(√
2x+ y + 1 + 2

)
= x+ C.

2.1.1 Separation of the variable

If a differential equation has the form f1(x) dx = f2(y) dy, one term
containing only x and dx, the other only y and dy, then the variables are said to
be separated.

The solution is
∫

f1(x) dx =

∫
f2(y) dy + C, where C is the constant of

integration.
Equation y′ = f(x) · g(y) or f1(x) · g1(y) dx = f2(x) · g2(y) dy it’s cannot

be integrated. We cannot obtain a solution by direct integration. By division we

can however reduce this equation to the form
f1(x)

f2(x)
dx =

g2(y)

g(y)
dy, in which the

variables are separated.
Example. Solve the equation

(
1 + x2

)
dy − xy dx = 0.

Separating the variables, this becomes

dy

y
= − x dx

1 + x2
,

ln |y| = 1

2
ln
∣∣1 + x2

∣∣+ ln |C| ⇒ ln |y| = ln
∣∣∣√1 + x2 · C

∣∣∣ ⇒

⇒ y = C
√
1 + x2.

Some equations, for example, equations of the form y′ = f(ax + by + c),
can be reduced to differential equations with separable variables by replacing
z = ax+ by + c.
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Example. Solve y′ = (−2x+ y)2 − 7, y(0) = 0.
If we let z = −2x+ y, then z′ = −2 + y′ ⇒ y′ = z′ + 2.
Into z′ + 2 = z2 − 7

⇒ dz

dx
= z2 − 9 ⇒ dz

z2 − 9
= dx ⇒

⇒ 1

6
ln

∣∣∣∣z − 3

z + 3

∣∣∣∣ = x+ C1 ⇒ ln

∣∣∣∣z − 3

z + 3

∣∣∣∣ = 6x+ ln |C1|,

ln

∣∣∣∣ z − 3

(z + 3) · C1

∣∣∣∣ = 6x ⇒ z − 3

z + 3
= C · e6x, C = ±C1

and y = 2x+
3(1 + Ce6x)

1− Ce6x
.

Applying the initial condition y(0) = 0, the last equation gives C = −1 and

particular solution y = 2x+
3(1− e6x)

1 + e6x
.

2.2 Однородные уравнения

Функция f(x, y) называется однородной k-го измерения, если при
любом допустимом t справедливо равенство f(tx, ty) = tk · f(x, y).

Дифференциальное уравнение y′ = f(x, y) называется однородным,
если f(x, y) — однородная функция нулевого измерения.

Однородное уравнение всегда можно представить в виде y′ = φ
(y
x

)
.

С помощью замены
y

x
= z уравнение сводится к уравнению с разделяю-

щимися переменными:

y

x
= z ⇒ y = zx, y′ = z′x+ z, z′x+ z = φ(z);

dz

φ(z)− z
=

dx

x
⇒

∫
dz

φ(z)− z
= ln |x|+ ln |C| .

При обратной замене z на
y

x
, получаем общий интеграл уравнения.

Заметим, что если φ(z) − z ≡ 0, то уравнение имеет вид
dy

dx
=

y

x
. Его

общее решение y = Cx.
Если обращается в нуль при z = z0, то существует решение z = z0, или

y = z0 x.
Пример 1. Решить уравнение y′ =

y

x
+ ctg

(y
x

)
.
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Это однородное уравнение. Делаем замену z =
y

x
,

z′ · x+ z = z + ctg z ⇒ z′ · x =
1

tg z
⇒ tg z dz =

dx

x
,

− ln |cos z|+ ln |C1| = ln |x| ⇔ ln |x · cos z| = ln |C1| ⇔
⇔ x · cos z = C, C = ±C1.

Потерянные решения находим из условия tg(z) = 0, или z =
y

x
=

π

2
+πn, где

n ∈ Z.
Окончательно, x ·cos y

x
= C и y =

(π
2
+ πn

)
·x, n ∈ Z — потерянные

решения.

2.2.1 Homogeneous equation

If a function possesses the property f(tx, ty) = tk · f(x, y) for some real k,
then f(x, y) is said to be homogeneous function of degree k.

For example, f(x, y) = x3 + y3 is a homogeneous function of degree 3, since
f(tx, ty) = (tx)3 + (ty)3 = t3

(
x3 + y3

)
= t3 · f(x, y).

The functions f(x, y) =
x− 2y

3x+ y
and g(x, y) =

1√
x2 + y2

are homogeneous

of degree 0 and −1 respect fully, becase

f(tx, ty) =
tx− 2ty

3tx+ ty
=

t(x− 2y)

t(3x+ y)
=

x− 2y

3x+ y
= t0 · f(x, y)

and

g(tx, ty) =
1√

(tx)2 + (ty)2
=

1

t ·
√
x2 + y2

= t−1 · 1√
x2 + y2

= t−1 · g(x, y).

A first order diff equation y′ = f(x, y) is said to be homogeneous equation
if f(x, y) is homogeneous function of degree 0.

Example 2. Solve
(
x2 − 2xy

)
· y′ = xy − y2.

y′ =
xy − y2

x2 − 2xy
⇒ y′ =

y

x
−
(
y

x

)2

1− 2 ·
y

x

,

y

x
= z ⇒ y = zx, y′ = z′x+ z,

13



z′x+ z =
z − z2

1− 2z
⇒ z′x =

z2

1− 2z
⇒ 1− 2z

z2
dz =

dx

x
,

−1

z
− 2 ln |z| = ln |C1 · x| ⇒ ln

∣∣x · C1 · z2
∣∣ = −1

z
⇒

⇒ Cxz2 = e−1/z ⇒ C
(y
x

)2
= e−x/y, C = ±C1.

2.3 Дифференциальные уравнения, приводящиеся к од-
нородным

Существует класс уравнений, которые с помощью определенных под-
становок могут быть приведены к однородным уравнениям.

Это уравнения вида y′ = f

(
a1x+ b1y + c1
a2x+ b2y + c2

)
, где c1 и c2 не обращают-

ся одновременно в нуль (так как в случае c1 = c2 = 0 уравнение является
однородным).

Случай 1. Пусть определитель ∆ =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ ̸= 0.

Положим
{
x = x1 + h,

y = y1 + k,
где h и k определяются из линейной системы{

a1h+ b1k + c1 = 0,

a2h+ b2k + c2 = 0.
Учитывая, что dx = dx1 и dy = dy1, после подстановки получаем одно-

родное уравнение
dy1
dx1

= f

(
a1x1 + b1y1
a2x1 + b2y1

)
.

Случай 2. Если определитель ∆ =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ = 0, то исходное уравнение

приводится к виду y′ = f

(
a1x+ b1y + c1

λ(a1x+ b1y) + c2

)
, где λ =

a2
a1

=
b2
b1

.

Далее применяем подстановку a1x + b1y = z. Полученное ДУ решается
разделением переменных.

Пример 1. Решить уравнение (x− 2y + 3)dy + (2x+ y − 1)dx = 0.

Получаем

(x− 2y + 3)
dy

dx
= −2x− y + 1 ⇒ dy

dx
=

−2x− y + 1

x− 2y + 3
.

Находим значение определителя ∆ =

∣∣∣∣−2 −1

1 −2

∣∣∣∣ = 4 + 1 = 5 ̸= 0.

Положим

{
x = x1 + h,

y = y1 + k.
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Решаем систему уравнений

{
−2h− k + 1 = 0,

h− 2k + 3 = 0
⇒


h = −

1

5
,

k =
7

5
.

Применяя замену


x = x1 −

1

5
,

y = y1 +
7

5

получаем однородное уравнение

dy1
dx1

=
−2x1 − y1
x1 − 2y1

.

При использовании замены
y1
x1

= z, y1 = zx1, y′1 = z′x1+z уравнение

примет вид z′x1 + z =
2 + z

2z − 1
.

Разделяем переменные в уравнении
dz

dx1
· x1 =

2(1 + z − z2)

2z − 1
.

И получаем интеграл −1

2
ln
∣∣1 + z − z2

∣∣ = ln |x1|+ ln |C1| или, избавля-

ясь от логарифмов, получаем ln
∣∣1 + z − z2

∣∣ = −2 ln |C1x1| ⇒ 1+z−z2 =
C

x21
,

C = ±C2
1 .

Переходим теперь к первоначальной функции y и переменной x.

1 +
5y − 7

5x+ 1
−
(
5y − 7

5x+ 1

)2

=
25C

(5x+ 1)2
.

Пример 2. Решить уравнение y′ =
x+ y + 1

2x+ 2y − 3
.

Вычисляем ∆ =

∣∣∣∣1 1

2 2

∣∣∣∣ = 0.

Перепишем уравнение в виде y′ =
x+ y + 1

2(x+ y)− 3
и произведем замену

z = x+ y z′ = 1 + y′. Получим ДУ

z′ − 1 =
z + 1

2z − 3
⇒ z′ =

z + 1

2z − 3
+ 1 ⇒ z′ =

3z − 2

2z − 3
.

Разделим переменные
(2z − 3)

3z − 2
dz = dx.
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Выделим целую часть дроби
2z − 3

∣∣∣3z − 2

2z −4 /3
2/3

−5/3

.

∫ (
2

3
− 5

3(3z − 2)

)
dz = x+ C ⇒ 2

3
z − 5

9
ln |3z − 2| = x+ C

или
2

3
(x+ y)− 5

9
ln |3x+ 3y − 2| = x+ C — есть общий интеграл.

2.4 Линейные уравнения 1-го порядка

Линейным уравнением первого порядка называется уравнение, ли-
нейное относительно неизвестной функции и ее производной, которое может
быть представлено в виде y′ + p(x) · y = q(x), где p(x), q(x) — непрерывные
в области Ω функции.

Если q(x) ≡ 0, то уравнение y′ + p(x) · y = 0 называется линейным
однородным уравнением.

Рассмотрим методы решения.

2.4.1 Метод вариации произвольной постоянной (метод
Лагранжа)

Согласно методу Лагранжа, сначала находим общее решение однород-
ного уравнения y′ + p(x) · y = 0, соответствующего данному неоднородному
уравнению y′ + p(x) · y = q(x).

Затем решение неоднородного линейного уравнения определяется в том
же виде, но произвольная постоянная C, входящая в общее решение одно-
родного уравнения считается функцией от переменной x. При этом общее
решение однородного уравнения с замененной постоянной C на C(x) являет-
ся общим решением неоднородного линейного уравнения.

Решаем однородное уравнение y′+p(x)·y = 0. Для этого типа дифферен-
циальных уравнений разделение переменных не представляет сложностей.

dy

y
= −p(x) dx,

ln |y| = −
∫

p(x) dx+ ln |C1| ,

ln

∣∣∣∣ yC1

∣∣∣∣ = −
∫

p(x) dx.
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Общее решение линейного однородного уравнения имеет вид

y = C e−
∫
p(x) dx, где C = ±C1.

Решение неоднородного уравнения y′ + p(x) · y = q(x) ищем в виде

y = C(x) · e−
∫
p(x) dx,

y′ =
dy

dx
=

dC(x)

dx
· e−

∫
p(x) dx + C(x) · e−

∫
p(x) dx · (−p(x)).

Подставляем полученное соотношение в исходное уравнение

dC(x)

dx
· e−

∫
p(x) dx − C(x) p(x) e−

∫
p(x) dx + p(x)C(x) e−

∫
p(x) dx = q(x),

dC(x)

dx
· e−

∫
p(x) dx = q(x),

dC(x) = q(x) · e
∫
p(x) dx.

Тогда
C(x) =

∫
q(x) · e

∫
p(x) dx dx+ C.

Окончательно получаем ответ

y = e−
∫
p(x) dx

(∫
q(x) · e

∫
p(x) dx dx+ C

)
.

Пример. Решить уравнение y′ + 2y = e−x.
Составляем и решаем однородное уравнение:

y′ + 2y = 0 ⇒ dy

y
= −2 · dx,

ln |y| = −2x+ ln |C1| ,
y = C · e−2x, где C = ±C1.

Ищем решение неоднородного уравнения в виде

y = C(x) · e−2x,

y′ = (C(x))′ · e−2x + C(x) · e−2x · (−2).

При подстановке в исходное уравнение получаем

(C(x))′ · e−2x + C(x) · e−2x · (−2) + 2 · C(x) · e−2x = e−x,
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(C(x))′ · e−2x = e−x ⇒ dC(x) = ex dx,

C(x) =

∫
ex dx+ C ⇒ C(x) = ex + C.

Ответ. Общее решение уравнения y′ + 2y = e−x есть y = (ex + C) · e−2x или
y = ex + C · e−2x.

2.4.2 Метод Бернулли

Якоб Бернулли (1654—1705) — швейцарский математик.
Согласно этому методу, решение ДУ определяются в виде произведения

y = u(x) · v(x) двух функций u(x) и v(x). При этом y′ = v · du
dx

+ u · dv
dx

или
y′ = u′ · v + u · v′.

После подстановки исходное уравнение примет вид:

u · dv
dx

+ v · du
dx

+ p(x) · u · v = q(x),

v · du
dx

+ u ·
(
dv

dx
+ p(x) · v

)
= q(x).

Функции u(x) и v(x) определяются из системы

{
v′ + p(x) · v = 0,

u′ · v = q(x).

Заметим, что в качестве v(x) берется любое частное решение первого урав-
нения системы.

Пример 1. Решить уравнение y′ + 2x · y = e−x2.
Положим

y = u · v, ⇒ y′ = u′ · v + u · v′,
u′ · v + u · v′ + 2x · u · v = e−x2

.

Составим систему

{
v′ + 2xv = 0,

u′v = e−x2

.

Решаем уравнение
dv

v
= −2xdx. Результат интегрирования ln |v| = −x2.

Берем решение v = e−x2 и подставляем во второе уравнение u′ · v = e−x2.
Тогда u′ · e−x2

= e−x2 ⇒ u′ = 1 ⇒ du = dx ⇒ u = x+ C.
Ответ: y = (x+ C) · e−x2.

Пример 2. Решить уравнение y′ − 2

x
· y = 2x3.

Это уравнение является линейным и неоднородным, где p(x) = −2

x
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и q(x) = 2x3.

Положим y = u(x) · v(x). Составим систему

v′ − 2

x
· v = 0,

u′ · v = 2x3.

