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ONE EXTENSION OF THE SPACE OF DISTRIBUTIONS

V. DERR *

Abstract. In what follows, we introduce an extension of the classical space of
distributions which allows us to define the correct operations of multiplication of distribu-
tions by discontinuous functions and differentiation of distributions, as well as to pose
correctly the Cauchy problem for the ordinary linear differential equation with distribu-
tions in coefficients, which was the subject of research of many authors. We define this
extension using a modification of the Perron-Stieltjes integral, whose properties are also
studied in the present paper.

Key Words. Regulated functions, distributions, multiplication of distributions, al-
pha-integral, principal solution.

AMS(MOS) subject classification. 46F10

1. Introduction. The subject of the ordinary differential equations
with distributions continues to attract the interest of many authors, e.g., see
[1-5]. Many authors (see [6-11]) consider the Cauchy problem for the linear
systems with distributions of the form

(l) x' = M'(t)x + f(t) (tel), x(to) = xo (toel,xoeRn),

where I is an open interval in R (in particular, / = E), M(-) (ж(-), /(•)) are
matrix-valued and vector-valued functions on /, respectively, where ' denotes
the differentiation in the sense of distribution theory.

If M(-) is locally absolutely-continuous on / (that is, M'(-) is locally
summable on /), then the right-hand side of system in (1) is an ordinary
function which satisfies Caratheodory conditions. In other cases M' is a
distribution. Then it is natural to assume that the solution of the problem

* Faculty of Mathematics. Udmurtia State University, Universiteskaya Str., 1 (Bid. 4),
Izhevsk, 426034. Russia.
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160 V. DERR

(1) is a discontinuous function, so the product M'x is undefined, since it is
impossible to define correctly the operation of multiplication by discontinuous
functions in the classical theory of distributions. For this reason we need not
only to define what is called the solution of the Cauchy problem (1), but also
to specify in what sense understand the notation (1). Clearly, every definition
of solution produces implicitly the definition of the product of a distribution
M' and a discontinuous function (in the general case this definition is specific
for every M'). The ambiguity in definition of the product of distribution by
discontinuous function leads to various definitions of solution of the problem
(1), so the same Cauchy problem may have different solutions.

In [12] we have introduced the space of distributions with discontinuous
test functions, whose elements admit continuous multiplication by regulated
functions (that is, the functions which may have discontinuities only of the
first kind). In [12] this space was used to provide existence of the Nash
equilibrium in some zero-sum games with discontinuous payoff functions,
which do not have equilibrium in any classical sense.

The extension of the classical space of distributions, which we introduce
in the present paper, is analogous to the one defined in[12] but it is oriented
for applications to study of the ordinary linear differential equations of the
form (1) such that the elements of M and / are the regulated functions. The
proposed extension is based on one modification of Perron-Stieltjes integral
introduced in [12] (we call it alpha-integral), so certain part of the present
paper is devoted to the study of this construction.

2. Functions Spaces. Let / = (a, b) be a fixed open interval (in
particular, a = —oo and (or) b = oo). In what follows, a bounded function
/ : / (-> R possessing one-sided limits f(t—), f(t+) (t € I) is called regulated
[13]; the set of regulated functions is denoted by R. As is well-known (e.g.,
see 114, p.17], [15]), any regulated function may possess at most countable
set of points of discontinuity. We denote the set of points of discontinuity of
/ G R b y T ( / ) .

We call two functions in R equivalent if they differ only by their values
at the points of discontinuity; further, if f(t+) = /(£—), then we put / to
be continuous at t. We denote the set of equivalence classes in R by R.
Clearly, R is an algebra with respect to the ordinary pointwise operations of
addition, multiplication on the elements of Ш and multiplication. We endow
algebra R with the norm

(2) | | / | | = sup max{|/(t-) |, |/(t+)|},
tel

so that R becomes a Banach algebra.
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So, we ignore the value of /(•) G R at a given point; f may possess a
value at the point if and only if f is continuous at this point. We use notation
f(t) in the following two cases: a) to underline the independent variable (e.g.,
under the sign of integral) b) t is a point of continuity of /. If necessary, we
use the operator

(3) (a):R^R, (af)(t) = a(f)f(t+) + (l-a(t))f(t-),

where a G R is a continuous function. In what follows, we call the elements
of R (equivalence classes!) analogously as functions (let us note that in [15]
algebra R is denoted by DC, while in [12] and some other papers it is denoted
by G).

