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Abstract: This paper is concerned with the problem of local controllability
for linear nonstationary systems with random parameters. In differ of well-
known problem of controllability for the determinated systems, for systems
with random parameters we must construct a non-predicting control when we
use the information about system only before the current moment. We ob-
tain the sufficient conditions of non-predicting controllability and estimation
of the probability that the given system is a locally controllable on the fixed
time segment. The algorithm of construction of the non-predicting control is
developed.
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1 Introduction

The problems of controllability, observability and stability of dynamical systems with
random parameters was investigated in many works, for example, [l]-[7]. Notice, that
for such type of systems we often have not the information about the systems behaviour
in future, thats why is appeared a problem of existence of a non-predicting control.
The term of the non-predicting control was introduced in Ekaterinburg school on the
control theory (see [8, 9]), the problem of such control construction was investigated also
in [10, 11]. The control u(t,x) is called the non-predicting if for it construction in the
moment t = т we use the information about system only for t ^ r.
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In this paper we continue the investigation initiated in [12, 13], where we considered
the linear systems with the stationary random parameters and obtained the sufficient
conditions of existence of the non-predicting control for such systems. In [12, 13] we
investigated the conditions of total controllability when we don't assumed any restrictions
on the control и G Mm. Here we consider the system

x = A(fu>)x-A-B(faf)v!, (t,uj,x,u) eRxflxR" xU, (1)

where the function t —> £(/*a>) = (A(ftui),B(ftu))s) of variable t is a piecewise constant
for every to G O. We assume that и G U, where U is a compact convex set in l m and
U contains the origin in their interior. The aim of this paper is to obtain the sufficient
conditions of the non-predicting local controllability for system (1) on the segment [O.T].
We prove that in the case и G U for construction of the non-predicting control we must
constantly hold the trajectories of the system (1) solutions in the neighbourhood of the
origin, that lead to some additional conditions for the asymptotical behaviour of the
system x = A(ftw)x solutions.

2 The basic definitions and designations

Suppose ei = col(l, 0, . . . , 0 ) , . . . , е„ = col(0, . . . ,0,1) is a standard basis in Euclidean
space Ж"; \\x\\ = \Jx*x is a norm in Mn; Lin(gi,... ,qr) is a linear hull of the vectors
qif... ,qr G Rn; 0™(x0) is an e-neighbourhood of the point x0 in K™, O™ = O"(0); int U
is an interior of the set U.

Let us consider the probability spaces (Qx,3i,iii) and (^2,г?2,М2), where fii is a
space of number sequences 9 = (9±,..., 6k, • • •), Ok G (0, oo), the space O2 = {<p : tp =
(tpo, ipi,... <pk ,-••), <fik ^ Ф} 1 Ф = {'Ф] }j=i is a finite set of the matrix pairs iftj = (Aj ,Bj),
5» is a cr-algebra formed by the corresponding cylinder sets, /^ is an extension of a measure
Jli from the algebra of the cylinder sets to the ст-algebra Jfo, i = 1,2. We also consider
the probability space (fi, §, /л), where tl = Oi x O 2. The construction of ст-algebra $ and
the probability measure fi was described in [2].

On the space (Ог,5'2>М2) for every 9 G fii we introduce the sequence of random
variables ( = (Со,Сь---) such that Cfe(w) = Ckif^) =.щ,.щ € Ф- We suppose that
the sequence С forms the homogeneous Markov chain, which uniquely determines by
the matrix of the transition probabilities P = (j>jj)f i=i a n d the initial distribution
7Г = (TT,) | = 1 (see [14, p. 122]). We also suppose that the Markov chain С is a stationary
in the narrow sense (see [14, p. 432]).

к
Let us introduce the sequence {rfc}£L0 : To = 0, Tk{9) = ^ 6*j, where 6* G Q,\. We

j=i

assume that 81,62, ••• are the independent positive random variables and 62,63,... have
the equal distribution F(t), t G (0, сю) with the mathematical expectation mg. Denote
by v(t, 6) a number of points of the sequence {r^}, which lie left than t, that is

v{t, 9) = max{fc : тк < t}, t > 0.