Из первого уравнения системы
dv

v
=

2

x
dx.

Следовательно ln |v| = 2 ln |x| ⇒ v = x2.
Решим второе уравнение

u′ · x2 = 2x3 ⇒ du = 2x dx ⇒ u = x2 + C.

Ответ: y(x) =
(
x2 + C

)
· x2.

2.4.3 Уравнение Бернулли

Уравнением Бернулли называется уравнение вида

y′ + p(x) y = q(x) · yα,

где p(x) и q(x) — функции от x, α — постоянное число такое, что α ̸= 0; 1.
Методы интегрирования:

1) сведение к линейному уравнению;
2) решение методом Бернулли;
3) метод вариации произвольной постоянной.

Рассмотрим методы на примерах.
1) Уравнение Бернулли приводится к линейному заменой z = y1−α.

Пример 1. Решить задачу Коши

y′ − 2y

x
= 2x · √y,

y(1) = 1.

Замена z = y1−
1
2 =

√
y, z(1) = 1, z′ =

1

2
√
y
· y′.

Обе части уравнения поделим на 2
√
y. Тогда

1

2
√
y
· y′ − 2

x
· 1

2
√
y
· 2y =

2x
√
y

2
√
y

⇔ 1

2
√
y
· y′ − 2

x
· √y = x.

Для функции z получим уравнение z′ − 2

x
z = x. Это линейное уравнение

решаем методом Бернулли. Замена
z(x) = u(x) · v(x), z′(x) = u′(x) · v(x) + u(x) · v′(x).

Тогда u′ · v + u · v′ − 2

x
· u · v = x. Составим систему

v′ − 2

x
· v = 0,

u′ · v = x.
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Решение уравнений системы

dv

v
=

2

x
dx ⇒ ln |v| = 2 ln |x| ⇒ v = x2,

u′ · x2 = x ⇒ du =
1

x
dx ⇒ u = ln |x|+ C.

Тогда z = u · v = (ln |x|+ C) · x2.
При z(1) = 1 ⇒ C = 1 ⇒ z = (ln |x|+ 1) · x2 ⇒ y = (ln |x|+ 1)2 · x4.

2) Уравнение Бернулли можно решить методом Бернулли.

Пример 2. Решить уравнение y′ − 1

x
· y = xy2.

Положим y = u(x) · v(x), y′(x) = u′(x) · v(x) + u(x) · v′(x).
Подставляя в уравнение, получим u′ · v + u · v′ − 1

x
· u · v = x · u2 · v2.

Составляем систему

v′ − 1

x
v = 0,

u′ · v = x · u2 · v2.

Разделяем переменные в первом уравнении
dv

v
=

dx

x
и интегрируем

ln |v| = ln |x|. Берем частное решение v = x. Для второго уравнения системы

du

u2
= x2 dx ⇒ −1

u
=

x3

3
+ C ⇒ u =

−1

x3

3
+ C

.

Обратная замена y = u · v =
−x

x3

3
+ C

. Ответ: y =
−3x

x3 + 3C
.

3) Решение методом вариации произвольной постоянной.
Пример 3. Решить уравнение y′ − y

x
= x · y2.

Составляем однородное уравнение y′ − y

x
= 0.

Находим его общее решение y = Cx.
Решение уравнения Бернулли ищем в виде y = C(x) · x.
Подставляя в исходное уравнение, получаем (C(x))′ · x = x3 · C2(x),

dC(x)

C2(x)
= x2 dx ⇒ − 1

C(x)
=

x3

3
+ C ⇒ C(x) =

−1

x3

3
+ C

.

Ответ: y(x) =
−3x

x3 + 3C
.
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2.5 Linear Equation

A differential equation of the form y′+ p(x) · y = q(x), where p(x) and q(x)

are function of x or constants, is called linear.
A differential equation of the form y′+p(x) ·y = q(x) ·yn is called equation

Bernully (reduced to linear form).
This equation can be made linear by change of variable. If we take z = y1−n

as new variable, the equation becomes

1

1− n
· z′ + p · z = q,

which is linear.
Example. y′ +

2

x
· y =

y3

x3
.

Solution:
z = y1−3 = y−2 ⇒ z′ = −2y−3 · y′,

multiplying by
(
−2y−3

)
we get the equation

−2y−3 · y′ + 2

x
·
(
−2y−3

)
· y = −2y−3 · y

3

x3

or linear equation z′ − 4

x
· z = − 2

x3
.

z = u(x) · v(x), z′ = u′(x) · v(x) + u(x) · v′(x) = u′v + uv′,

u′v + uv′ − 4

x
uv = − 2

x3
,

a) v′ − 4

x
· v = 0,

б) u · v = − 2

x3
,

a)
dv

v
=

4

x
dx ⇒ ln |v| = 4 ln |x| ⇒ let v = x4,

б) u′ · x4 = − 2

x3
⇒ du = − 2

x7
dx ⇒ u =

1

3x6
+ C,

z =

(
1

3x6
+ C

)
· x4 ⇒ z = Cx4 +

1

3x2

or, since z = y−2, then
1

y2
= Cx4 +

1

3x2
.
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3 Дифференциальные уравнения высших по-
рядков, допускающие понижение порядка

1. Уравнения вида y(n) = f(x), где f(x) — заданная непрерывная функ-
ция, интегрируется в квадратурах .

y(n−1) =

∫
f(x) dx+ C1,

y(n−2) =

∫ (∫
f(x) dx

)
dx+ C1x+ C2

и так далее.
2. Если дифференциальное уравнение порядка n ≥ 2 имеет вид

F
(
x, y(k), y(k+1), . . . , y(n)

)
= 0, т. е. не содержит искомой функции и ее про-

изводных до порядка (k − 1) включительно, то порядок уравнения может
быть понижен с помощью замены y(k) = z, где z = z(x).

Пример. Найдем решения уравнения x3y′′′ + x2y′′ =
√
x.

Уравнение не содержит y и y′, поэтому порядок уравнения понижается
до первого с помощью замены y′′ = z (при этом y′′′ = z′).

После замены уравнение принимает вид

x3 · z′ + x2 · z =
√
x

или
z′ +

1

x
· z = x−

5/2,

т. е. становится линейным уравнением первого порядка.
Положим z = u(x) · v(x), z′ = u′(x) · v(x) + u(x) · v′(x).

u′ · v + u · v′ + 1

x
· u · v = x−

5/2,

u′ · v + u ·
(
v′ +

1

x
v

)
= x−

5/2,v′ +
1

x
· v = 0,

u′ · v = x−
5/2.

Решаем первое уравнение системы:
dv

v
= −dx

x
⇒ ln |v| = − ln |x|.

Берем частное решение v =
1

x
.
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Тогда u′ · 1
x
= x−

5/2 или du = x−
3/2. Следовательно,

u =
x−

1/2

(−1/2)
+ C1,

z = u · v =
1

x
·
(
−2x−

1/2 + C1

)
=

C1

x
− 2x−

3/2,

y′′ = z =
C1

x
− 2x−

3/2,

y′ =

∫
y′′ dx = C1 lnx− 2x−

1/2

(−1/2)
+ C2 = C1 lnx+ 4x−

1/2 + C2,

y =

∫
y′ dx = C1

∫
lnx dx+ 8

√
x+ C2x+ C2 =

= C1x · (lnx− 1) + 8
√
x+ C2x+ C3.

Решая дифференциальные уравнения, полезно помнить, что общее реше-
ние уравнения n-го порядка содержит n произвольных постоянных. В при-
мере проинтегрировано уравнение третьего порядка, его общее решение со-
держит три произвольные константы.

3. Если уравнение не содержит независимой переменной, т. е. имеет вид
F
(
y, y′, . . . , y(n)

)
= 0, то порядок уравнения понижается на единицу с помо-

щью замены y′ = p(y). При этом y рассматривается как новая независимая
переменная, а p — как новая неизвестная функция. Производные y′′, . . . , y(n)

выражаются через p и производные функции p по y.
Выразим, например, y′′.

Поскольку y′ =
dy

dx
= p, то

y′′ =
d2y

dx2
=

d

dx

(
dy

dx

)
=

dp

dy
· dy
dx

= p · dp
dy

.

Аналогично выражается y′′′:

y′′′ =
d3y

dx3
=

d

dx

(
d2y

dx2

)
= p ·

(
dp

dy

)2

+ p2 · d
2p

dy2
.

Пример. Найдем решение уравнения y′′ = 2y3, удовлетворяющее началь-
ным условиям y(−1) = 1, y′(−1) = 1.

Примем y за новую независимую переменную, а y′ = p(y) — за новую

неизвестную функцию. Тогда y′′ = p · dp
dy

= p · p′ и данное уравнение в новых
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переменных примет вид p · dp
dy

= 2y3.

В последнем уравнении, разделяя переменные, получаем p dp = 2y3 dy,
и после интегрирования результат имеет вид p2 = y4 + C1.

Произвольную константу C1 определяем, используя начальные условия
y
∣∣∣
x=−1

= 1, p
∣∣∣
x=−1

= y′
∣∣∣
x=−1

= 1. Подставляя эти условия в найденное

решение, получаем C1 = 0. Поэтому p2 = y4 или p = ±y2, т. е. y′ = ±y2.
Заметим, что данным начальным условиям может удовлетворять только

решение уравнения y′ = y2 (в случае y′ = −y2, если y = 1, то y′ = −1).
Общее решение уравнения y′ = y2 дается формулой y = −(x + C2)

−1

или y = − 1

x+ C2
. Из условия y

∣∣∣
x=−1

= 1 следует, что C2 = 1, и искомым

решением будет y = −1

x
.

3.1 Special types of second order equations

I. Equation Immediately Integrable.
An equation of the form y′′ = f(x) can be solved directly by two integrations.

The first integration gives y′ =

∫
f(x) dx + C1, a second integration gives

the general solution in the form

y =

∫ (∫
f(x) dx

)
dx+ C1x+ C2.

Example.
y′′ = cosx, then y′ = sinx+ C1 and y = − cosx+ C1x+ C2.
II. Equations not containing y.
An equation not containing y can be solved for the second derivative and so

reduced to the form y′′ = f(x, y′).
Take as new variable z = y′, then y′′ = z′ and so y′′ = f(x, y′) can be

written as z′ = f(x, z). This is a first-order equation whose solution has the form
z = F (x, C1) where C1 is the constant of integration.

Substituting y′ for z, we have y′ = F (x, C1), whence y =

∫
F (x, C1) dx+C2.

Example. Consider a differential equation (1 + x) · y′′ + y′ = 0.

y′ = z, y′′ = z′,

then (1 + x) · z′ + z = 0,

or
dz

dx
= − z

1 + x
⇒ dz

z
= − dx

1 + x
,
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ln |z| = − ln |1 + x|+ ln |C|,

ln |z| = ln

∣∣∣∣ C

1 + x

∣∣∣∣ ⇒ z =
C1

1 + x
, C1 = ±C,

y′ =
C1

1 + x
⇒ dy =

C1

1 + x
dx,

y = C1 ln |1 + x|+ C2.

III. Equations not containing x.
An equation not containing x can be reduced to the form y′′ = f(y, p), where

y′ = p(y) and write the second devirative in the form

y′′ =
d2y

dx2
=

dp

dx
=

dp

dy
· dy
dx

= p · dp
dy

.

These substitutions bring to the form

y · dp
dy

= f(y, p).

This is a first-order equation which can be solved for p.

Replacing p by
dy

dx
the result is a first-order equation which can be solved by

a separation of variables.
Example. y · y′′ = y2 · y′ + (y′)

2.

Substituting y′ = p(y), y′′ = p·dp
dy

the equation becomes y·p·dp
dy

= y2·p+p2.

Dividing by p we obtain the equation y · dp
dy

= y2 + p.

The solution of this equation is
p

y
= y + C1 or y′ = y · (y + C1) and

x =

∫
dy

y(y + C1)
=

1

C1
ln

∣∣∣∣ y

y + C1

∣∣∣∣+ C2.

In solving this problem we divides both sides of the equation by p. The value
of the variable p = 0 gives y = C. Such a solution is called singular.

4 Линейное дифференциальное уравнение n-го
порядка

Линейным дифференциальным уравнением n–го порядка на-
зывается любое уравнение первой степени относительно функции y и ее про-
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изводных y′, y′′, . . . , y(n) вида

y(n) + p1 · y(n−1) + p2 · y(n−2) + . . .+ pn−1 · y′ + pn · y = f(x),

где p1, . . . , pn — функции от x или постоянные величины.
Левую часть этого уравнения обозначим L(y), т. е.

y(n) + p1 · y(n−1) + p2 · y(n−2) + . . .+ pn−1 · y′ + pn · y = L(y).

Если f(x) ≡ 0, то уравнение L(y) = 0 называется линейным однород-
ным уравнением,

если f(x) ̸= 0, то уравнение L(y) = f(x) называется линейным неод-
нородным уравнением,

если все коэффициенты p0, p1, p2, . . . , pn — постоянные числа, то урав-
нение L(y) = f(x) называется линейным дифференциальным уравне-
нием n-го порядка с постоянными коэффициентами.

Рассмотрим методы решения линейных уравнений, начиная с уравнения
второго порядка.

4.1 Линейное однородное уравнение второго порядка
с постоянными коэффициентами

Рассмотрим линейное однородное дифференциальное уравнение второго
порядка с постоянными коэффициентами

y′′ + p · y′ + q · y = 0,

где p, q ∈ R.
Решения уравнения y1(x), y2(x) называются линейно независимыми

на интервале (a, b), если из того, что линейная комбинация
C1 · y1(x) + C2 · y2(x) ≡ 0 следует, что C1 = C2 = 0.

Фундаментальная система решений (ФСР) — система линейно-
независимых частных решений y1(x) и y2(x) уравнения y′′ + p · y′ + q · y = 0.

Теорема. Если частные решения y1(x), y2(x) линейно независимы на
(a, b), то функция y(x) = C1 · y1(x) + C2 · y2(x), где C1, C2 — произволь-
ные постоянные, является общим решением однородного дифференциального
уравнения y′′ + p · y′ + q · y = 0.