Given / G R and a partition of / generated by т = {£fc}£=i, a < to <
ti < ... < tn < b, we define

We call the total variation of f the value

(4) V( / )=suptv( / ) .
тa

The set of functions / of finite total variation is denoted by BV. By
definition, BV С R, however it is more convenient to use in BV the classical
norm: if / € BV, then we define

(5) 11/11 =

Then BV is a Banach algebra with respect to this norm. The set of functions
having finite total variation on each closed subinterval [a1, b'\ С I is denoted
by BV£. We say that xn -> x in BV£ (xn, x G BV£, n G N) if for every
closed subinterval [a', b'} c / w e have \\xn — ж||в¥(о\ь') —> 0 as n —> oo.

Let us denote by С с R the algebra of continuous functions with the
ordinary sup-norm, which in this case coincides with (2). Also, we put
CBV := С П BV. If / G CBV, then we define

ь

(6) H/ll = sup |/(t)| + \/(/)-
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The restriction of the norm (5) to CBV is equivalent to the norm (6).
Further, we denote by H the set of elements / € BV taking at most countable
set of values and such that / (a+) = 0, with the norm

(7) ll/ll =

where at(f) = f(t+) - /(*-)•
The algebras CBV and H are Banach with respect to their norms.
As is well-known (e.g., see [17]), every function / <E BV admits repre-

sentation

(8) f = fc + fd,

where / c G CBV is the continuous part of / , and fd 6 H is the discrete part
of / (due to condition f(a+) = 0 this representation is unique). Thus, BV
can be represented as the direct sum: BV = CBV + H, so that (see [15])

Also, let us define HC := H 4- C.

3. Riemann-Stieltjes integral for the elements of the algebra R.

1. In this section we introduce a modification of the definition of
the Riemann-Stiltjes intergral (RS-integral) which allows us to integrate the
elements of the algebra R over an open subinterval of / .

Let -oc < a < b < +oo, g, f : I —> R and r = {4}£=1 be such that

(9) a<to<t1<---<tn<b, rCl\(T(f)UT(g)).

Denote by d(r) the so-called diameter of r,

d(r) = max (tk - 4_2) (t_j = a, tn+1 = b).

We define the Stieltjes sums by the formula

n

&AgJ)
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where £fe e [tk-i,tk] \ T(g) {k = 1,2,... ,n). By definition, / is the value of
RS-integral of g by / over the open interval (a, b) if for every e > 0 there
exists 5 > 0 such that, for any r of the form (9) with d(r) < 5, the inequality
\&Лд, f)-J\<e holds. We denote

J= J g(t)df(t)= J gdf
(a,b) (a,b)

and use the notation
J= lim eT(g,f).

d(r)->0

2. Below we list some properties of this integral:
1) The integrals J,b,g(t)df(t) and J,b^f(t)dg(t) either exist both, or

do not exist together; the proof of this statement is analogous to the proof
in [17, p.250]; furthermore (see [18, p.172]);

(10) / g(t)df(t)+ [ f(t)dg(t) = f(t)g(t)\b-+.
J{a,b) J(a,b)

2) Let / be an increasing function. Then the integral /, ft, g df exists if
and only if jif{T(g)) = 0, where A*/(B) is the Lebesgue-Stieltjes measure of
the set В generated by function g (see [20]).