The variable v(t) is called a recovery process. We assume that v{t) is a stationary recovery
process (that is this process have a stationary recovery speed), then the distribution of
8\ satisfies the equality (see [15, p. 145-147])

t

Fi(i) = — [(I - F(x))dx, t>0. (2)
m J
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Let us introduce the shift transformation f\6 = (TV+\ — t, 9„+2,ви+з,...), t > 0 on
the probability space (fibSljMi)- The transformation /* preserves the measure //j,
because the sequence {T^} forms the stationary recovery process. We also introduce
the shift transformation f^{9)tp = {<pv,<pv+i,...) on the space {U%,^2,pa) for any
в Е Qi. From the stationarity of the Markov chain (" it follows that the transforma-
tion / | preserves the measure /i2. In [16, p. 190] was proved that the shift transformation
/*o> = /*(#, ф) = (/{в, /K^)1/3) o n the space (fi, 3r, /i) preserves the measure /x.

Assume that £(u>) = Co(w) is a stochastic variable on the probability space (£1,$,ц).
We introduce the random process £(/*w) = (4(/*ш), B(/*w)) generated by the flow /*w.
Then £(/fu;) receives the constant values ^ for t £ [T^Tfe+i). The function £(/*о>) is a
stationary in the narrow sense random process (see [14, p. 433], [16, p. 167], [17, p. 189]).
We remind that the process £(t,u>) is called stationary in the narrow sense if the equality
/x(/*G) = yu(G) satisfies for any cylinder set G £ $ (see [16, p. 174]).

We identify the system (1) with the function £ : fl —> Ф. For each fixed w the function
£(/*o>) designates a linear determinate system. We say that an admissible control of the
system £ is any bounded and Lebesgue measurable function uw : R x Rn x 1" —• U £ Mm.
The control type иш(£, Жо) is said to be program control if it is not explicitly depends from
x; the control type uw(t, x) is said to be positional control. The program control uu(t, XQ)
is said to be non-predicting on the segment [to,ti] if for it construction in the moment
т £ [£o,£i] w e u s e the information about matrices А{^ш) and В(/гш) only for t ^ т
(and not use the information for t > т).

Let us consider the intervals [t^, Tk+i), where the function C(/ta;) receives the constant
values ifk € Ф. On any interval [Tk,Tk+i) the system ^ coincides with one of the systems
£,i, i = 1, . . . , s, where over £, we denote the system

x = АГХ + BiU, (x, u) e R™ x L/.

Here t/ is a compact convex set in R™ and U contains the origin in their interior. In this
work we construct the non-predicting control in such form that on any interval [rfc, Tfe+i),
к = 0,1,.. . we apply either the positional control, or at first the program control for
t £ [тк,Тк + а), then the positional control for t £ [т& +а, Tk+i)- Therefore let us improve
in what sense we determine the solution of the system £ under the fixed to £ O. We
introduce the sequence {$fe}/£Lp, where t?o = 0, t?fe+i > $& such that on the intervals
[^fe^fe+i); fe •=' 1,.... we apply either only the program control, or only the positional
one in dependence from the number of system & that appeared in the corresponding
time moment. If we construct the program control ua(t) on the interval [fk,$ie+i), then
the solution of the system £ is an absolutely continuous function x(t) = х(Ь,$к,хк,иш),
х($к) = xk, which satisfies the corresponding system x = A4X + BiUw(t) for almost all
t £ [i?fc, t?fe+i). For the continuity of the solution we require that x(§k,$k-ii Щ—г) — xk-
Now we assume that on the interval [$&, '&k+i) w e must construct the positional control
и = Uv(t,x). Let us consider the system & closed by the control и = y,w(trx) and denote
by x(t) = x(t, $kixki Ца) the solution of this system. We require that x{t) satisfies the
conditions x(&k) = xk, x('&k,'$k-i,xk-i) = Ш- Let us denote uu(t) = uw(t,x(t)). Then
for any initial point Xk the solution of the system x = AiX + BiU^{t,x) we can also
obtain as the solution of the control system & that corresponds the control uw(i), see
[18, p. 431-433].