Решения такого уравнения будем искать в виде y(x) = ekx, где k — неко-
торое число. Подставляя y(x) в однородное дифференциальное уравнение
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получим
k2 · ekx + p · k · ekx + q · ekx = 0, (ekx ̸= 0)

или уравнение
k2 + p · k + q = 0,

которое называется характеристическим уравнением для уравнения
y′′ + p · y′ + q · y = 0.

У этого квадратного уравнения корни k1, k2 могут быть:
1. действительными и различными k1 ̸= k2;
2. действительными и совпадающими k1 = k2;
3. комплексными сопряженными k1 = α + iβ, k2 = α− iβ.

Рассмотрим случаи.
1. Если k1 ̸= k2, то

y1(x) = ek1x, y2(x) = ek2x.

Эти решения линейно независимы, так как
y1
y2

̸= Const. Тогда общее решение
имеет вид:

y(x) = C1 · ek1x + C2 · ek2x.

Пример. Решить уравнение y′′ − 5y′ + 4y = 0.
Составляем характеристическое уравнение k2 − 5 · k + 4 = 0.
D = 25 − 16 = 9 > 0 и корни характеристического уравнения k1 = 1,

k2 = 4 действительные и различные.
Следовательно, y(x) = C1 · ex + C2 · e4x.
2. Если k1 = k2 = k, то одно решение находится сразу y1(x) = ekx.

Второе частное решение линейно независимое с первым можно взять в виде
y2(x) = x · ekx.

Легко убедиться с помощью подстановки, что y2(x) есть решение урав-
нения и в том, что оно линейно независимо с первым частным решением, так
как

y1
y2

̸= Const. Поэтому общее решение имеет вид

y(x) = C1 · ekx + C2 · x · ekx.

Пример. Решить уравнение y′′ − 6y′ + 9y = 0.
Характеристическое уравнение k2 − 6k + 9 = 0.
D = 36− 36 = 0 и корни k1 = k2 = 3.
Поэтому y1(x) = e3x, y2(x) = x · e3x и

y(x) = C1 · e3x + C2 · x · e3x.
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3. Если корни комплексные сопряженные, то k1 = α + iβ, k2 = α − iβ,
(D < 0).

Частные решения есть

ỹ1 = e(α+iβ)x = eαx ·(cos βx+i·sin βx), ỹ2 = e(α−iβ)x = eαx ·(cos βx−i·sin βx).

Частными решениями будут также функции

y1 = eαx · cos βx, y2 = eαx · sin βx.

Они линейно независимы, потому что
y1(x)

y2(x)
= tg βx ̸= Const. Поэтому общее

решение можно выразить в виде

y(x) = C1 · eαx · cos βx+ C2 · eαx · sin βx.

Пример. Решить уравнение y′′ − 2y′ + 2y = 0.
Характеристическое уравнение k2 − 2k + 2 = 0.
D = 4− 8 = −4 < 0 ⇒ k1 = 1 + i, k2 = 1− i.
Тогда y(x) = C1 · ex · cosx+ C2 · ex · sinx.

4.2 Линейное однородное уравнение n-го порядка
с постоянными коэффициентами

Рассмотрим линейное однородное уравнение n-го порядка с постоянны-
ми коэффициентами

y(n) + p1 · y(n−1) + p2 · y(n−2) + . . .+ pn−1 · y′ + pn · y = 0,

где pi — действительные числа (i = 1, 2, . . . , n).
Ищем решение уравнения в виде y(x) = ekx.
Алгоритм нахождения решения следующий:
1) составляем характеристическое уравнение kn+p1 ·kn−1+ . . .+pn = 0;
2) находим корни характеристического уравнения;
3) по виду корней выписываем частные линейно независимые решения

(фундаментальную систему решений), имея в виду, что:
каждому действительному корню k кратности один соответствует одно

частное решение y(x) = ekx;
каждой паре комплексных сопряженных корней α ± iβ соответствует

пара частных решений вида y1(x) = eαx · cos βx, y2(x) = eαx · sin βx;
каждому действительному корню k кратности r соответствует r линейно
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независимых частных решений вида ekx, x · ekx, . . . , xr−1 · ekx;
каждой паре комплексно-сопряженных корней α± iβ кратности r отве-

чает 2 · r частных решений вида

eαx · cos βx, x · eαx · cos βx, . . . , xr−1 · eαx · cos βx,
eαx · sin βx, x · eαx · sin βx, . . . , xr−1 · eαx · sin βx.

Число таким образом построенных частных решений равно порядку уравне-
ния и общее решение есть их линейная комбинация

y(x) = C1 · y1(x) + C2 · y2(x) + . . .+ Cn · yn(x).

Пример 1. Решить уравнение y′′′ + y′′ = 0.
Составим характеристическое уравнение k3 + k2 = 0.

Решение k2 · (k + 1) = 0 ⇒ k1,2 = 0, k3 = −1.
Выпишем частные решения

y1(x) = e0x = 1, y2(x) = x · e0x = x, y3(x) = e−x.

Ответ: общее решение y(x) = C1 + C2 · x+ C3 · e−x.
Пример 2. Решить уравнение yIV − 4y′′′ + 5y′′ − 4y′ + 4y = 0.
Составим характеристическое уравнение k4 − 4k3 + 5k2 − 4k + 4 = 0.
Первый корень найдем среди делителей свободного члена подбором. Это

число k = 2.
Разделим уголком

k4 − 4k3 + 5k2 − 4k + 4

k − 2
= k3 − 2k2 + k − 2.

Преобразуем уравнение

k3 − 2k2 + k − 2 = 0 ⇒ k2(k − 2) + (k − 2) = 0 ⇒ (k2 + 1)(k − 2) = 0.

Находим корни исходного уравнения k1,2 = 2, k3,4 = ±i.
Частные решения

y1(x) = e2x, y2(x) = x · e2x y3(x) = cos x, y4(x) = sinx.

Общее решение есть

y(x) = C1 · e2x + C2 · x · e2x + C3 · cosx+ C4 · sinx.
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4.3 Линейное неоднородное уравнение n-го порядка
с постоянными коэффициентами

y(n) + p1 · y(n−1) + p2 · y(n−2) + . . .+ pn−1 · y′ + pn · y = f(x).

Общее решение линейного неоднородного уравнения с постоянными ко-
эффициентами yO.H. можно найти как сумму общего решения однородно-
го уравнения yO.O и частного решения неоднородного уравнения yЧ.Н., т. е.
yO.H. = yO.O + yЧ.Н..

Частное решение неоднородного уравнения может быть найдено мето-
дом неопределенных коэффициентов, либо методом вариации произвольных
постоянных.

4.3.1 Метод неопределенных коэффициентов

Этот метод позволяет найти частные решения неоднородного уравнения,
если правая часть имеет специальный вид:

f(x) = eαx · (Pl(x) cos βx+Qm(x) sin βx) .

Здесь Pl(x), Qm(x) — многочлены степени l и m соответственно.
Частное решение в этом случае ищут в виде

y = xr · eαx ·
(
P̃s(x) cos βx+ Q̃s(x) sin βx

)
, s = max{l, m},

r — кратность корня k = α± iβ характеристического уравнения.

Частные случаи.
I. Если f(x) = Pl(x), то
yЧ.Н.(x) = P̃l(x), если k = 0 — не корень характеристического уравнения;
yЧ.Н.(x) = xr · P̃l(x), если k = 0 — корень кратности r.
II. Если f(x) = eαx · Pl(x), то
yЧ.Н. = eαx · P̃l(x), в случае, если k = α — не корень характеристического

уравнения;
yЧ.Н. = xr · eαx · P̃l(x), если k = α — корень кратности r.
Пример 1. Решить ДУ y′′ − 2y′ − 3y = x · e3x.
Однородное уравнение, соответствующее данному неоднородному урав-

нению есть y′′ − 2y′ − 3y = 0.
Соответствующее характеристическое уравнение k2 − 2k − 3 = 0 имеет

корни k1 = −1, k2 = 3. Поэтому yO.O. = C1 · e−x + C2 · e3x.
По виду правой части будем подбирать частное решение в виде

yЧ.Н. = x · (Ax+B) · e3x, где Ax+B — многочлен первого порядка с неопре-
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деленными коэффициентами.

y′Ч.Н. = (2Ax+B) · e3x + (Ax2 +Bx) · 3 · e3x = e3x · (2Ax+B + 3Ax2 + 3Bx)

y′′Ч.Н. = 3 · e3x · (2Ax+B + 3Ax2 + 3Bx) + e3x · (2A+ 6Ax+ 3B).

Подставляем в ДУ

e3x · (6Ax+ 3B + 9Ax2 + 9Bx+ 2A+ 6Ax+ 3B)−
−e3x · (4Ax+ 2B + 6Ax2 + 6Bx)− e3x · (3Ax2 + 3Bx) = x · e3x.

Делим на e3x и приравниваем коэффициенты при одинаковых степенях x, по-
лучая систему линейных уравнений относительно искомых коэффициентов,

x2 : 0 = 0

x1 : 12A+ 9B − 4A− 6B − 3B = 1

x0 : 3B + 2A+ 3B − 2B = 0

⇒
{
8A = 1,

4B + 2A = 0,
⇒ A =

1

8
, B = − 1

16
.

Частное решение yЧ.Н. =

(
1

8
x2 − 1

16
x

)
· e3x.

Общее решение

y(x) = yО.Н. = yО.О. + yЧ.Н. = C1 · e−x + C2 · e3x +
(
1

8
x2 − 1

16
x

)
· e3x.

Пример 2. Решить уравнение y′′ + y′ = x · ex + e−x.
Составляем однородное уравнение y′′ + y′ = 0.

Запишем и решим характеристическое уравнение: k2 + k = 0 ⇒ k1 = 0,
k2 = −1. Общее решение однородного уравнения yО.О = C1 + C2 · e−x.

Правую часть неоднородного уравнения можно представить в виде сум-
мы двух функций специального вида f(x) = f1(x) + f2(x), где f1(x) = x · ex,
а f2(x) = e−x.

Сначала найдем частное решение неоднородного уравнения для функции
f1(x) = x · ex:

yЧ.Н.1 = (A · x+B) · ex,
y′Ч.Н.1 = A · ex + (A · x+B) · ex = ex · (Ax+ A+B),

y′′Ч.Н.1 = ex · (Ax+ A+B) + ex · A = ex · (Ax+ 2A+B).
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Тогда ex · (Ax+ 2A+B) + ex · (Ax+ A+B) = x · ex
или Ax+ 2A+B + Ax+ A+B = x.

x1 : 2A = 1 ⇒ A =
1

2
,

x0 : 3A+ 2B = 0 ⇒ B = −3

4
,

yЧ.Н.1 =

(
1

2
x− 3

4

)
· ex.

Найдем частное решение неоднородного уравнения с правой частью
f2(x) = e−x:

yЧ.Н.2 = D · x · e−x,

y′Ч.Н.2 = D ·
(
e−x − x · e−x

)
= D · e−x · (1− x),

y′′Ч.Н.2 = D · e−x · (−1) · (1− x) +D · e−x · (−1) = −D · e−x · (2− x).

Тогда

−D · e−x · (2− x) +D · e−x · (1− x) = e−x,

D · (−2 + x+ 1− x) = 1 ⇒ D = −1,

yЧ.Н.2 = −x · e−x.

Общее решение yO.H. = C1 + C2e
−x +

(
1

2
x− 3

4

)
ex − x · e−x.

Пример 3. Найти частное решение уравнения y′′ + 4y = 5ex, удовлетво-
ряющее начальным условиям y(0) = 0, y′(0) = 3.

Составляем однородное уравнение y′′ + 4y = 0.
Характеристическое уравнение имеет вид k2 + 4 = 0. Его решение

k2 = −4 = 4i2, k = ±2i, α = 0, β = 2.
Тогда фундаментальная система решений y1(x) = e0x · cos 2x = cos 2x,

y2(x) = e0x · sin 2x = sin 2x.
Общее решение однородного уравнения yО.О. = C1 · cos 2x+ C2 · sin 2x.

Находим частное решение по виду правой части f(x) = 5ex, k = 1 — не
корень характеристического уравнения. Получаем

yЧ.Н. = A · ex, y′Ч.Н. = A · ex, y′′Ч.Н. = A · ex.
Подставляя в исходное уравнение, находим

A · ex + 4A · ex = 5ex ⇒ 5A = 5 ⇒ A = 1 ⇒ yЧ.Н. = ex.

Тогда yО.Н. = yО.О. + yЧ.Н. = C1 · cos 2x+ C2 · sin 2x+ ex.
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y(0) = 0 ⇒ 0 = C1 cos 0 + C2 sin 0 + e0 = C1 + 1 ⇒ C1 = −1.
y′ = −2C1 sin 2x+ 2C2 cos 2x+ ex.
y′(0) = 3 ⇒ 3 = 2C2 + 1 ⇒ C2 = 1.
Ответ: y = − cos 2x+ sin 2x+ ex.
Пример 4. Решить уравнение y′′ + 4y′ + 5y = 5x2 − 32x+ 5.
Составляем однородное уравнение y′′ + 4y′ + 5y = 0.
Характеристическое уравнение k2 + 4k + 5 = 0

D = 16− 20 = −4 = 4i2 ⇒ k1,2 =
−4± 2i

2
= −2± i.

Фундаментальная система решений

y1 = e−2x · cosx, y2 = e−2x · sinx

и yО.О. = C1 · e−2x · cosx+ C2 · e−2x · sinx.
Частное решение yЧ.Н. = Ax2 + Bx + C, т. к. k = 0 не является корнем

характеристического уравнения. Тогда y′Ч.Н. = 2Ax+B, y′′Ч.Н. = 2A.
Подставляем в неоднородное уравнение предполагаемое решение и его

производные

2A+ 4 · (2Ax+B) + 5 ·
(
Ax2 +Bx+ C

)
= 5x2 − 32x+ 5.