3) If g e R, / G CBV (or g e CBV, / G R), then the integral J{a ъ) д df

exists; the proof of this result is based on statement 2), see [15].
4) If g G R, / e CBV, then

f f t ъ

(H) 1/ g(t)df(t)\^ \9(t)\d\J(f)^\\gU\/(f);
J(a,b) J{a,b)

5) Let g e R, / e CBV; let F{t) = / ( a t ) g(s) df(s); then F £ CBV;

6) The integral is additive in the following sense. Suppose that T(g) П

T(f) = 0. Then the existence of the integral J, „ g df implies that the

integrals Jtac)gdf and Lcb)gdf exist, where (c £ (a, b)), and

/ 9df= [ gdf+ [ gdf + g(c)ac(f).
J(a,b) J(a,c) J(c,b)

If a = — oo and (or) b — +co, then we put

f g(t)df(t)= lirn^ f g(t)df(t).

In this case the properties l)-6) remain valid.
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T H E O R E M 1. Suppose that g:gn e R (n G N), / G C B V . TTzen;

-Zj If 9n ^ g ш R, i/mi is. | |gn - # j | R ->• 0, i/ien

(12) hm / gndf= I gdf.
"-*o oi(a..b) J(a,b)

2) Ifgn(t+) -+ 5 ( i+) (n ->• oo,t G [a,6)), gn(t-) -> <?(t-) (n -»• oo,t G
(a,6]) and Ц̂ пЦя ̂  К for certain K, then we also have (12).

Proof. We may use the estimation (11) in order to get statement 1). The
proof of statement 2) is similar to the proof of analogous statement for the
ordinary Riemann-Stieltjes integral (e.g., see [19, c.119]). D

THEOREM 2. If one of f, g, h is in R ; while two others are in CBV, then

(13) Jh(t)dg(t)f(t) = Jh(t)g(t)df(t) + Jh(t)f(t)dg(t).

The proofs of Theorems 2-6 are provided in Section 6.

4. Alpha-integral of Stieltjes type.

1. Let g E R, / € BV. We define

(14) (a)fg(t)df(t) = fg(t)dfe(t) + ]T (ag)(t)at(f),

where a € С is a fixed function (see (3)). The first summand in (14)
is the aforementioned modification of the Riemann-Stieltjes integral. The
convergence of the series in the second summand follows from boundedness
of g and the finiteness of the total variation of /.

It follows immediately from the definition that the integral (14) exists
even in the case when g <E BV, / G HC.

For an open interval (a',b') С / the alpha-integral is defined as follows:

(a) / g(t) df(t) = / g(t) dfc(t) + ] T (ag)(t)at(f).
J(«>,b>) J(a>,b>) tZTla,M){f)

Clearly, the continuous part of / on (a', b') differs from the continuous part
of / on I by a constant. Since this does not affect the value of the integral,
we still use the notation dfc(t) under the sign of the integral for any open
subinterval of /. Let us note also that for / G BV^, g(t) = X(a',v){t), where
XA{~) is the characteristic function of А С /, we have

(15) (a)f
J(a',b')
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2. As it follows immediately from the definition (14), alpha-integral
possesses the following properties.

a) If g e R, / e BV, then we have

(16) \(a)Jg(t)df(t)\^A\\gU\J(f),

where A depends only on a (see [16]).

b) Alpha-integral is additive in the following sense: let d E I; then

(a) fgdf = (a) f gdf + (a) f gdf + (ag)(d)ac,(f);

Indeed, due to property 6) in Section 2 and definition (14) we have

(a) fg(t) df(t) = / g(t) dfc(t) + f g(t) dfc(t) + g{d)ad{fc) +
J J(a,c') J{c!,b)

since crc/(/c) = 0; this gives us the required result,
c) Suppose that a' > a; let us denote

g(s)df(s), Фа(*) = Фо,(а,£).
(a',t)

Then for every t0 > a',t0 E I we have the following equalities

Km+<&a(to,t) = 0, Ш_Фа(а',г) = Ф а(а',* 0),

lim Ф (

that is,

(17)

d) If g e R, f E BV, then it is easy to see that Фа G BV,

ь ь

and (see the representation (8))

while Фа is continuous at the points of continuity of /.
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3. Below we formulate the main results on the properties of alpha-
integral.

THEOREM 3. (see [21, с.Щ). Suppose that either g or f is in BV, while
the other function is in HC. Then

(18) (a)Jg(t)df(t) + (1 - a)J f{t)dg{t) = f(t)g(t)t+.