Definition 2.1 The state XQ £ M™ of system £(/*w) is said to be controllable (non-
predicting controllable) on the segment [to,ti] if there exists a control uu(t,x,xo) (non-
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predicting control и(/*и>,х,х0)), t e [to,ti] such that the corresponding solution x(t,u),
x(to,uj)=xo satisfies x(ti,co) = 0.

We denote by Dyto ,t1](w) the controllability set of the system £(/*o;) on the segment
[to, ti], that is the set of all points, which can be steered to zero on [to, ti] under the fixed
ш S fi. We also denote by 2?[to,ti](a>) the set of all non-predicting controllable states of
the system £ = £(/*w) on the segment [to,ti].

Definition 2.2 The system £ is said to be locally controllable with the probabil-
ity /io on the segment [io,ii] if JJL{LO : 0 G intZ?[tOjtl](ti;)} == jig and non-predicting lo-
cally controllable with the probability fio o n the segment [to,ti] if the probability
//{w : 0 G Eut2>[t0,tl](y)} = до-

3 The Construction of the Positional Control

Let us consider the system £j and denote by Щ the matrix

by -D[to.t!](£») the controllability set of the system £,; on the segment [to,ti], by L(£i) ==
LinD[t() t l](^) the controllability space of the system §,, by Xi(t, s) = Xi{t — s) the
Cauchy matrix of this system. It is known that the controllability space L(£j) coincides
with the subspace formed by the columns of the matrix Ki, that is L(£i) = Lin Ki.
Therefore the condition гапк/Q = n is the necessary and sufficient condition of the local
controllability for system & (see [19, p. 140-145]).

Let us consider a determinate system £o, which coincides with the system ^ on
any interval [{I - l)aja), £ = 1, . . . ,k, that is ^0 = Фи for t G [(£ - l)a,£a). We can
consider the system £o as the system £ under the fixed ш = (в, ip) with к first coordinates

Lemma 3.1 [20] Assume that £0 = ~Фге for i'€[(£— \)ut, la), i = 1, . . . , k. Then the
controllability space of system £o on the segment [(£ — l)a, ka]

Suppose that for system £ there exists ш G О such that the corresponding determi-
nate system £o is a totally controllable on the segment [0, ka], that is the controllability
space i[o,fca](so) coincides with Mn. In the present work we investigate the next problem:
is it possible to construct the non-predicting control for the system £ and what is the
probability that this system is the non-predicting controllable on the fixed time segment
[0, T] (in the process of construction of such control we assume that for the system £ in
the moment r the moments of switching т& and the states of this system for t > т are
unknown). Further we propose the algorithm of construction of the non-predicting con-
trol when it is not sufficient the equality £[o,fo*](£o) = K". The subspaces i[(^-i)a,fea](€o);
I — 2 , . . . , к must satisfy some additional condition, that is the trajectory of the system
under some control must retains in given subspace to the next moment of switching. In
Lemma 3.2 we obtain the condition of such retaining when there are not any restrictions
on the control.
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Lemma 3.2 [12] Let M be a subspace in R n and M be a matrix formed from the
vectors of basis Л4. If for the system

x = Ax + Bu, (.т,и)бК"х1 т, (3)

we have Lin AM С Lin(M, B), then there exists a positional control u(x) such that for
any point XQ £ M the trajectory of solution x(t, t0, xo,u) contains in the subspace M for
all t ^ 0.

Further we consider the system S : x = Ax + Bu, (x, u) £ I " x U, where U С К т

is a compact convex set containing the origin in their interior. We denote by L(S) ==
LinD[tOttl](S), then L(S) is a controllability space for the system (3).

In the next statement we obtain the sufficient conditions of existence of the positional
control u(x) £ U for the system S. This control must retains the trajectory of solution
x(t, to, XQ,U) on the subspace M. for t ^ to, if XQ is a point located on this subspace in the
moment to- Furthermore, for u(x) £ U must exists e > 0 such that from the inequality
\\XQ\\ < e follows that the solution \\x(t, to, XQ, U)\\ < e for all t ^ to-

We denote by Ai, . . . ,XP the eigenvalues of matrix A corresponding to the different
Jordan cells (for this eigenvalues not required to be different), by mu we denote the
size of Jordan cell corresponding to the eigenvalue Afc. We also denote by Л the set of
eigenvalues Afc such that either ReAfe > 0 or ReAjt = 0 and the size of corresponding
Jordan cell is more than one, that is

Л = {Afc : Afe e {ReAfc > 0} U {ReAfc = 0, mk > 1}}.