Приравниваем коэффициенты при одинаковых степенях «x» левой и правой
части равенства

x2 : 5A = 5 ⇒ A = 1,

x1 : 8A+ 5B = −32 ⇒ B = −8,

x0 : 2A+ 4B + 5C = 5 ⇒ C = 7.

yЧ.Н. = x2 − 8x+ 7 ⇒ yО.Н. = C1 · e−2x · cosx+ C2 · e−2x · sinx+ x2 − 8x+ 7.
Пример 5. Решить уравнение y′′′ − y′′ = x · ex.
y′′′ − y′′ = 0, k3 − k2 = 0 ⇒ k2 · (k − 1) = 0 ⇒ k1,2 = 0, k3 = 1,
yО.О. = C1 + C2 · x+ C3 · ex.
f(x) = x · ex, k = 1 — корень характеристического уравнения кратно-

сти 1, поэтому yЧ.Н. = x · (Ax+B) · ex = (Ax2 +Bx) · ex и

y′Ч.Н. = (2Ax+B) · ex + (Ax2 +Bx) · ex = ex · (2Ax+B + Ax2 +Bx),

y′′Ч.Н. = ex, ·(2Ax+B + Ax2 +Bx) + ex · (2A+ 2Ax+B) =

= ex · (4Ax+ Ax2 +Bx+ 2A+ 2B),

y′′′Ч.Н. = ex · (4Ax+ Ax2 +Bx+ 2A+ 2B) + ex · (4A+ 2Ax+B) =

= ex · (6Ax+ Ax2 +Bx+ 6A+ 3B).
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Подставляем полученные выражения в неоднородное уравнение

ex · (6Ax+Ax2 +Bx+ 6A+ 3B)− ex · (4Ax+Ax2 +Bx+ 2A+ 2B) = x · ex.

После деления на ex получаем

6Ax+�
��Ax2 +�

��Bx+ 6A+ 3B − 4Ax−�
��Ax2 −�

��Bx− 2A− 2B = x,

2Ax+ 4A+B = x.

Приравнивая коэффициенты, получаем

x1 : 2A = 1 ⇒ A =
1

2
,

x0 : 4A+B = 0 ⇒ B = −2.

yЧ.Н. =

(
1

2
x2 − 2x

)
· ex ⇒ yО.Н. = C1 + C2 · x+ C3 · ex +

(
1

2
x2 − 2x

)
· ex.

4.3.2 Метод вариации произвольных постоянных для интегриро-
вания линейного ДУ второго порядка

Рассмотрим уравнение y′′ + p(x) · y′ + q(x) · y = f(x).
Составим однородное ДУ y′′ + p(x) · y′ + q(x) · y = 0, соответствующее

исходному неоднородному уравнению.
Пусть y(x) = C1 · y1(x) + C2 · y2(x) — его общее решение.
Согласно методу вариации произвольных постоянных, решение неодно-

родного уравнения будем искать в виде y(x) = C1(x) ·y1(x)+C2(x) ·y2(x), где
C1(x), C2(x) — новые неизвестные функции от x. Эти функции определяются
из системы {

C ′
1(x) · y1(x) + C ′

2(x) · y2(x) = 0,

C ′
1(x) · y′1(x) + C ′

2(x) · y′2(x) = f(x).

Пример. Найти общее решение уравнения y′′ + y =
1

cosx
.

Составляем однородное уравнение y′′ + y = 0.
Его характеристическое уравнение k2 + 1 = 0 с решениями k1,2 = ±i.

Следовательно, yO.O = C1 · cosx+ C2 · sinx.
Решение неоднородного уравнения ищем в виде

y(x) = C1(x) · cosx+ C2(x) · sinx.
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Функции C1(x), C2(x) определяем из системыC ′
1(x) · cosx+ C ′

2(x) · sinx = 0,

C ′
1(x) · (− sinx) + C ′

2(x) · cosx =
1

cosx
.

Решаем эту систему относительно C ′
1(x), C ′

2(x) методом Крамера:

∆ =

∣∣∣∣ cosx sinx

− sinx cosx

∣∣∣∣ = 1,

∆1 =

∣∣∣∣∣∣
0 sin x
1

cosx
cosx

∣∣∣∣∣∣ = − sinx

cosx
, ∆2 =

∣∣∣∣∣∣
cosx 0

− sinx
1

cosx

∣∣∣∣∣∣ = 1,

C ′
1(x) = − sinx

cosx
⇒ C1(x) = ln |cosx|+ C1,

C ′
2(x) = 1 ⇒ C2(x) = x+ C2.

Таким образом, общее решение есть

y = (C1 + ln |cosx|) · cosx+ (x+ C2) · sinx.

4.4 Linear Equation with Constant Coefficients

A differential equation of the form

y(n) + p1 · y(n−1) + p2 · y(n−2) + . . .+ pn−1 · y′ + pn · y = f(x)

is called linear equation with constant coefficients (pi ∈ R).
For practical applications, this is one of the most important types.
Equation with right-hand member zero

y(n) + p1 · y(n−1) + p2 · y(n−2) + . . .+ pn−1 · y′ + pn · y = 0

is called linear homogeneous equation with constant coefficients.
Example 1. Consider the equation y′′ + y′ − 6y = 0.
Auxilary polinomial equation k2 + k − 6 = 0. The roots of this equation are

k = 2 and k = −3.
The functions y1(x) = e2x and y2(x) = e−3x are solution,

y1
y2

̸≡ const. So,

y1(x) and y2(x) are fundamental set of solutions and y(x) = C1 · e2x + C2 · e−3x.
Example 2. Determine the general solution y′′ + 4y′ + 4y = 0.
The auxiliary equation is k2 + 4k + 4 = 0. It has multiple root k = −2,
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(k1 = k2 = −2).
Therefore, two linearly independent solutions are y1(x) = e−2x,

y2(x) = x · e−2x.
The general solution is y(x) = C1 · e−2x + C2 · x · e−2x.
Example 3. Determine the general solution of the equation y′′+6y′+25y = 0.
The auxiliary equation is k2 + 6k + 25 = 0. Its has roots k = −3± 4i.
Two independent real-valued solutions are y1(x) = e−3x · cos 4x,

y2(x) = e−3x · sin 4x and the generl soluion is

y(x) = C1 · e−3x · cos 4x+ C2 · e−3x · sin 4x.

If we consider the equation

y(n) + p1 · y(n−1) + p2 · y(n−2) + . . .+ pn−1 · y′ + pn · y = f(x)(nonhomogeneous)

then yO.H. = yO.O+yЧ.Н., where yO.O is general solution to associated homogeneous
equation and yЧ.Н. is a particular solution.

One of the methods for obtaining a particular solution to a nonhomogeneous
equation is called the method of undetermined coefficients, becase we pick a trial
solution with unknown coefficients.

Example. Determine the general solution to y′′ − 6y′ + 9y = 10e3x.
The general solution to the associated homogeneous equation y′′−6y′+9y = 0

is yO.O = C1 · e3x + C2 · x · e3x.
Use the trial solution yЧ.Н. = x2 · Ae3x.

y′Ч.Н. = A · (2x · e3x + x2 · e3x · 3) = Ae3x · (2x+ 3x2),

y′′Ч.Н. = A · (3e3x · (2x+ 3x2) + e3x · (2 + 6x)) = Ae3x · (6x+ 9x2 + 2 + 6x)

then

12Ax+ 9Ax2 + 2A− 12Ax− 18Ax2 + 9Ax2 = 10,

2A = 10 ⇒ A = 5 ⇒ yЧ.Н. = 5x2 · e3x

and general solution is

yO.H. = C1 · e3x + C2 · x · e3x + 5x2 · e3x.
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5 Математические модели прикладных задач,
связанные с обыкновенными дифференциаль-
ными уравнениями

5.1 Дифференциальное уравнение вынужденных коле-
баний

Движение материальной точки по прямой под действием силы притяже-
ния к неподвижному центру, пропорциональной отклонению от него, и силы
сопротивления среды, пропорциональной скорости движения точки, описы-
вается уравнением

d2x

dt2
+ 2a

dx

dt
+ k2x = 0,

что следует из второго закона Ньютона. С учетом возбуждающей силы f (t)

дифференциальное уравнение движения материальной точки принимает вид

d2x

dt2
+ 2a

dx

dt
+ k2x = f (t) .

При отсутствии сопротивления среды (a = 0) и наличии периодической
возбуждающей силы f (t) = H sin (ωt+ γ) дифференциальное уравнение
принимает вид

d2x

dt2
+ k2x = H sin (ωt+ γ) .

Общее решение однородного уравнения
d2x

dt2
+ k2x = 0 характеризует

собственные колебания. Частное решение неоднородного уравнения

xЧ.Н. (t) =
H

k2 − ω2
sin (ωt+ γ) при k ̸= ω характеризует вынужденные ко-

лебания материальной точки.
Общее решение неоднородного уравнения представляет собой наложение

свободных и вынужденных колебаний (принцип суперпозиции сил), т. е.

x (t) = C1 · cos kt+ C2 · sin kt+
H

k2 − ω2
sin (ωt+ γ) .

Если частота ω внешней силы близка к частоте k собственных колебаний,

то амплитуда
H

k2 − ω2
очень велика, вследствие чего может произойти разру-

шение всей колебательной системы. Это явление носит название резонанса.
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В чисто резонансном случае при ω = k общее решение имеет вид

x (t) = C1 · cos kt+ C2 · sin kt−
Ht

2k
cos (kt+ γ) .

При t → +∞ амплитуда вынужденных колебаний
Ht

2k
неограниченно возрас-

тает. С учетом сопротивления среды при синусоидальной вынужденной силе
дифференциальное уравнение движения принимает вид

d2x

dt2
+ 2a

dx

dt
+ k2x = H sin (ωt+ γ) .

Общее решение однородного уравнения
d2x

dt2
+ 2a

dx

dt
+ k2x = 0 при a > 0

и k2−a2 > 0 описывает собственные колебания и при t → +∞ стремится к 0.
Частное решение неоднородного уравнения при больших t описывает

установившийся режим и соответствует вынужденным колебаниям.
Пример. Эффективность рекламы.
Предположим, что торговыми учреждениями реализуется продукция B,

о которой в момент времени t из числа потенциальных покупателей N знают
лишь x покупателей.

Предположим, что для ускорения сбыта продукции B были даны ре-
кламные объявления по радио и телевидению. Последующая информация
о продукции распространяется среди покупателей посредством общения друг
с другом. С большой степенью достоверности можно считать, что после ре-
кламных объявлений скорость изменения числа знающих о продукции B про-
порциональна как числу знающих о товаре покупателей, так и числу поку-
пателей, о нем еще не знающих.

Если условиться, что время отсчитывается после рекламных объявле-

ний, когда о товаре узнало
N

γ
человек, то приходим к дифференциальному

уравнению
dx

dt
= kx(N − x)

с начальными условиями x =
N

γ
при t = 0. В полученном уравнении коэф-

фициент k — это положительный коэффициент пропорциональности.
Интегрируя уравнение, находим, что

1

N
· ln x

N − x
= kt+ C.
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Полагая NC = C1, приходим к равенству

x

N − x
= AeNkt, где A = eC1.

При разрешении последнего уравнения относительно x получим соотношение

x = N · AeNkt

AeNkt + 1
=

N

1 + Pe−Nkt
, где P =

1

A
.

В литературе последнее уравнение обычно называют уравнением логи-
стической кривой.

Если учесть теперь начальные условия, то последнее равенство примет

вид x =
N

1 + (γ − 1)e−Nkt
.

Отметим, что к рассмотренному уравнению сводится, в частности, зада-
ча о распространении технологических новшеств.

5.2 Движение частицы по прямой

Если F — равнодействующая всех сил, действующих на частицу массы
m, то ее ускорение определяется уравнение F = ma.

Если частица движется по прямой и S — пройденное ею расстояние

от фиксированной точки на прямой, то ее скорость v =
dS

dt
, а ускорение

a =
dv

dt
=

d2S

dt2
. Используя эти формулы можем найти S в любом направлении

на прямой и учитывать, что направление положительно, если S увеличива-
ется.

Пример. Если тело медленно погружается в жидкость, сопротивление
приблизительно пропорционально скорости. Если частица выходит из состо-
яния покоя, найдем ее движение.

Пусть S — расстояние, на которое тело спускается за t секунд. Если m —
масса, g — ускорение силы тяжести, то сила тяжести mg, положительна.

Равнодействующая всех сила F = mg − kv.

Следовательно, mg − kv = ma = m · dv
dt

.
Разделяя переменные и интегрируя, получаем

ln(mg − kv) = − k

m
t+ C.

Поскольку v = 0, когда t = 0 получаем ln(mg) = C.
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Вычитая из предыдущего уравнения и решая для mg − kv,

mg − kv = mg · e−kt/m.

Поскольку v =
dS

dt
, интегрирование дает

mgt− kS = −m2g

k
· e−−kt/m + C.

Поскольку S = 0, то при t = 0 вычисляем C =
m2g

k
.

Подставляем это значение и решаем для S

S =
m2g

k2
·
(
e
−kt/m − 1

)
+

mg

k
· t.

5.3 A motion of Particle in Straight Line

If F is the resultant of all forces acting on a particle of mass m, its accele-
ration a is given b the equation F = ma.

If the paricle moves along a straight line ans S is its distance from a fixed

point of the line, its velocity is v =
dS

dt
and its acceleration is a =

dv

dt
=

d2S

dt2
.

In using these formulas we can measure S in either direction along the line but
must then consider as positive the direction in which S increases. The quantities
F , v and a are positive or negative according as they point in the positive or
negative direction thus defined.

Example. When a body sinks slowly is a liquid the resistance is approximately
proportional to the velocity. If the particle starts from rest, find its motion.

Let S considered positive downward, be the distance the body sinks in t

seconds. If m is its mass and g the acceleration of gravity, the force of gravity is
mg, which is positive since the force is downward. The resistance acting upward
and being proportional to the velocity S − kv.

The total force acting on the body is then F = mg − kv.

Hence mg − kv = ma = m · dv
dt

.
Separating the variables and integrating, we get

ln(mg − kv) = − k

m
t+ C.

Since v = 0, when t = 0 ⇒ ln(mg) = C.
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Subtracting from the preceding equation and solving for mg − kv,

mg − kv = mg · e−kt/m.

Since v =
dS

dt
, integration gives

mgt− kS = −m2g

k
· e−kt/m + C.

Since S = 0 when t = 0 ⇒ C =
m2g

k
.

Substituting this value and solving for S

S =
m2g

k2
·
(
e
−kt/m − 1

)
+

mg

k
· t.