Let us note that the formula (18) has certain advantages in compari-
son with the analogous formula for Perron-Stieltjes integral given in [21,
p.48]. Namely, in contrast to [21, p.48] in (18) there are no the additional
summands, the sums of products of jumps of the functions at their points of
discontinuity. Also, we do not require that both functions have finite total
variation.

We use formula (18) to define the value of the alpha-integral in the case4

when g G BV, / G R. Namely, let g G BV, / G R. We define

(19) (a) f g(t)df = g(t)f(t)\b-- (1 - a) / f(t)dg(t).

Thus, alpha-integral is defined and exists when one of integrated functions
is in R and the other is in BV. In both cases we have formula (18).

T H E O R E M 4. Suppose that a,/5 e C , f,g G B V , h(-,s), h(t,-) e R {f,g G

R , h(-,s), h(t, •) G B V ) ( i G I,s G (c, d)), and there exists M > 0 such that

| | / I ( - , S ) | | R < M ( s G ( c , d ) ) . Then

(a) J \((3)J h(t, s) dg(s) df(t) = {13) J (a) J h(t, s) df(t) | dg(s)
(a,b) \ (c,d) J (c,d) \ (a,b)

T H E O R E M 5. (see[21, с.Щ). Let a G C , h,g G R , / G B V (h,g G

BV, /GR). Then

(20) (a)fh(t)d((a)f g(s)df(s)) =
J J(a,t)

= (a)fh(t)g(t)df(t)-a(l-a) ]T at(h)at(g)at(f).

THEOREM 6. If gn —> 9 in R, fn -* f in BV (or gn —> g in BV, /„—*•/
in R), an —> a in С, then

f f
lim (a n ) / gn dfn = (a) / g df.
n^co J J
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5. Distributions.

1. Let us denote by V the topological vector space of finite continuous
functions endowed with the standard topology (e.g., see [22]). By definition,
the elements of the "classical" space of distributions are the continuous linear
functionals defined on V. We denote this space by V.

Let us remark that we do not require the differentiability of our test
functions (i.e., the elements of V) since in what follows we consider the
systems of differential equations of the first order only. The operation of
differentiation in V is defined only on the regular distributions in V which
are generated by the elements of BV^.

Let X denote either R or BV^, while the notation Y stands for the other
space. Let X be the topological vector space of finite elements in X (i.e.,
the test functions) endowed with the following definition of convergence: we
say that {^n}^Li С X converges to (p G X if there exists a closed interval
[a, /3] С I such that supp <pn С [a, 0\ (n — 1,2,...) and ipn —> ip in X.

Further, let us consider the linear continuous functionals on X (distribu-
tions); we denote the set of such functionals by A", the value of / G X' on
the test function ц> G X is denoted by (/, (p).

EXAMPLE 1 (REGULAR DISTRIBUTIONS). Suppose that f is a locally sum-
mable on I function, Lp £ X; then f • ip is summable on I, so we may define

(21) (/ )V>)= / f(t)ip(t)dt.
J

functional (21) is an extension of the regular functional from V to X.
Since the elements of the space X are locally summable, each one of

them determines according to (21) a regular linear continuous functional on
^ s o X c X1.

EXAMPLE 2. Suppose that f € Y; given tp € X, we define

(22) (9,<P) = («)J

where a G С is fixed. The linearity of the functional g is obvious; if cpn —> ip
in X, then according to Theorem 6 we have the convergence (g,(pn) ~^ (9,4?),
so g is a continuous functional, g G X'.

The functional (22) is also an extension of certain linear functional from
V to X: if p G T>. then as it follows from the definition of alpha-integral we
have for anv a G С

= f'At)df(t).
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As follows from (22), the extension g £ X' depends on a £ C.
EXAMPLE 3. Given ip £ X, s £ / , we put (f,ip) = <p(s+); clearly, f is
a linear continuous X, f £ X'; let us call this distribution the right delta-
function concentrated at s £ I; thus,

(23)

the left delta-function is defined analogously

(24) (6;,<р) = ф-\ (б» =6-).