Lemma 3.3 Let Л4 be a subspace in R" and M be a matrix from the vectors of basis
Л4. Suppose that the system S and the subspace Л4 satisfy the conditions:

(2) LinAMcLin(M,£);
(3) the controllability space L(S) contains all rooted subspaces of matrix A, corre-

sponding to the eigenvalues Â  G Л.
Then there exists the positional control u(x) € U, for which we can find e > 0 and
5 = S(e) > 0 such that for any point XQ £ Л4 П O§ the trajectory of solution x(t, to, XQ, U)
contains in AAC\Oe for all t^z to-

Proof Assume that for the system S a dimension of the controllability space
dim L(S) = r. Then there exists a linear transformation x = Cy that reduce the system
S to the system type 5 = (A, B) :

y1 = A^y1 + A12y
2 + Вгй,

У2 =А22у
2,

where у1 € Mr, у2 £ Шп~г and the controllability subspace L(S) determines in Rn by the

equation y2 = 0 (see [18, p. 110]). From the equalities A = C~1AC and В = C^B it is

easy to verify that the controllability spaces of the systems S and S satisfy the condition

L(S) = C-XL{S). (4)

Let us denote M. = C~XM. Then from the conditions (1) and (4) follows that M П

L(S) = {0}. The conditions (2) and Lin CAM С Lin(CM,CB) are equivalent, therefore

LmAM Chm{M,B).
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It is known thatjhe similar matrices A and A have the equal eigenvalues Afc, к =
1,.. .лр. Let £i and £i be the eigen and the adjoint vectors of matrices A and A. If £,
and li correspond to the equal \ , then we have £j = Cli (see [21, p. 31]). Therefore the
condition (3) is equivalent the follow condition: the subspace L(S) contains all rooted
subspaces of matrix A, corresponding to the Afe G Л.

Note, that the vectors 1г type li = (4,0), i\ G Rr, i = 1,... ,r, are contained in
the controllability subspace L(S) = Lin(ei,..., er). The matrix A also have the rooted
subspaces formed by the vectors £г — (£},£2), £2 ф 0, г = г + 1,.... ,n that dont lie in
L(S). Here £} G Kr, £| G Rn~r and vectors £| are the eigen or the adjoint ones of matrix
A-22 (vectors £i and £f, i — r + 1,... ,n correspond to the equal eigenvalues). Since (3),
it follows that for these eigenvalues ReAfe < 0 or ReAfê = 0 and rrife = 1.

Using the conditions L(S) = Lin(ei,... ,er) and M П L(S) = {0}, we get that the
subspace АЛ don't contains the unit vectors e±,..., er. Therefore we can represent this
subspace in the form

M = col(Mi,M2) = Un(hu ..., hj), Ы = со\{Ь\,Щ),

Mi = Lm(hl,...,h}), M2 = Un(h2

1,,..,h
2

j)1 j < n - r,

where vectors hj €E Mr, h2 are the linear independent vectors in R"~r.
We denote by y(t) = y(t,to,yo,u) = col(y1(t),y2(t)) the solution of the system S

closed by the control u(y) G U. Here yl{t) = yl(t,t0,yl,u) and y2(t) = y2{t,t0,y
2) is the

solution of the system у2 = А22У2. Let us obtain the solution y(t) such that its trajectory,
going in the moment to from the point yo = (Уо^Уо) € АЛ, remains in the subspace АЛ
for all t > to. Note, that from the condition Lin AM С Lin(M, B) follows the condition
Lin A22M2 С LinM2, which means that for every point y\ G АЛ2 the trajectory of y2{t)
contains in the subspace АЛ2 = Lin(/if,..., h2) for all t ^ to. Therefore we can represent
the solution y2(t) in the form

2, at{t) = 5~У'*д«(*),
1=1

y

2 i t ) =,ai{t)h2 + ••• + a j ( t ) h

where the degree of polynomials Quit) not more than m>iJ— 1. The solution y2(t) is
bounded for to ^ t < 00 because the eigenvalues Afe of matrix A22 satisfy the condition
ReAfe < 0 or ReAfc = 0 ̂ ind m,k = 1^