5.4 Упражнения

1. Проинтегрировать уравнение

d2x

dt2
+ 2a

dx

dt
+ k2x = f(t),

1.1. в случае свободных колебаний в среде без сопротивления, найти пе-
риод и частоту колебаний;

1.2. в случае вынужденных колебаний в среде без сопротивления при
наличии синусоидальной вынуждающей силы с нулевой начальной фазой;

1.3. в случае вынужденных колебаний в среде с сопротивлением при на-
личии синусоидальной вынуждающей силы с нулевой фазой;

1.4. в случае отсутствия внешней силы; выделить случай затухающих
гармонических колебаний.

2. При каком условии относительно ω общее решение уравнения
D2x+ x = sin(ω t) не будет иметь векового члена?

Указание. В небесной механике вековым членом называется выражение,
имеющее вид произведения периодической функции и степени независимой
переменной.

Ответ: |ω| ≠ 1.
3. При каких значениях k общее решение уравнения D2x + k2x = sin 2t

не имеет векового члена? (См. указание к задаче 2.)
Ответ: |k| ≠ 2.
4. При каких значениях k и ω имеет вековой член общее решение урав-
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нения D2x+ kx = cos(ω t)? (См. указание к задаче 2.)
Ответ: ω2 = k.
5. При каких значениях k и ω уравнение D2x+k2x = sin(ω t) имеет хотя

бы одно периодическое решение?
Ответ: ω ̸= k.
6. Показать, что частное решение уравнения D2x+p2x = k cos(p t) пред-

ставляет колебания с неограниченно возрастающей амплитудой.
7. Найти периодические решения уравнения D2x+ aDx+ bx = sin(ω t).

Ответ: При a ̸= 0
aω cos(ω t) + (ω2 − b) sin(ω t)

a2ω2 + (ω2 − b)2
;

при a = 0, b < 0 и при a = 0, b > 0, b ̸= ω2,
√
b/ω /∈ Q ⇒ 1

b− ω2
sin(ω t);

при a = 0, b > 0, b ̸= ω2,
√
b/ω ∈ Q ⇒ C1 cos(

√
b t) + C2 sin(

√
b t) +

1

b− ω2
sin(ω t) при C1, C2 ∈ R;

при a = 0, b > 0, b = ω2 периодических решений нет;

при a = 0, b = 0 ⇒ −sin(ω t)

ω2
.

8. Качка корабля описывается дифференциальным уравнением
d2u

dt2
+ 2h

du

dt
+ k2u = a sin(ω t) + b cos(ω t), где a, b, h, k, ω — постоянные,

h < k, u = u(t) — наклон корабля в момент времени t. Проинтегрировать
уравнение. Исследовать наличие установившегося режима и найти в этом
режиме наибольшее отклонение корабля от положения равновесия.

Ответ:
u = e−h t

(
C1 sin

√
k2 − h2 t+ C2 cos

√
k2 − h2 t

)
+ p sin(ω t) + q cos(ω t),

где p =
a(k2 − ω2) + 2bhω

(k2 − ω2)2 + 4h2ω2
, q =

b(k2 − ω2)− 2ahω

(k2 − ω2)2 + 4h2ω2
, h > 0; u =

√
p2 + q2.

9. Равновесный размер популяции некоторого вида в заданной среде оце-
нивается в 1000 особей. Численность популяции испытывает флуктуации око-
ло этого среднего значения и описывается уравнением D2x = 4π2(1000− x),
где x = x(t) — численность популяции спустя 6, 12 и 18 месяцев, если в на-
чальный момент времени популяция состояла из 1500 особей. Начальная ско-
рость изменения численности равна нулю.

Ответ: x = 500 cos 2πt+ 1000; 500; 1500; 500.
10. В эксперименте с голоданием масса испытуемого за 30 дней уменьши-

лась с 56 до 44 кг. Ежедневная потеря массы, согласно наблюдениям, пропор-
циональна массе испытуемого. Найти закон изменения массы как функции
времени. Определить массу испытуемого после 15 дней голодания.

Ответ: x = 56

(
11

14

)t/30

, ≈ 49 кг.
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11. При большой скорости вращения тонкого длинного вала длиной l

с закрепленными концами под действием центробежной силы происходит ис-
кривление его формы. Прогиб вала y в зависимости от абсциссы x удовле-

творяет уравнению
d4y

dx4
= a4y, где a4 =

mω2

EI
; m — масса единицы длины

вала; ω — угловая скорость вала; E — модуль Юнга; I — момент инерции
поперечного сечения вала относительно оси. Определить критическую угло-
вую скорость вала, т.е. скорость, при которой изменяется форма вала, если

на закрепленных его концах изгибающие моменты
d2y

dx2
и прогибы равны ну-

лю.

Ответ: ω =
k2π2

l2

√
EI

m
, k ∈ Z.

12. Составить уравнение движения и найти период свободных колеба-
ний груза массой m, подвешенного к пружине, если движение происходит
без сопротивления.

Ответ: mD2x+ kx = 0, k > 0, T = 2π
√
m/k.

13. Один конец пружины закреплен неподвижно, а к другому прикреп-
лен груз массой m. При движении груза со скоростью v сила сопротивления
среды равна hv, а сила упругости пружины пропорциональна отклонению
от положения равновесия и равна kx. При t = 0 грузу, находившемуся в поло-
жении равновесия, сообщена скорость v0. Составить математическую модель
движения и исследовать закон движения.

Ответ: m
d2x

dt2
+ h

dx

dt
+ kx = 0, x

∣∣∣
t=0

= 0,
dx

dt

∣∣∣
t=0

= v0.
14. Материальная точка массой 1 г отталкивается вдоль прямой от неко-

торого центра с силой, пропорциональной расстоянию от нее до этого цен-
тра, коэффициент пропорциональности равен четырем. Сопротивление сре-
ды пропорционально скорости движения, коэффициент пропорциональности
равен трем. В начале движения расстояние от центра до точки равно 1 см,
а скорость — нулю. Найти закон движения точки.

Ответ: x = (4et + e−4t)/5.
15. Материальная точка массой m движется по прямой под действием

силы f⃗1, модуль которой пропорционален отклонению материальной точки
от положения равновесия, и силы сопротивления среды f⃗2, модуль которой
пропорционален скорости движения материальной точки. Начальное откло-
нение материальной точки равно s0, начальная скорость v0. Составить мате-
матическую модель закона движения. Выделить случаи: движения без коле-
бания; гармонических колебаний; затухающих гармонических колебаний.

Ответ: m
d2x

dt2
+ h

dx

dt
+ kx = 0, x

∣∣∣
t=0

= s0,
dx

dt

∣∣∣
t=0

= v0.
16. Тело массой 1 кг подвергаются действию силы упругости, стремящей-
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ся вернуть его в положение устойчивого равновесия. Сила пропорциональна
смещению и равна 2 H при смещении в 1 м. Сопротивление среды пропор-
ционально скорости. Амплитуда после трех колебаний уменьшается в 10 раз.
Составить уравнение движения и найти период колебаний.

Ответ:
d2x

dt2
+

2
√
2 ln 10√

36π2 + ln2 10
· dx
dt

+ 2x = 0, T =

√
2

6

√
36π2 + ln2 10.

17. Материальная точка массой m притягивается каждым из двух цен-
тров с силой, пропорциональной расстоянию. Коэффициент пропорциональ-
ности равен k. Расстояние между центрами 2b. В начальный момент точка
находится на линии соединения центров на расстоянии a от ее середины.
Начальная скорость равна нулю. Найти закон движения точки.

Ответ: x = a cos
√
2k/m t.

18. К пружине подвешен груз. Статистическое удлинение пружины рав-
но l. Построить математическую модель и найти закон колебаний груза, если
в начальный момент пружина была растянута из ненапряженного состояния
до длины 3l, а груз был отпущен без начальной скорости. Определить частоту
собственных незатухающих колебаний и их период.

Ответ:
d2x

dt2
+

g

l
x = 0, x

∣∣∣
t=0

= 2l,
dx

dt

∣∣∣∣∣
t=0

= 0; x = 2l cos
√
g/l t;

ω =
√
g/l, T = 2π

√
l/g.

19. Сила, натягивающая пружину, пропорциональна увеличению ее дли-
ны и равна 10 H, когда длина увеличивается на 1 см. К пружине подвешен
груз массой 2 кг. Составить дифференциальное уравнение движения и най-
ти период колебательного движения груза при условии, что он был слегка
оттянут вниз и затем отпущен.

Ответ:
d2x

dt2
+ 500x = 0, T =

π
√
5

25
c.

20. Статические удлинения пружины под действием двух грузов равны
соответственно l1 и l2. Определить частоту свободных незатухающих коле-
баний и их период, если к концу пружины подвесить оба груза. Составить
предварительно дифференциальное уравнение движения и найти закон дви-
жения.

Ответ:
d2x

dt2
+

g

l1 + l2
x = 0, x = C1 cos

√
g

l1 + l2
t + C2 sin

√
g

l1 + l2
t,

ω =

√
g

l1 + l2
, T = 2π

√
(l1 + l2)/g.

21. Статическое удлинение пружины под действием данного груза рав-
но 20 см. В‘момент t0 = 0 груз, находясь в положении равновесия, получил
начальную скорость и стал совершать незатухающие колебания с амплиту-
дой, равной 4 см. Определить закон движения груза и начальную скорость,
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принимая ускорение свободного падения g равным 1000 см/с2.
Ответ: x = 4 sin

√
50 t, v0 ≈ 28 см/с.

22. Груз массой 100 г подвесили к концу недеформированной пружи-
ны и отпустили без начальной скорости. Длина недеформированной пружи-
ны равна 65 см, а при равновесии груза на‘пружине ее длина равна 85 см.
Составить математическую модель движения и определить закон движения
груза, амплитуду и период колебаний, наибольшую силу упругости пружины,
учитывая, что g = 9, 81 м/с2.

Ответ:
d2x

dt2
+

g

20
x = 0, x

∣∣∣
t=0

= −20,
dx

dt

∣∣∣∣∣
t=0

= 0; x = −20 cos 7t, 20 см;

2π/7 с, 1,96 H.
23. На вертикально расположенной пружине подвешены два равных гру-

за, в результате чего она удлинилась на l. После этого один из грузов обо-
рвался. Составить математическую модель движения второго груза, найти
закон его движения, пренебрегая массой пружины.

Ответ:
d2x

dt2
+

2g

l
x = 0, x

∣∣∣
t=0

=
l

2
,

dx

dt

∣∣∣∣∣
t=0

= 0; x =
l

2
cos

√
2g

l
t.

24. Два одинаковых груза подвешены на пружине. Составить математи-
ческую модель и найти закон движения одного из этих грузов при условии,
что второй груз оборвется. Удлинение пружины за счет одного груза равно a.

Ответ:
d2x

dt2
+

g

a
x = 0, x

∣∣∣
t=0

= a,
dx

dt

∣∣∣∣∣
t=0

= 0; x = a cos

√
g

a
t.

25. Тело массой m подвешено на пружине с жесткостью c. При верти-
кальном движении тела на него действует сила сопротивления среды
R⃗ = −2

√
mcv⃗. Составить математическую модель и определить закон дви-

жения тела, если оно в начальный момент имело скорость v⃗0, направленную
вниз, удлинение пружины было равно a.

Ответ: m
d2x

dt2
+ 2

√
mc

dx

dt
+ cx = 0, x

∣∣∣
t=0

= a,
dx

dt

∣∣∣∣∣
t=0

= v0;

x =
(
a+ (v0 + a

√
c/m) t) exp

(
−
√
c/m t

))
.

26. Статистическое удлинение пружины под действием груза массой m

равно l. На колеблющийся груз действует сила сопротивления среды, про-
порциональная скорости (R⃗ = −bv⃗). Определить наименьшее положительное
b, при котором процесс движения будет апериодическим.

Ответ: bmin = 2m
√
g/l.

27. Используя условие предыдущей задачи, определить уравнение дви-
жения груза, если в начальный момент он находился в положении равновесия
и имел скорость v⃗0, направленную вниз.
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Ответ: x = v0 t exp

(
−
√
g/l t

)
.

28. Материальная точка массой m совершает затухающие колебания
под действием силы упругости пружины, коэффициент жесткости которой
c, и силы сопротивления среды R⃗ = −γ v⃗, где γ > 0. Путем демпфирования
(изменения силы сопротивления среды) значение коэффициента γ измене-
но до такого значения γ1, что частота колебаний точки уменьшилась вдвое.
Найти γ1.

Ответ: γ1 =
√
3mc+ γ2/4.

29. Используя условие предыдущей задачи, найти значение γ1, при кото-
ром частота колебаний точки увеличится вдвое, и установить условие, при ко-
тором это возможно.

Ответ: γ1 =
√
4γ2 − 12mc,

√
3mc < γ < 2

√
mc.

30. Груз массой m повешен на пружине с жесткостью c. На него дей-
ствуют возмущающая сила Q⃗, направленная вдоль вертикали x, и сила со-
противления среды R⃗ = −bv⃗. Составить дифференциальное уравнение дви-
жения груза. Определить амплитуду A вынужденных колебаний груза, если
Qx = H sin

√
c/mt.

Ответ: m
d2x

dt2
+ b

dx

dt
+ cx = H sin

√
c

m
t, A =

H

b

√
m

c
.

31. Пружина скреплена со штоком поршня, который находится в камере.
В эту камеру попеременно сверху и снизу поступает свежий воздух, вслед-
ствие чего сила, действующая на поршень, изменяется по закону
F = 2, 3 sin 8π t (t — время, с; F — сила, H). Составить дифференциаль-
ное уравнение и определить вынужденные колебания поршня, если его масса
m = 0, 5 кг, а жесткость пружины c = 200 H/м.

Ответ:
d2x

dt2
+ 400x = 4, 6 sin 8π t, x = −1, 98 sin 8π t см.

5.5 Примеры решения начальных задач для обыкновен-
ного дифференциального уравнения

Пример 1. Найти частное решение уравнения x′′ + ω2
0 x = f (x), удовле-

творяющее начальным условиям x (t0) = x′ (t0) = 0.
Рассмотрим соответствующее однородное уравнение x′′ + ω2

0 x = 0.
Его характеристическое уравнение λ2 + ω2

0 = 0 имеет корни λ1,2 = ± i ω0

и общее решение однородного уравнения x(t) = C1 cosω0 t+ C2 sinω0 t.
Решение неоднородного уравнения находим, используя метод вариации

произвольной постоянной. Решение ищем в том же виде, что и решение од-
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нородного уравнения, но Ci считаем функциями от t:

x (t) = C1 (t) · cosω0 t+ C2 (t) · sinω0 t.