Generally, given а б й and ip £ X, we define

(25) OM =

Then <f+ = # , 5~ = <$?. If we take (̂  e I> in (23)-(25) then we obtain the
equality (5s,ip) = (p(s), that is, the definition of the classical delta-function.
Thus, 5+, 5~, 5" are the extensions of the delta-function 5S from V to X.

Let us show that the example 3 is a particular case of 2. Let 6s(t) — 0 if
t < s, es(t) = 1 if t > s (s £ I). Then (a(t) = a)

(26) (a) J <p(t) d9s(t) = аф+) + (l - а)ф-) = (5s

a, ^).

In what follows, we sometimes consider a in (25) as the value of certain
function a € C:

[5a
s, ip) = tt(s)<^(s+) + (1 - a(s))ip(s-).

2. The space A" is endowed with the ordinary operations of sum-
mation and multiplication by elements of Ш., so that X' becomes the vector
space. Further, we define the convergence in X' in the standard way: we say
that fn -• / n - , oc (/, fn e X', n 6 N), if (fn, ip) -+ (/, ip) (n -• oo). The
convergence determines a topology in X', so that X' is the topological vector
space.

The proof of the following statement for X and X' is similar to the proof
of analogous statement in [22].
LEMMA 1. If {/n}£Li converges in X', and <pn —> 0 in X, then (fn,<pn) —* 0
(n —» oo).

This lemma allows us to prove the completeness of X' in the following
sense.
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THEOREM 7. Suppose that the sequence {/n}£Li is such that, given any p E
X, the sequence {(/„, </>)}?£= 1 converges when ra->oo. Then the functional f
defined on X by the equality

(27) ' ( / ,«?)= li
n

is linear and continuous, i.e., f E X'.

Proof. The linearity of the limit functional (27) is obvious. It suffices to
prove its continuity at tp = 0. Let (pn —> 0 in X' (n —> со). Suppose
the contrary: (/, y?n) does not converge to 0 (n -» oo). Then, taking a
subsequence if necessary, we may assume that for any n E N we have the
inequality |(/,(pn)\ > £Q for certain £o > 0. According to (27) we have that
for each к Е N there exists щ such that \(fnk,4>k)\ > ^f- Without loss
of generality we may put щ = к, i.e., \(fk,'-fik)\ > 4f for all к Е N. But
the latter contradicts Lemma 1 which states that |(/ f c, щ)\ —» 0 (A; —> со).
Consequently, (/. (pn) —> 0 (n —*• oo), so the limit functional is continuous. D

3. Now we define in X' the operation of multiplication by the elements
of X (let us note that, generally speaking, these are the discontinuous func-
tions). Since, given any g E X and ip E X, we have gip E X, we put (/ E X')

(28) (gf,<p) = (fg^) = (f,gv).

THEOREM 8. Let fn -> / in X', gn —» g in X (n -» oo). TTien 5„/ п -> р / in
X' (n -и- со).

Proof, bet us note first that дп<£> —» ̂  in X (n —* oo) for every <p & X. So,

= К/п,РпУ) - (f,9<p)\ <

+ !(/n,5¥>) - {f,94>)\ ^

K / n , ^ ) "(/.ДО)I ^ 0 (n-^00)

according to Lemma 1 and due to convergence fn —> / in X'. D

Thus, the operation of multiplication defined above is continuous.
EXAMPLE 4. Let us find the product 0s5°. We have for the test function
ipEX

(в,6?,<р) = {da

s,8s'p) =a(s)es(s+)<p{8+) + (1 - a(s))6a(s-)cp(s-) =

= a(s)<p(s+) = ( а С . У ) ;

in particular {9s5f. is) = р(з+), (9s5j, ф) = О. Thus,

(29) es5° = a(s)5t, 6s5f = 5+, 9sS; = 0.

Let us note that on the test functions in T> the equality (29) gives us the
"usual'' equality (e.g.. see i6 !). 9S5S — a5s.
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4- The restriction of the functional / G X' from X to V is a
("classical") distribution. As a result, X' can be viewed as a set of extensions
of the distributions from V to X. The extension of any distribution in V is
non-unique. For example, the family of extensions of the functional 5S from
T> to X contains the family of delta-functions {<5"}«eR. Furthermore, given
any /3 e 1, ( G /, the functional 5° + /3(6} — 5j) is also an extension of S8

from V to X.