Notice, that if Lin AM с Lin(M, B), then for any basic vector h% G АЛ, г = 1,..., j
there exists a vector щ G Rm such that Ahi + But G M. This means that there exists a
vector Ci = col(cij... Cji) such that the system Mci — Вщ — Ahi has the solution. Let us
construct the positional control и = a\(t)ui + ... + aj(t)v,j and denote by с = a.i{t)c\ +
... + cxj(t)cj. Suppose that yo € АЛ and y(t) = y(t, to, yo, и) = ai(t)hi + ... + aj(t)hj is
the solution of the system S such that its trajectory lies in the subspace АЛ. Then the
vector col(c, u) G R f c + m is the solution of the system

Me- Bu = Ay, у £ M. (5)

Combining M = co\(Mi,M2), В = col(Bi,0), rankM2 = j , гапкБх = т and condition
(2), we obtain that rank(M,B) = rank(M, B,AM) = j + m. This implies that the
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system (5) is compatible and has a unique solution u, which we can represent in the form
и = u(y) = Dy. Here D is some matrix sizes m x n. Then there exists г > 0 such that
u(y) e U for \\y\\ < e .

Since we can express the solution y(t) over the same functions ««(£), i = 1 , . . . , j that
enters in y2(t), therefore this solution is also bounded for t > t0. This means that for any
£ > 0 there exists 5 > 0 such that \\y(t)\\ < £ for. all i > tg if \\yo\\ < S. Let us consider the
phase trajectories of the system S closed by the control u(y) € U. Thus, we proved that
if these trajectories go from the points yo £ Л4Г\О§, then they lie in the set M. П Oe for
all t ̂  to- Let us put u(x) = u(y), then the last condition is equivalent the next one: the
phase trajectories of the system S, going from the points XQ S M. П Og under the control
u(x) £ U, lie in the set Л4 П O£ for all t > to (here e and S may be other).

In addition, note that the vector col(c, u) is the solution of the system

Mc-Bu = Ax, xGM, (6)

which is equivalent the system (5). Thus, the lemma is proved. •

Lemma 3.4 Suppose L(S) contains all rooted subspaces of matrix A, which corres-
pond to the eigenvalues Afc 6 Л&. Then there exists the positional control u(x) £ U type
и = Hx, and for this control there exist e > 0 and 5 = 5(s) > 0 such that for any point
\\XQ\\ < 5 the solution \\x(t,to,xo,u\\ < e for all t ̂  to-

Proof Assume that dim L(S) = r. Let us reduce the system S to the system S
by the linear transformation x = Cy. The matrix A22 of the system у2 = л 2г |/ 2 have the
eigenvalues Â  such that ReAfe < 0 or ReA^ = 0 and m& = 1. In [22, p. 30] was proved
that there exists a control и = Hx that gives to the matrix A+BH of the closed system r
predesigned eigenvalues and the rest eigenvalues of A + BH coincide with the eigenvalues
of matrix A^i- Therefore, we can choose the control и = Hx such that all eigenvalues of
matrix A + BH satisfy the condition ReAfe < 0 or ReA& = 0 and т& = 1. Then there
exists £ > 0 that u(x) E U for ||x|| < e and there exists 5 = S(e) > 0 that for any point
||o?o|| < 5 the solution x(t) = x(t,to,xo,u) satisfies the equality \\x(t,xo,u(-))\\ < e for all
t ^ to- The lemma is proved. •

4 The Conditions of the Non-predicting Local Controllability

We say that the finite sequence V = (tpi1,-..', Фгк), where ф^ € Ф is called a word V. Let
us put in correspondence to the word V the linear systems £$i > • • • > £ik > the controllability
spaces of these systems L(^j1) , . . . ,L(£ik) and the controllability spaces £[(^-i)Q,fea](Co))
£ = 1 , . . . , k, constructed in Lemma 3.1.