C ′
1 (t), C ′

2 (t) определим из системы{
C ′

1 (t) · cosω0 t+ C ′
2 (t) · sinω0 t = 0,

−ω0 · C ′
1 (t) · sinω0 t+ ω0 · C ′

2 (t) · cosω0 t = f (t) .

Находим

C ′
1 (t) =

∣∣∣∣ 0 sinω0 t

f (t) ω0 · cosω0 t

∣∣∣∣∣∣∣∣ cosω0 t sinω0 t

−ω0 · sinω0 t ω0 · cosω0 t

∣∣∣∣ =
−f (t) · sinω0 t

ω0
,

C ′
2 (t) =

∣∣∣∣ cosω0 t 0

−ω0 · sinω0 t f (t)

∣∣∣∣∣∣∣∣ cosω0 t sinω0 t

−ω0 · sinω0 t ω0 · cosω0 t

∣∣∣∣ =
f (t) · cosω0 t

ω0
.

Тогда

C1 (t) = − 1

ω0

t∫
t0

f (τ) sinω0 τ dτ + C1

C2 (t) =
1

ω0

t∫
t0

f (τ) cosω0 τ dτ + C2

и общее решение неоднородного уравнения запишется в виде

x (t) = C1 · cosω0 t+ C2 · sinω0 t−

−cosω0 t

ω0

t∫
t0

f (τ) sinω0 τ dτ +
sinω0 t

ω0

t∫
t0

f (τ) cosω0 τ dτ =

= C1 cosω0 t+ C2 sinω0 t+
1

ω0

t∫
t0

f (τ) sinω0 (t− τ) dτ .

Используем начальные условия для определения C1, C2. Найдем x′ (t)
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(воспользуемся правилом дифференцирования интеграла, зависящего от па-
раметра, в случае, когда и пределы интегрирования зависят от параметра).

x′ (t) = −ω0C1 · sinω0 t+ ω0C2 · cosω0 t+
1

ω0

t∫
t0

f (τ) cosω0 (t− τ) · ω0 dτ+

+
1

ω0
· 1 · f (t) sinω0 (t− t)︸ ︷︷ ︸

=0

− 1

ω0
· 0 · f (t0) sinω0 (t− t0)︸ ︷︷ ︸

=0

.

Используя начальные условия x′ (t0) = x (t0) = 0, для определения C1, C2

получаем систему{
C1 · (−ω0 sinω0 t0) + C2 · ω0 cosω0 t0 = 0,

C1 · cosω0 t0 + C2 · sinω0 t0 = 0.

Система, очевидно, имеет только тривиальное решение, т. е. C1 = C2 = 0.
Окончательное решение поставленной задачи Коши таково

x (t) =
1

ω0

t∫
t0

f (τ) sinω0 (t− τ) dτ .

Пример 2. Найти решение задачи Коши
x′′ + 2hx′ + ω2

0 x = f (t) ,

x (0) = 0,

x′ (0) = 0,
(
h2 − ω2

0 < 0
)
.

Будем искать решение неоднородного линейного уравнения с использо-
ванием метода вариации произвольной постоянной.

Составим характеристическое уравнение для соответствующего однород-
ного уравнения x′′ + 2hx′ + ω2

0 x = 0. Оно таково: λ2 + 2hλ+ ω2
0 = 0.

Корни характеристического уравнения λ1, 2 = −h± i
√
ω2
0 − h2. Обозна-

чим ω =
√
ω2
0 − h2. Тогда общее решение однородного уравнения

x (t) = C1 · e−ht · cosω t+ C2 · e−ht · sinω t.

Решение неоднородного уравнения, согласно методу вариации произ-
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вольной постоянной, ищем в виде

x (t) = C1 (t) · e−ht · cosω t+ C2 (t) · e−ht · sinω · t,

где функции C1 (t), C2 (t) определяется из системы
C ′

1 (t) · e−ht · cosω t+ C ′
2 (t) · e−ht · sinω t = 0,

C ′
1 (t) ·

(
−he−ht · cosω t− ωe−ht · sinω t

)
+

+C ′
2 (t) ·

(
−he−ht · sinω t+ ωe−ht · cosω t

)
= f (t) .

Решая ее, находим

C ′
1 (t) = −f (t) · eht · sinω t

ω
,

C ′
2 (t) =

f (t) · eht · cosω t

ω
,

или

C1 (t) = − 1

ω

t∫
0

f (τ) · ehτ · sinω τ dτ + C1,

C2 (t) =
1

ω

t∫
0

f (τ) · ehτ · cosω τ dτ + C2.

Общее решение неоднородного дифференциального уравнения

x (t) = C1 · e−ht · cosω t+C2 · e−ht · sinω t+
1

ω

t∫
0

f (τ) · e−h(t−τ) · sinω (t− τ) dτ.

x (0) = 0 ⇒ C1 = 0.

x′ (t) = C1

(
−he−ht · cosω t− ωe−ht · sinω t

)
+

+ C2

(
−he−ht · sinωt+ ωe−ht · cosωt

)
+

+
1

ω

t∫
0

f (τ)
(
−he−h(t−τ) · sin (t− τ) + ωe−h(t−τ) · cos (t− τ)

)
dτ+

+
1

ω
f (t) · e−h(t−τ) · sin (t− t)︸ ︷︷ ︸

=0

.
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x′ (0) = 0 ⇒ C2 = 0 и решение данной задачи Коши

x (t) =
1

ω

t∫
0

f (τ) · e−h(t−τ) · sinω (t− τ) dτ.

Пример 3. Решить задачу Коши
x′′ + 4x = sin 2t;

x (0) = 0;

x′ (0) = 0.

Решение. Воспользуемся полученной в предыдущем примере итоговой
формулой

x (t) =
1

2

t∫
0

sin 2τ · sin 2 (t− τ) dτ =

=
1

2

t∫
0

[1
2

(
cos (2τ − 2t+ 2τ)− cos (2τ + 2t− 2τ)

)]
dτ =

=
1

4

t∫
0

(cos (4τ − 2t)− cos 2t) dτ =
1

4

(
1

4
sin (4τ − 2t)

∣∣∣t
0
− cos 2t · τ

∣∣∣t
0

)
=

=
1

4

(
1

4
sin 2t+

1

4
sin 2t− cos 2t · t

)
=

1

8
sin 2t− 1

4
cos 2t · t =

=
1

8
sin 2t− 1

4
t · cos 2t.

Ответ: x (t) =
1

8
sin 2t− 1

4
t · cos 2t.
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6 Тестовые задания

1. Порядком дифференциального уравнения называется...

a) наивысшая степень переменной x, входящей в состав дифференциаль-
ного уравнения;

b) порядок старшей производной, входящей в дифференциальное урав-
нение;

c) наивысшая степень переменной y, входящей в состав дифференциаль-
ного уравнения;

d) количество производных, которое содержит дифференциальное урав-
нение.

2. Интегрированием дифференциального уравнения y′ = f(x; y) называет-
ся нахождение...

a) решения дифференциального уравнения;

b) интеграла от правой части дифференциального уравнения;

c) интеграла от искомой функции y(x);

d) интеграла от y′(x).

3. Уравнение вида f1(x) · g1(y) dx+ f2(x) · g2(y) dy = 0 называется...

a) дифференциальным уравнением с разделяющимися переменными;

b) однородным дифференциальным уравнением;

c) линейным дифференциальным уравнением;

d) уравнением Бернулли.

4. Определите, какое из указанных дифференциальных уравнений является
уравнением второго порядка:

a) (y′)2 − 2xy′ = 0;

b) 2y′′ + 3y′′′ = x;

c) xy′′ − y′ = 0;

d) y2 = y′ + x2 − 1.

5. Определите, какая из указанных функций является решением дифферен-
циального уравнения y′ + 2y = 4x:

a) y = 4x+ 1;

b) y = 2x+ 1;
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c) y = 2x− 1;

d) y = 4x− 1.

6. Определить тип дифференциального уравнения (x4 + 5)y′ + xy3 = 0:

a) с разделяющимися переменными;

b) однородное;

c) линейное первого порядка;

d) линейное второго порядка.

7. Определить тип дифференциального уравнения y′ =
x2 − xy

x2 + 5xy
:

a) с разделяющимися переменными;

b) однородное;

c) линейное первого порядка;

d) линейное второго порядка.

8. Нахождение частных решений дифференциальных уравнений называет-
ся решением задачи

a) Бернулли;

b) Коши;

c) Лагранжа;

d) Эйлера.

9. Решение уравнения y′ = xy равно:

a) y = ln(Cx);

b) y = Ce
x2

2 ;

c) y = Cx;

d) y = Cex;

e) y = C + ln(x).

10. Общий интеграл дифференциального уравнения
dy

y2
= x dx имеет вид

a) −1

y
=

x2

2
+ C;

b) y =
x2

2
+ C;
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c)
1

y
=

x2

2
+ C;

d) −1

y
= x2 + C.

11. Общее решение дифференциального уравнения (x2 + 16) · y′ = 1 имеет
вид

a) y =
1

4
arctg

x

4
+ C;

b) y = arctg 2x+ C;

c) y = ln |x|+ C;

d) y = ln(x2 + 16) + C.

12. Частное решение дифференциального уравнения y′ tg x = y при началь-

ных условиях y
(π
4

)
=

√
2

2
имеет вид

a) sinx+ 1;

b) sinx;

c) − sinx;

d) cosx.

13. Решение задачи Коши y′ =
x− y

x+ y
, y(0) = 1

a) y2 + xy − x2 = 1;

b) y2 + 2xy − x2 = 1;

c) y2 − xy − x2 = 1;

d) y2 − 2xy − x2 = 1.

14. Решение задачи Коши y′′ = xex, y(0) = 1, y′(0) = 0

a) y = (x+ 2) · ex − 3x− 1;

b) y = (x+ 1) · ex − 2x;

c) y = (x− 1) · ex + 2;

d) y = (x− 2) · ex + x+ 3.

15. Однородному линейному уравнению y′′ + 5y′ + 6y = 0 соответствует ха-
рактеристическое уравнение

a) 1 + 5k + 6k2 = 0;

b) k2 − 5k + 6 = 0;
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c) k2 − 5k − 6 = 0;

d) k2 + 5k + 6 = 0.

16. Для дифференциального уравнения yIV −y′′′+y′′ = 0 характеристическое
уравнение имеет вид

a) k4 − k3 + k2 = 0;

b) k4 − k3 + k2 + k = 0;

c) k3 − k2 + k + 1 = 0;

d) k4 + k3 + k2 = 0;

e) k3 + k2 + k = 0.

17. Для дифференциального уравнения yIV − y′′ + y′ + y = 0 характеристи-
ческое уравнение имеет вид

a) k4 − k2 + k + 1 = 0;

b) k4 − k3 + k2 + k = 0;

c) k3 − k2 + k + 1 = 0;

d) k4 + k3 + k2 = 0;

e) k3 + k2 + k = 0.

18. Общее решение уравнения y′′ + 2y′ − 8y = 0 равно:

a) y = C1 · e−4x + C2 · e2x;
b) y = C1 · e4x + C2 · e−2x;

c) y = C1 · e−4x + C2 · e−2x;

d) y = C1 · e4x + C2 · e2x.

19. Каково общее решение дифференциального уравнения y′′ + 4y′ + 8y = 0

a) y = C1 · e2x + C2 · e−2x;

b) y = (C1 + C2x) · e−2x;

c) y = e−2x · (C1 cos 2x+ C2 sin 2x);

d) y = e2x · (C1 cos 2x+ C2 sin 2x).

20. Решение задачи Коши y′′ + 3y′ − 4y = 0, y′(0) = 0, y(0) = 5 имеет вид

a) y = 4e−x + e4x;

b) y = 4ex + e−4x;

c) y = C1e
x + C2e

−4x;

d) y = ex + 4e−4x.
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21. Частное решение дифференциального уравнения y′′ − 2y′ − 35y = xe7x

следует искать в виде

a) y = e7x · Ax;

b) y = e−7x · Ax;

c) y = e7x · (Ax+B)x;

d) y = e7x · (Ax+B).

22. Частное решение дифференциального уравнения y′′ − 6y′ + 9y = xe3x

следует искать в виде

a) y = e3x · Ax;

b) y = e3x · Ax2;
c) y = e3x · (Ax+B)x2;

d) y = e3x · (Ax+B);

e) y = e3x · (Ax+B)x.

23. Скорость движущегося тела возрастает пропорционально пройденному
пути и в начальный момент движения тело находится в 8 м от начала
отсчета пути и имело скорость 24 м/с. Тогда закон движения тела

a) s = 8e3t;

b) s = 3e8t;

c) s = 8e24t;

d) s = 24e8t.

24. Проверить является ли функция y =
1

x
решением ДУ x3y′′ + x2y′ = 1.

25. Найти общее решение ДУ
√
y2 + 1 dx = xy dy.

26. Найти частное решение ДУ xy′ = y +
√
x2 + y2, y(1) = 0.

27. Найти частное решение ДУ y′ − y = ex, y(0) = 1.

28. Найти решение задачи Коши y′′′ = e
x
2 +1, y(0) = 8, y′(0) = 5, y′′(0) = 2.

29. Найти общее решение дифференциального уравнения y′′ − 5y′ = 0.

30. Найти общее решение дифференциального уравнения y′′−10y′+25y = 0.

31. Найти общее решение дифференциального уравнения y′′ − 4y′ + 5y = 0.
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7 Индивидуальные задания

Вариант 1

1. 4x dx− 3y dy = 3x2y dy − 2xy2 dx.
2. (y2 − 3x2) dy + 2xy dx = 0.
3. y′ − y

x
= x2, y(1) = 0.

4. y2 dx+ (x+ e
2/y) dy = 0.

5. y′ + xy = (1 + x)e−xy2, y(0) = 1.
6. 3x2ey dx+ (x3ey − 1) dy = 0.
7. y′′′x lnx = y.

8. 4y3y′′ = y4 − 1, y(0) =
√
2, y′(0) =

1

2
√
2
.