Let Г : X' —> P ' be the operator of restriction which associates to
each distribution / G X' its restriction f\x> to P . Clearly, Г is a linear
continuous operator; according to the Hahn-Banach Theorem [23, p.49] every
distribution g G V possesses its extension / to X, i.e., Г/ = <?, so Г is
surjective; its kernel ker Г ф {0} is a linear (closed) subspace; X'\ f =
(3(8} - 5£) G ker Г; moreover, if /3(-,s) £ X (s e I), /3(i, •) G Y (t G / ) ,

f(t) = //?(£, s)(6+(t) - 5~(tj) ds, where the "integral" is understood in the
a

following sense: for every ip € X

(}p(t,s)(5t(t) - 5~(t)) ds,<p) = E /5(t,sK(^), then / e ker Г.
\a / s£T(ip)

Let us denote by P : V —> Л" the (set-valued) operator of extension of
linear continuous functionals from V to Af: for f & V P(f) is the set of
all extensions of / from T> to X.
THEOREM 9. For any f e V P(f) e Л"/кегГ.

Proof. We have to demonstrate that the family of extensions of / € V
from V to X forms a class of equivalence. Let us denote A = P{f); let
Si,#2 € -4. Then by the definition Г Г(^) = f (г — 1,2); consequently,

— 52) = 0, i.e., c/i — gf2 € кегГ. This implies that A is the equivalence
class in Х'/кет Г. О

We also use notation P to denote the single-valued operator of extension
of distributions in V in X'/ ker Г which associated to each functional / € V
whole class P(f). Thus, for every / G X' P(T(f)) = / , where / i s the
equivalence class containing / (РГ is the natural homomorphism from X' to
X'l ker Г), for any f eV Г(Р(/)) = /, so ГР can be viewed as an identity
operator on V.

5. Let us define in X' the operation of differentiation. We identify
/ G Y with the corresponding element / G X'.

Suppose that / G Y; we put (</? G X, a G C)

(30) ( / » = (<*) fv(t)df{t).
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As it follows from Example 2 and Theorem 6, f'a is a linear and continuous
functional on X, f'a € X'. Further, it follows straightforwardly from the
definition (30) that the operation of differentiation is not single-valued: it
depends on certain a € C. Also, Tf'a e V, so all extensions of the derivative
in ТУ, defined by

from V to X have form Pf = fa + kerT.
Note that according to (26) (9s)'a(t) = 5f(t).
If / € CBV, then / ' does not depend on the "extending" function

a £ C, since in this case for every cp e X (a)J (pdf — fjip(t)df(t); if /
is locally absolutely continuous on / , then (a)J ipdf = f, ,-. ipf dt, so / ' is
identified with the regular distribution generated by the locally-summable
function / ' , i.e., / ; coincides with the ordinary derivative.

6. Systems of differential equations. Let Z denote one of spaces
considered above. In what follows, we denote by Zn (ZnXn) the spaces of
n-vectors (n x n-matrices) whose components are in Z (in the case Z = X'
we write Xn> (Xnxn')); the linear operations, the relation of identity, the
multiplication by a scalar function, the differentiation and integration are
defined component-wisely.

Let us consider the Cauchy problem

(31) x'a = M'ax + fa (tel,t>to),

(32) x(to+) = x0 (tQ e I, x0 e Rn),

where a 6 С is a fixed function, M € Ynxn, / G Y n . The identities which
arise in (31) were correctly defined above.

By the solution of the problem (31), (32) we understand an n-vector
function x € B V f that satisfies the equality (31) in the sense of operation
in Xnl and such that the equality (32) is satisfied. In other words, given any
ip e X, we have the equality (x'a, cp) = {M'ax, ф) + (f'a, ф).