Let us denote by (i(T) the probability of appearance the word V on the segment

Lemma 4.1 Suppose that 0 < a ̂  9k ̂  /3 for all к = 2 , . . . , the set Ф = {фг,ф2},
the word V = (ф^ ,ф^). Then for T ^ 2N/3, N = 1,2,..., the probability /л(Т) satisfies
the inequality

M(T) > (l-^P^Xt-^). (7)

Proof Here we consider the case, when the set Ф contains two states, then the
probability fi(T) equals to the probability of appearance the word V = (ф^, ф^) on the
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segment [0, T]. Notice that JJ,{T) not less than the probability of transition the system
from any initial state to the state ф^ over not more than N steps and then from ф^ to
tpiz also not more than for N steps. It is clear that for such transition of the system on
the segment [0, Г] must appeared not less than 2N jumps of the process, that always true
for T ̂  2N/3. Let us denote by fixi±{N) the conditional probability of the first reaching
of the system the state ф^ from this own initial state not more than over N steps. The
probability fi1i1(N) equals to the probability that the system either reaches the state
фц for one step or goes to фг2, then a few times goes again to ф{2 and then reaches the
initial state ф^г, hence

filil(N) = Pilh + Plll2Pl2il(1 + Pi2i2 + • • -+Pv2i2
2) = l -PhilPZib1-

Let /i2ij(iV) be the conditional probability of the first reaching of the system the state
фъ% from the state ф^2 not more than over N steps. For this aim the system from the
state ф{2 can reach the state фц either over one step or at first it can go a few times to
фг21 then it goes to ф^, therefore,

/fail (N) = РЫХ (1 + РЫ* +•••+ Pf2i2
l) = l ~ P f a V

In the same way, we denote the probability fixi2(N), then flll2(N) ~ 1 ~ pfxil- Further
note that the system can reach the state ф^ either from фп or from ф^2, hence for
T J? 2N[3 we have the inequality

+irl2.ft2n(N))fni2(N) =

It is well known that if the Markov chain is a stationary in the narrow sense, then the
s

initial and transition probabilities satisfy the equations Yl ̂ jPjk = ̂ к, к = 1,..-:,».

Hence in the case s = 2 we have ТГ^РГ-^ + ^i2Pi2i2 = 7Tj2- Therefore /x(T) ^ (1 —
^г2р^212

г){1 ~ pf^ij- Thus, the lemma is proved. О

Let p\j' be the probability of transition from the state фг to the state ipj over £ steps.
The state ф$ is called an attainable from the state фг if there exists £ ̂  0 such that
p\j > 0. The states фг and ijjj are called the connected if the state ipj is attainable from
the state ф^ and the state ipi is attainable from ф$ (see [14, p. 598]).

Theorem 4.1 Suppose that for the system £ the set Ф = {<ф1,ф%}., the states ф\,фч
are connected and 0 < a < вк ̂  /3 for all к = 2,... If there exist a word V = (ф^, ф^)
and a subspace M с £(£«•>) such that:

(1) M П L(&) = {0}, Ц&) + M = K";
(2)UnAilMcLm(M,Bil)]

(3) the controllability space L(^it) contains all rooted subspaces of matrix A^ and
the controllability space i(&2) contains all rooted subspaces of Ai2, corresponding to the
eigenvalues Â  £ Л,
then the system £ is non-predicting controlled on [0, T] with probability fi(T) that satisfies
(7) for all T > 2N(3, N = 1,2,....

The probability fi(T) —> 1 fts T —> oo.

Proof Let us describe the construction of the non-predicting control for the sys-
tem £ that satisfies the conditions of the theorem.
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1. First let us consider the case, when in the initial moment the system £ is in the
state фъ. The first task is to translate the points x0 G Os to the set M П Oei by the
program control u(t) G U for time a. We denote by JD{to>il](£,Mo) the controllability
set of the system S to the set MQ on the segment [to,ti). The point XQ lies in the set

• [̂to.ti] (^' -^°) ^ anc^ ОП^У if there exists an admissible control u(t) such that the solution
x(t) = x(t,to,xo,u) of the system S satisfies the condition x{t\) G Mo. It is known that
the set D[tOitlj(S,Mo) satisfies the equality

D[toM(S,Mo) =D[tOttl](S)+X-1(t1 -to)Mo.