9. y′′ − 2y′ + y = −12 cos 2x− 9 sin 2x, y(0) = −2, y′(0) = 0.
10. y′′′ + 3y′′ + 2y′ = 1− x2.

11.

x′ = 2x+ y,

y′ = 3x+ 4y.

12. y′′ + π2y =
π2

cos πx
, y(0) = 3, y′(0) = 0.

Вариант 2

1. x
√
1 + y2 + yy′

√
1 + x2 = 0.

2. xy′ =
3y3 + 2yx2

2y2 + x2
.

3. y′ − y ctg x = 2x sinx, y
(π
2

)
= 0.

4. y′ + 2y = y2 tg x.

5. xy′ + y = 2y2 lnx, y(1) =
1

2
.

6.
(
3x2 +

2

y
cos

2x

y

)
dx− 2x

y2
cos

2x

y
dy = 0.

7. xy′′′ + y′′ = 1.
8. y′′ = 128y3, y(0) = 1, y′(0) = 8.
9. y′′ − 6y′ + 9y = 9x2 − 39x+ 65, y(0) = −1, y′(0) = 1.
10. y′′′ − y′′ = 6x2 + 3x.

11.

x′ = y,

y′ = x.

12. y′′ + 3y′ =
9e3x

1 + e3x
, y(0) = ln 4, y′(0) = 3(1− ln 2).
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Вариант 3

1.
√
4 + y2 dx− y dy = x2y dy

2. y′ =
x+ y

x− y
.

3. y′ + y cosx =
1

2
sin 2x, y(0) = 0.

4. y2 dx+ (xy − 1) dy = 0.
5. 2(xy′ + y) = xy2, y(1) = 2.
6.
(
3x2 + 4y2

)
dx+ (8xy + ey) dy = 0.

7. 2xy′′′ = y′′.
8. y′′y3 = −64, y(0) = 4, y′(0) = 2.
9. y′′ + 2y′ + 2y = 2x2 + 8x+ 6, y(0) = 1, y′(0) = 4,
10. y′′′ − y′ = x2 + x.

11.

x′ = x− y,

y′ = −4x+ y.

12. y′′ + 4y = 8 ctg 2x,
(π
4

)
= 5, y′

(π
4

)
= 4.

Вариант 4

1. y′ + y = −y2.
2. xy′ =

√
x2 + y2 + y.

3. y′ + y tg x = cos2 x, y(
π

4
) =

1

2
.

4. 2(4y2 + 4y − x)y′ = 1.
5. y′ + 4x3y = 4(x3 + 1) · e−4xy2, y(0) = 1.

6.
(
2x− 1− y

x2

)
dx−

(
2y − 1

x

)
dy = 0.

7. xy′′′ + y′′ = x+ 1.
8. y′′ + 2 sin y · cos3 y = 0, y(0) = 0, y′(0) = 1.
9. y′′ − 6y′ + 25y = 9 sin 4x− 24 cos 4x, y(0) = 2, y′(0) = −2.
10. yIV − 3y′′′ + 3y′′ − y′ = 2x.

11.

x′ = −x− 2y,

y′ = 3x+ 4y.

12. y′′ − 6y′ + 8y =
4

1 + e3x
, y(0) = 1 + 2 ln 2, y′(0) = 6 ln 2.
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Вариант 5

1. 6x dx− 6y dy = 2x2y dy + 3y2x dx.

2. 2y′ =
y2

x2
+ 6

y

x
+ 3.

3. y′ − y

x+ 2
= x2 + 2x, y(−1) =

3

2
.

4. (cos 2y cos2 y − x) · y′ = sin y · cos y.
5. xy′ − y = −y2 · (lnx+ 2) · lnx, y(1) = 1.
6. (y2 + y sec2 x) dx+ (2xy + tg x) dy = 0.
7. x2y′′ + xy′ = 1.
8. y′′ = 32 sin3 y · cos y, y(1) =

π

2
, y′(1) = 4.

9. y′′ + 6y = ex · (cos 4x− 8 sin 4x), y(0) = 0, y′(0) = 5.
10. yIV − y′′′ = 5(x+ 2)2.

11.

x′ = −x+ 8y,

y′ = x+ y.

12. y′′ − 9y′ + 18y =
9e3x

1 + e−3x
y(0) = 0, y′(0) = 0.

Вариант 6

1. y′ = 2xy + x.
2. xy′ = 2

√
x2 + y2 + y.

3. y′ − 1

x+ 1
· y = ex · (x+ 1), y(0) = 1.

4. (x cos2 y − y2) · y′ = y cos2 y.
5. 2(y′ + xy) = (1 + x) · e−xy2, y(0) = 2.
6. (3x2y + 2y + 3) dx+ (x3 + 2x+ 3y2) dy = 0.

7. tg x · y′′ − y′ +
1

sinx
= 0.

8. y′′ = 98y3, y(1) = 1, y′(1) = 7.
9. y′′ − 4y′ + 20y = 16x · e2x, y(0) = 1, y′(0) = 2.
10. yIV − 2y′′′ + y′′ = 2x(1− x).

11.

x′ = −x+ 2y,

y′ = −3x+ 4y.

12. y′′ + π2y =
π2

sin πx
, y

(
1

2

)
= 1, y′

(
1

2

)
=

π2

2
.
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Вариант 7

1.
(
e2x + 5

)
dy + ye2x dx = 0.

2. y′ =
x+ 2y

2x− y
.

3. y′ − y

x
= x sinx, y

(π
2

)
= 1.

4. ey
2 · (dx− 2xy dy) = y dy.

5. 3 (xy′ + y) = y2 lnx, y(1) = 3.

6.

(
x√

x2 + y2
+

1

x
+

1

y

)
dx+

(
y√

x2 + y2
+

1

y
− x

y2

)
dy = 0.

7. y′′′ ctg 2x+ 2y′′ = 0.
8. y′′y3 + 49 = 0, y(3) = −7, y′(3) = −1.
9. y′′ − 12y′ + 36y = 32 cos 2x+ 24 sin 2x, y(0) = 2, y′(0) = 4.
10. yIV + 2y′′′ + y′′ = x2 + x+ 1.

11.

x′ = −2x− 3y,

y′ = −x.

12. y′′ +
1

π2
· y =

1

π2 cos
x

π

, y(0) = 2, y′(0) = 0.

Вариант 8

1. y′y ·

√
1− x2

1− y2
+ 1 = 0.

2. xy′ = 2
√
x2 + y2 + y.

3. y′ +
y

x
= sinx, y

(π
2

)
=

1

π
.

4. (10y2 − x) · y′ = 4y.
5. 2y′ + y · cosx = y−1 · cosx · (1 + sin x), y(0) = 1

6. (sin 2x− 2 cos(x+ y)) dx− 2 cos(x+ y) dy = 0.
7. x3y′′′ + x2y′′ = 1.

8. 4y3y′′ = 16y4 − 1, y(0) =

√
2

2
, y′(0) =

1√
2
.

9. y′′ + 8y′ + 16y = 16x2 − 16x− 66, y(0) = 3, y′(0) = 0.
10. yV − yIV = 2x+ 3.

11.

x′ = −2x,

y′ = y.

12. y′′ − 3y′ =
9e−3x

3 + e−3x
, y(0) = 4 ln 4, y′(0) = 3(3 ln 4− 1).
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Вариант 9

1. 6x dx− 6y dy = 3x2y dy − 2xy2 dx.

2. 3y′ =
y2

x2
+ 8

y

x
+ 4.

3. y′ +
y

2x
= x2, y(1) = 1.

4. dx+ (xy − y3) dy = 0.
5. y′ + 4x3y = 4y2 · e4x · (1− x3), y(0) = −1.

6.
(
xy2 +

x

y2

)
dx+

(
x2y − x2

y3

)
dy = 0.

7. tg x · y′′′ = 2y′′.
8. y′′ + 8 sin y · cos3 y = 0, y(0) = 0, y′(0) = 2.
9. y′′ + 10y′ + 34y = −9e−5x, y(0) = 0, y′(0) = 6.
10. yIV + 2y′′′ + y′′ = 4x2.

11.

x′ = x− y,

y′ = −4x+ 4y.

12. y′′ + y = 4 ctg x, y
(π
2

)
= 4, y′

(π
2

)
= 4.

Вариант 10

1. x
√
5 + y2 dx+ y

√
4 + x2 dy = 0.

2. xy′ =
3y3 + 6yx2

2y2 + 3x2
.

3. y′ +
2xy

1 + x2
=

2x2

1 + x2
, y(0) =

2

3
.

4. (3y cos 2y − 2y2 sin 2y − 2x) · y′ = y.
5. 3y′ + 2xy = 2xy−2 · e−2x2

, y(0) = −1.

6.
(

1

x2
+

3y2

x4

)
dx− 2y

x3
dy = 0.

7. y′′′ · ctg 2x = 2y′′.
8. y′′ = 72y3, y(2) = 1, y′(2) = 6.
9. y′′ + 2y′ + 5y = −8e−x · sin 2x, y(0) = 2, y′(0) = 6.
10. 3yIV + y′′′ = 6x− 1.

11.

x′ = 8x− 3y,

y′ = 2x+ y.

12. y′′ − 6y′ + 8y =
4

2 + e−2x
, y(0) = 1 + 3 ln 3, y′(0) = 10 ln 3.
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Вариант 11

1. y(4 + ex) dy − ex dx = 0.

2. y′ =
x2 + xy − y2

x2 − 2xy
.

3. y′ − 2x− 5

x2
· y = 5, y(2) = 4,

4. 8(4y3 + xy − y) · y′ = 1.

5. 2xy′ − 3y = −(5x2 + 3) · y3, y(1) =
1√
2
.

6.
y

x2
· cos y

x
dx−

(
1

x
· cos y

x
+ 2y

)
dy = 0.

7. x4y′′ + x3y′ = 1.
8. y′′y3 + 36 = 0, y(0) = 3, y′(0) = 2.
9. y′′ + 5y′ + 6y = 52 sin 2x, y(0) = −2, y′(0) = −2.
10. y′′′ + y′′ = 5x2 − 1.

11.

x′ = −2x+ y,

y′ = −3x+ 2y.

12. y′′ + 6y′ + 8y =
4e−2x

2 + e2x
, y(0) = 0, y′(0) = 0.

Вариант 12

1.
√
4− x2 · y′ + xy2 + x = 0.

2. xy′ =
√
2x2 + y2 + y.

3. y′ +
y

x
=

x+ 1

x
· ex, y(1) = e.

4. (2 ln y − ln2 y) dy = y dx− x dy.
5. 3xy′ + 5y = (4x− 5) · y4, y(1) = 1.

6.

(
x√

x2 + y2
+ y

)
dx+

(
x+

y√
x2 + y2

)
dy = 0.

7. xy′′′ + 2y′′ = 0.
8. y′′ = 18 sin3 y · cos y, y(1) =

π

2
, y′(1) = 3.

9. y′′ + 16y = 32e4x, y(0) = 2, y′(0) = 0.
10. yIV + 4y′′′ + 4y′′ = x− x2.

11.

x′ = 3x+ y,

y′ = x+ 3y.

12. y′′ + 9y =
9

sin 3x
, y

(π
6

)
= 4, y′

(π
6

)
=

3π

2
.
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Вариант 13

1. 2x dx− 2y dy = x2y dy − 2xy2 dx.

2. y′ =
y2

x2
+ 6

y

x
+ 6.

3. y′ − y

x
= −2

lnx

x
, y(1) = 1.

4. 2(x+ y4) · y′ = y.
5. 2y′ + 3y cosx = e2x · (2x+ 3 cosx) · y−1, y(0) = 1.

6.
1 + xy

x2y
dx− 1− xy

y2
dy = 0.

7. (1 + x2) · y′′ + 2xy′ = x3.

8. 4y3y′′ = y4 − 16, y(0) = 2
√
2, y′(0) =

1√
2
.

9. y′′ + 12y′ = 6x2 + 2x+ 1, y(0) = y′(0) = 2.
10. 7y′′′ − y′′ = 12x.

11.

x′ = 6x− y,

y′ = 3x+ 2y.

12. y′′ + 9y =
y

cos 3x
, y(0) = 1, y′(0) = 0.

Вариант 14

1. x
√
4 + y2 dx+ y

√
1 + x2 dy = 0.

2. xy′ =
3y3 + 8yx2

2y2 + 4x2
.

3. y′ − y

x
= − 8

x2
, y(1) = 4.

4. y3(y − 1) dx+ 3xy2(y − 1) dy = (y + 2) dy, y
(π
4

)
= 2.

5. 3(xy′ + y) = xy2, y(1) = 3.

6.
dx

y
− x+ y2

y2
dy = 0.

7. xy′′′ − y′′ +
1

x
= 0.

8. y′′ = 50y3, y(3) = 1, y′(3) = 5.
9. y′′ − 3y′ + 2y = − sinx− 7 cosx, y(0) = 2, y′(0) = 7.
10. y′′′ + 3y′′ + 2y′ = 3x2 + 2x.

11.

x′ = 2x+ 3y,

y′ = 5x+ 4y.

12. y′′ − y′ =
e−x

2 + e−x
, y(0) = ln 27, y′(0) = ln 9− 1.
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Вариант 15

1. (ex + 8) dy − y · ex dx = 0.
2. x dy + y ·

(
ln

y

x
− 1
)
dx = 0.

3. y′ +
2

x
y = x3, y(1) = −5

6
.

4. 2y2 dx+

(
x− e

1
y

)
dy = 0.

5. y′ − y = 2xy2, y(0) =
1

2
.

6.
y

x2
dx− xy + 1

x
dy = 0.

7. x5y′′′ + x4y′′ = 1.
8. y′′y3 + 25 = 9, y(2) = −5, y′(2) = −1.
9. y′′ − 9y′ + 18y = 26 cos x− 8 sinx, y(0) = 0, y′(0) = 2.
10. y′′′ − y′′ = 3x2 − 2x+ 1.

11.

x′ = 2x+ y,

y′ = −6x− 3y.

12. y′′ + 4y = 4ctg2x, y
(π
4

)
= 3, y′

(π
4

)
= 2.

Вариант 16

1.
√
5 + y2 + yy′ ·

√
1− x2 = 0.