Now, taking the definitions of the operation of multiplication and diffe-
rentiation in Xй' defined above (see (28) and (30)), as well as the equality
(15), we obtain that with precision up to the elements of (ker Г)п the Cauchy
problem (31), (32) is equivalent to the alpha-integral equation of the Volterra-
Stieltjes type

(33) x(f-) = (a) J dM{s) • x(s) + F{t-) (F(t) = xo + f(t) + f{to+))

{to*)
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in the space B W \
Let us note that the "parameter of multiplicity" a is a priori introduced

in the statement of the Cauchy problem, so there is not any multiplicity in
Cauchy problem itself. Furthermore, instead of system (31) we could consider
the system x'0 = M'ax + Д (t £ I, t> t0), where a, (3, 7 € C, which also
leads to the integral equation (33).

If x is the solution of the equation (33), then all solutions of the problem
(31), (32) have form x = x + x, where x G (ker Г)п. We call x the principal
solution of the problem (31), (32).

If X = R, Y = BV£, then the question of existence and uniqueness
of solution of the equation (33) (i.e., the principal solution of the problem
(31), (32)) can be solved similarly to how it was done in [12]. Conversely, if
X = BVl, Y = R, then this question can be reduced to the investigation of
the properties of the alpha-integral equation of Volterra-Stieltjes type (33),
which is the subject of our next paper.

7. Proofs of Theorems 2-6.

Proof of 2. First, let us prove statement (13) under the following conditions:

(34) h eR, gj eCBV.

It suffices to prove (13) for the case when g and / are increasing. According
to property 3) all integrals in (13) exist. Let e > 0 be arbitrarily fixed.
According to the necessary and sufficient condition of integrability (see [16])
there exists 5 > 0 such that the inequalities

hold for any (9) т = {tfc}£=0 with d(r) < 5 (tok(f) = suptiee[tfc_litfc] \f{t)
f(s)\). Let us consider the Stieltjes sum

&r(h,gf) =
fc=i

n

f(tk) {g(tk) - g(tk-i)) + ]T /i(a)5(**-i) (/(**) - f{tk-i))•
fe=l fc=l

Let us denote the first summand by Si, a.nd the second summand by S2. For
the divisions given above, (35) implies that

Gr(hf,g)-S1 <
k=i
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and
n

\&T{hgJ) - S2\ ^ | N R X > ^ ) ( / ( 4 ) ~ /fa-i)) < \-
fc=i L

Thus, if d{r) < 6, then

eT(h,gf) - {&T{hf,g) + eT(hg,f))\ < s;

so since e is arbitrary, we have that (13) is true under conditions (34).
Suppose that h,g € CBV, / £ R. Let us note that all integrals in (13)

also exist. According to (10) we have the equalities

hdgf = h(t)g(t)f(t)t+- J gfdh, J hgdf = h(t)g(t)f{t)\b~+- J fdhg.

(o,b) (a,b) (a,6) (a,b)

Let us deduce the second equality from the first equality. Further, let us
extract from the both sides of the equality the value of integral J, ь) hf dg;
as a result, we will obtain the identity

[hdgf- J hgdf- J hfdg = ~ J gfdh+ J f dhg - f hf dg,

(а,Ь) (а,Ь) (afi) (a,b) (a,b) (a,b)

whose the right-hand side is zero as it was shown above. This implies that
(13) is valid in this case also.

The case h, f E CBV, g EH can be considered analogously. •

Proof of Theorem 3. Denote /3 = 1 - a, T = T(f) U T(g),

t£T

Then, using the definition (14), the representation (8), the formula of integra-
tion by parts (18), the formula for evaluation of iJS'-integral of a continuous
function by a step function, and the formula for representation of a step
function (see [16]), we have

S - (a) [gdf + (j3)[fdg=[ gdfc+ [ f dgc
J J J(a,b) J(a,b)

[ 9cdfc+ / fcdgc+ / gddfe+ [ fddgc
[a.fc J{a.b) •'(0,6) J{a,b)

cVt + (9dfc)t+ + Ud9c)t+ ~ [ fcdgd- [ gcdfd
J{afi) J{a,b)
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9c(b-)fc(b-) - g(a+)f(b-) + 9d(b-)fc(b-) + МЪ-ЫЪ-) + L,

where L = К - £ fc(t)at(g) - £ 9c(t)at(f). Thus,

- Mb-)g(b-) + L = {fg)t+ - ^at(f)^at(g) + L.