2. (y2 − 2xy) dx− x2 dy = 0.
3. y′ +

y

x
= 3x, y(1) = 1.

4. (xy +
√
y) dx+ y2 dy = 0.

5. 2xy′ − 3y = −(20x2 + 12) · y3, y(1) =
1

2
√
2
.

6.
(
xex +

y

x2

)
dx− 1

x
dy = 0.

7. xy′′′ + y′′ + x = 0.
8. y′′ + 18 sin y · cos3 x = 0, y(0) = 0, y′(0) = 3.
9. y′′ + 3y′ = (40x+ 58) · e2x, y(0) = 0, y′(0) = 2.
10. y′′′ − y′′ = 4x2 − 3x+ 2.

11.

x′ = x+ 2y,

y′ = 3x+ 6y.

12. y′′ − 3y′ + 2y =
1

3 + e−x
, y(0) = 1 + 8 ln 2, y′(0) = 14 ln 2.
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Вариант 17

1. 6x dx− y dy = yx2 dy − 3xy2 dx.
2. 2x3 dy = y · (2x2 − y2) dx.

3. y′ − 2xy

1 + x2
= 1 + x2, y(1) = 3.

4. sin 2y dx = (sin2 2y − 2 sin2 y + 2x) dy.
5. y′ + 2xy = 2x3y3, y(0) =

√
2.

6.
(
10xy − 1

sin y

)
dx+ (5x2 + x cos y) dy = 0.

6. thx · yIV = y′′′.
7. y′′ = 8 sin3 y · cos y, y(1) =

π

2
, y′(1) = 2.

8. y′′ − 2y′ + 37y = 36ex · cos 6x, y(0) = 0, y′(0) = 6.
19. yIV − 3y′′′ + 3y′′ − y′ = x− 3.

11.

x′ = 5x+ 4y,

y′ = 4x+ 5y.

12. y′′ − 6y′ + 8y =
4e2x

1 + e−2x
, y(0) = 0, y′(0) = 0.

Вариант 18

1. y ln y + xy′ = 0ю
2. x2 dy = y(x+ y) dx.

3. y′ +
1− 2x

x2
· y = 1, y(1) = 1.

4. (y2 + 2y − x) · y′ = 1.
5. xy′ + y = y2 lnx, y(1) = 1.

6.
(

y

x2 + y2
+ ex

)
dx− x dy

x2 + y2
= 0.

7. xy′′′ + y′′ =
√
x.

8. y′′ = 32y3, y(4) = 1, y′(4) = 1.
9. y′′ − 2y′ + 5y = 5x2 + 6x− 12, y(0) = 0, y′(0) = 2.
10. yIV + 2y′′′ + y′′ = 12x2 − 6x.

11.

x′ = 7x+ 3y,

y′ = x+ 5y.

12. y′′ + 16y =
16

sin 4x
, y

(π
6

)
= 3, y′

(π
6

)
= 2π.
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Вариант 19

1. (1 + ex) · y′ = y · ex.
2. y2 + x2y′ = xyy′.

3. y′ +
3y

x
=

2

x
, y(1) = 1.

4. 2y
√
y dx− (6x

√
y + 7) dy = 0.

5. 2y′ + 3y cosx = (8 + 12 cosx) · e2x · y−1, y(0) = 2.
6. ey dx+ (cos y + xey) dy = 0.
7. tg x · y′′′ = y′′ + 1.
8. y′′y3 + 16 = 0, y(1) = 2, y′(1) = 2.
9. y′′ + y′ − 12y = (16x+ 22) · e4x, y(0) = 3, y′(0) = 5.
10. y′′′ − 4y′′ = 32− 384x2.

11.

x′ = x+ 2y,

y′ = 4x+ 5y.

12. y′′ + 16y =
16

cos 4x
, y(0) = 3, y′(0) = 0.

Вариант 20

1.
√
1− x2 · y′ + xy2 + x = 0.

2. xy′ = 3
√
2x2 + y2 + y.

3. y′ + 2xy = −2x3, y(1) = e−1.
4. dx = (sin y + 3 cos y + 3x) dy.
5. 4y′ + x3y = (x3 + 8) · e−2x · y2, y(0) = 1.
6. (y3 + cosx) dx+ (3xy2 + ey) dy = 0.
7. tg 5x · y′′′ = 5y′′.
8. y′′ + 32 sin y · cos3 y = 0, y(0) = 0, y′(0) = 4.
9. y′′ − 10y′ + 25y = e5x, y(0) = 1, y′(0) = 0.
10. yIV + 2y′′′ + y′′ = 2− 3x2.

11.

x′ = 4x− y,

y′ = −x+ 4y.

12. y′′ − 2y′ =
4e−2x

1 + e−2x
, y(0) = ln 4, y′(0) = ln 4− 2.
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Вариант 21

1. 6x dx− 2y dy = 2yx2 dy − 3xy2 dx.

2. y′ =
y2

x2
+ 8

y

x
+ 12.

3. y′ + xy = −x3, y(0) = 3.
4. 2(cos2 y · cos 2y − x) · y′ = sin 2y.
5. 8xy′ − 12y = −(5x2 + 3) · y3, y(1) =

√
2.

6. x · ey2 dx+ (x2y · ey2 + tg2 y) dy = 0.
7. th 7x · y′′′ = 7y′′.
8. y′′ = 50 sin3 y · cos y, y(1) =

π

2
, y′(1) = 5.

9. y′′ − 4y = 8e2x, y(0) = 0, y′(0) = −8.
10. y′′′ + y′′ = 49− 24x2.

11.

x′ = x+ 4y,

y′ = x+ y.

12. y′′ +
y

4
=

1

4
· ctg x

2
, y(π) = 2, y′(π) =

1

2
.

Вариант 22

1. y · (1 + ln y) + xy′ = 0.

2. xy′ =
3y3 + 12yx2

2y2 + 6x2
.

3. y′ − 2y

x+ 1
= ex · (x+ 1)2, y(0) = 1.

4. ch y dx = (1 + x sh y) dy.
5. 2(y′ + y) = xy2, y(0) = 2.
6. (5xy2 − x3) dx+ (5x2y − y) dy = 0.
7. xy′′′ + x2y′′ =

√
x.

8. y′′ = 18y3, y(1) = 1, y′(1) = 3.
9. y′′ − 2y′ + y = 4ex, y(0) = 0, y′(0) = 2.
10. y′′′ − 2y′′ = 3x2 + x− 4.

11.

x′ = 2x+ 8y,

y′ = x+ 4y.

12. y′′ − 3y′ + 2y =
1

2 + e−x
, y(0) = 1 + 3 ln 2, y′(0) = 5 ln 3.
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Вариант 23

1. dy − 2xy dx = x dx.
2. xy′ + y

(
ln

y

x
− 1
)
= 0.

3. y′ + 2xy = x · e−x2 · sinx, y(1) = 1.
4. (13y3 − x) · y′ = 4y.
5. y′ + xy = (x− 1) · ex · y2, y(0) = 1.
6. (cos(x+ y2) + sin x) dx+ 2y cos(x+ y2) dy = 0.

7. (cthx) · y′′ − y′ +
1

chx
= 0.

8. y′′y3 + 9 = 0, y(1) = 1, y′(1) = 3.
9. y′′ − 2y′ = (4x− 4) · e2x, y(0) = 0, y′(0) = 1.
10. y′′′ − 13y′′ + 12y′ = x− 1.

11.

x′ = 3x− 2y,

y′ = 2x+ 8y.

12. y′′ + 3y′ + 2y =
e−x

2 + ex
, y(0) = 0, y′(0) = 0.

Вариант 24

1.
√
1− y2 dx+ y

√
1− x2 dy = 0.

2. (x2 − 2xy) · y′ = xy − y2.
3. y′ + xy = −x3, y(0) = 3.
4. y2(y2 + 4) dx+ 2xy(y2 + 4) dy = 2 dy.
5. 2y − 3y cosx = −e−2x · (2 + 3 cosx) · y−1, y(0) = 1

6. (x2 − 4xy − 2y2) dx+ (y2 − 4xy − 2x2) dy = 0.
7. (x+ 1)y′′′ + y′′ = x+ 1.
8. y′′ + 50 sin y · cos3 y = 0, y(0) = 0, y′(0) = 5.
9. y′′ − 2y′ = 6 + 12x− 24x2, y(0) = 1, y′(0) = 1.
10. yIV + y′′′ = x.

11.

x′ = 5x+ 8y,

y′ = 3x+ 3y.

12. y′′ + 4y =
4

sin 2x
, y

(π
4

)
= 2, y′

(π
4

)
= π.
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Вариант 25

1. (xy − x)2 dy + y(1− x) dx = 0.
2. xy + y2 = (2x2 + xy) · y′.
3. y′ − 2y

x+ 1
= (x+ 1)3, y(1) =

1

2
.

4. (x+ ln2 y − ln y) · y′ = y

2
.

5. y′ − y = xy2, y(0) = 1.

6.
(
sin y + y sinx+

1

x

)
dx+

(
x cos y − cosx+ d

1

y

)
dy = 0.

7. (1 + sin x) · y′′′ = (cosx) · y′′.
8. y′′y3 = 4(y4 − 1), y(0) =

√
2, y′(0) =

√
2.

9. y′′ − 7y′ + 12y = 3e4x, y(0) = 1, y′(0) = 2.
10. y′′′ − y′′ = 6x+ 5.

11.

x′ = x+ 4y,

y′ = 2x+ 3y.

12. y′′ + 4y =
4

cos 2x
, y(0) = 2, y′(0) = 0.

Вариант 26

1.
√
5 + y2 dx+ 4(x2y + y) dy = 0.

2. xy′ =
3y3 + 14x2y

2y2 + 7x2
.

3. y′ − y cosx = − sin 2x, y(0) = 3.
4. (2xy +

√
y) dy + 2y2 dx = 0.

5. 2(xy′ + y) = y2 lnx, y(1) = 2.

6.
(
1 +

1

y
e
x
y

)
dx+

(
1− x

y
e
x
y

)
dy = 0.

7. xy′′ + y′′ =
1√
x

.

8. y′′ = 8y3, y(0) = 1, y′(0) = 2.
9. y′′ − 3y′ + 2y = (2x+ 1) · ex, y(0) = 1, y′(0) = 1.
10. y′′′ − 5y′′ + 6y′ = (x− 1)2.

11.

x′ = x+ 8y,

y′ = x+ 3y.

12. y′′ + y′ =
ex

2 + ex
, y(0) = ln 27, y′(0) = 1− ln 2.
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Вариант 27

1. (1 + ex)yy′ = ex.

2. y′ =
x2 + xy − 5y2

x2 − 6xy
.

3. y′ − 4xy = −4x3, y(0) = −1

2
.

4. y dx+ (2x− 2 sin2 y − y sin 2y) dy = 0.
5. y′ + y = xy2, y(0) = 1.

6.
(x− y) dx+ (x+ y) dy

x2 + y2
= 0.

7. −xy′′′ + 2y′′ =
2

x2
.

8. y′′y3 + 4 = 0, y(0) = −1, y′(0) = −2.
9. y′′ + 4y′ − 5y = −3x sin 2x, y(0) = 1, y′(0) = 2.
10. y′′′ − 5y′′ + 6y′ = (x− 1)3.

11.

x′ = 2x+ 8y,

y′ = x+ 4y.

12. y′′ + y = 2ctg x, y
(π
2

)
= 1, y′

(π
2

)
= 2.

Вариант 28

1. (x+ 4)y dy − xy2 dx = 0.
2. xy′ = 4

√
x2 + y2 + y.

3. y′ − y

x
= − lnx

x
, y(1) = 1.

4. 2(y3 − y + xy) dy = dx.

5. y′ + 2y cthx = y2 chx, y(1) =
1

sh 1
.

6. 2(3xy2 + 2x3) dx+ 3(2x2y + y2) dy = 0.
7. chx · y′′ + y′ = chx.
8. y′′ = 2 sin3 y · cos y, y(1) =

π

2
, y′(1) = 1.

9. y′′ − 6y′ + 9y = x2 · ex, y(0) = 1, y′(0) = −1.
10. y′′′ − 13y′′ + 12y′ = 18x2 − 39.

11.

x′ = 7x+ 5y,

y′ = x+ 3y.

12. y′′ − 3y′ + 2y =
1

1 + e−x
, y(0) = 1 + 2 ln 2, y′(0) = 3 ln 2.
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Вариант 29

1. 2x dx− y dy = yx2 dy − xy2 dx.

2. 3y′ =
y2

x2
+ 10

y

x
+ 10.

3. y′ − 3x2y =
x2(1 + x3)

3
, y(0) = 0.

4. (2y + x tg y − y2 tg y) dy = dx.
5. 2(y′ + xy) = (x− 1) · ex · y2, y(0) = 2.
6. (3x3 + 6x2y + 3xy2), dx+ (2x3 + 3x2y) dy = 0.
7. x4y′′ + x3y′ = 4.
8. y′′y3 = y4 − 16, y(0) = 2

√
2, y′(0) =

√
2.

9. y′′ + 7y′ + 10y = (3x+ 1) cosx, y(0) = 0, y′(0) = 1.
12. y′′′ + 3y′′ + 2y′ = x2 + 2x+ 3.

12.

x′ = 4x,

y′ = 3x+ 2.

12. y′′ − 3y′ + 2y =
ex

1 + e−x
, y(0) = 0, y′(0) = 0.

Вариант 30

1. (y2x+ y2) dy + x dx = 0.
2. xy′ = 4

√
2x2 + y2 + y.

3. y′ − y cosx = sin 2x, y(0) = −1.
4. 4y2 dx+ (e1/2y + x) dy = 0.

5. y′ − y tg x = −2

3
y4 sinx.

6. xy2 dx+ y(x2 + y2) dy = 0.

7. y′′ +
2x

x2 + 1
y′ = 2x.

8. y′′ = 2y3, y(−1) = 1, y′(−1) = 1.
9. y′′ − 3y′ + 2y = cosx− sinx, y(0) = 1, y′(0) = 0.
10. yIV + y′′′ = 12x+ 6.

11.

x′ = 5x+ y,

y′ = 8x+ 3y.

12. y′′ + y =
1

sinx
, y

(π
2

)
= 1, y′

(π
2

)
=

π

2
.
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