Consequently,

t£T teT1 s£T,s<t t€T

Now we may change the order of summation in the last summand (which is
possible since this series converges absolutely) to get the equality

this implies (18). •

Proof of Theorem I Let f,g € B V , h(-,s), h{t, •) 6 R . We denote

H(t)= [ h(t,s)dgc{s),n{s)= f h(t,s)dfc(t),
J{c,d) J(a,b)

h(t, s) dg(s) = Hit) +
)

7ia(s) = (a) f h(t, s) df(t) = H(s) + E(a(M", s))(t)at(f).
J(a,b) t g r

Then we may reformulate the statement of the theorem using these notations:

(36) (a) Hp(t)df(t) = {/3) Ha(s)dg(s)
J(a,b) J{c,d)

According to the theorem on change of integration order for i?5-integral (see
[16]) we have that

(37) / H(t)dfc(t)= H(s)dgc(s).
J(a,b) J(c,d)

Let us prove (36):

S = (a)f Hi3(t) df(t) = f Hpii) dfc(t) + __
J(a,b) J(a,b) teT(f)
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H(t) + Y, (Ph^ OXsKte) I dMt) + E
t£T(j)

(tf (t) dfc(t) +

where

The above integration of elements of the series by t is possible due to its
absolute and uniform convergence with respect to this variable. Further, the
operators (a) (acting on the first argument) and if) (acting on the second
argument) commute; the summation by t and by s can be reversed due to
absolute convergence of the corresponding series, so

Q= E E {4ah(;s))(t))(s)at(f)as(g).
ten/)

According to (37) we now have

S= f H(s)dgc{s)+

V"^ Ha(s)dg(s),
(c,d)

so (36) is proved.
The case / ,g £ R, h(-,s), h(t,-) € BV can be reduced to the one

considered above using the formula (18). D

Proof of Theorem 5. Suppose that h,g £ R, / £ BV. Then according to
properties d) and f) the integrals in both sides exist, and the convergence
of the series in the second line of this equality is provided by conditions
of the present statement. Then according to (17) and be the theorem on
substitution for i?5-integral (see [16]), we have

h(t) d((a) f g(s) df(s)) = (a) [ h(t) d<f>a{t) = f h(t)
J-.аЛ) J J{a,b)

/ h(t)d f g(s)dfc(s)+
(a,b) J(a,t)
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(ah№(a9)(t)<Tt(f) = f h(t)g(t)dfc(t)+

ter(f)

(№$)) (t)at(f) + Па = (a) f h(t)g(t) df(t) + Па,
Jt€T(f)

where 1Za = J2 {(ah)(t)(ag)(t) - (a(hg))(t))at(f). Finally, we obtain
ter(f)

TZa = - Q ( 1 - a) ]T at(h)at(g)at(f).
t€T(f)

The case h,g € BV, / G R can be reduced to the previous one using
the result (18). D

Proof of Theorem 6. Let gn —>• g R, fn —> / BV. Let us show first that

(38) lim(an) fgndf = (a) fgdf.

There exists К ^ A such that \\gn\\ ^ iT (n e N). Then due to (16)

\(an)Jgndf-{a)J gdf\^\(an)J gndf-(an)J gdf\ +

an) fgdf-(a) [gdf\^K\\gn-g\\K\J(f) + \\an-

Now since the sequence {\o't{g)\\t^T{f) is bounded, the series in the second
summand converges. The estimation obtained gives us the required statement
(38).

Further, according to (16)

\(ап) / gndfn ~ (а) / gdf\ < \(ап) / gndfn - (an) / gnrf/|

•\(an)j' 9ndf-{a)J' gdf\^K2\J{fn-f)

The convergence of the first summand to zero follows from the convergence
{/n}£°=i m BV, the convergence of the second summand follows from (38).

If gn —> g in BV, fn •—» / in R, then we may use Theorem 3 and (19)
to reduce our consideration to the case considered above. D