Here under the algebraic sum of the sets A and В from Rn we intend the set A + В =
{a + b : a G A,b G -B}, by X(t, s) = X(t — s) we denote the Cauchy matrix of the system
x = Ax. We obtain

LinD[0,a] (&, Л4 П O£l) = Lin (£>[o,a] (^,) + Х г 1 ( а )(M П О[0,a] (&, Л4 П O£l) = Lin (£>[o,a] (^,) + Х г 1 ( а )(M П Ов1

In the work [20] was proved that the conditions L(£h) + Xii
1(a)M = K" and

JSA = Kn are equivalent, hence from the condition (1) it follows that IAnDpfOe].(& J -M ^
O£l) = R™. Since {0} G intM and {0} G mtD[OiQ,](&J, then {0} G ЫЩо^^МпО^).
Therefore the set D[o,a] (6i > -^ П O£l) contains some neighbourhood O£ of the origin such
that all points of Oe reach the set M П Oei by u{t) G f/ for time a.

Let us suppose that the system £ have not the jumps for time t = a, that is T\ ^ a.
Since the system ^ and the subspace M. satisfy the conditions of lemma 3.3, then there
exists the positional control u(x) G U, which retains the solution x(t) = x(t, a, xa,u),
x(a) = xa on the subspace Л4 for all t ^ a. In this case for every £2 > 0 there exists
£1 > 0 such that for all ||xe|| < £1 the solution [|a;(t)|| < £2 for all t > ex. Suppose that in
the moment т\ the state i/;i2 i s appeared; then we can translate the points of Л4 П Og2

to null for time a, because AA contains in the controllability set Ь{^2). In this case we
choose £2 such that the program control u(t) G U for t G [т\,-т\ + a]. The case т\ < а
considered further in item 3.

2. Suppose that in the initial moment the system £ is in the state tpi2. In this case
we must wait for the moment of jump T\ during some unknown time and simultaneously
choose the control u(x) G U that satisfy the follow condition: there exist e > 0 and
8 = S(e) > 0 that all points from the neighbourhood Os contain in O£ for any long time
(to the moment TI). In Lemma 3.4 we prove the existence of such control u{x) G U.
If the state ф^ appears again in the next moments of jumping T\, ,т^3 then we keep
on restrain the trajectory of the system in the neighbourhood Oe until the state ф^
appeared in some moment Tk+i- For t > T^+I we construct the control as in item 1.

3. Notice that in the initial moment we don't know about the time T\ of first jump of
the process, thats why we cannot always reach the sets constructed above for this time.
Therefore for t < n we must construct the program control similarly as in the first or
second item in dependence of the state of the system in the initial moment. Now suppose
that the first jump of the process was in the moment ц < a and we don't reach the
necessary sets for this time, then after the moment T\ we have a reserve time a without
the next moment of jump r2 (because 9k G [a, /5]). Thus, for ( ) n we build the control
as above in dependence from the number of state in the moment T\.

4. Finally let us prove that fi(T) —> 1 as T —> 00. The states фх,ф% are connected,
hence рц ф 1, j>22 ф 1- Therefore from the inequality (7) we have that /i(T) ~> 1 as
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N —> oo. Notice, that in this case T -~> oo, because T > a(N - 1), a > 0. Thus, the
theorem is proved. •

5 Illustrative Example

Assume that the system £ has two states ipi — (Ai,Bi), -02 = (Az,B%) with the next
matrices:

, B i = 0 1 \ , A 2 = \ 0 - 1 4 \ , B 2 =

/ з/5 2/5 \
It is also given the matrix of transition probabilities P = ( , ',_ and the initial

V
distribution тг = (2/3,1/3). Note, that the initial and transition probabilities satisfy the

2

equations ^ "jPjj = щ, г = 1,2. We also suppose that the length of intervals between

the system jumps #fc e [0,5; 1], fc = 2,3.. . , then from (2) follows that вг G [0; 1].
It is easily shown that the controllability spaces of these systems £(£i)

£(£2) = Linl^. We choose the word V = (^1,^2) and the subspace Л4 = £(£2)) then
the subspaces Л4 and £{£i) satisfy the equalities:

Further, the controllability space I/(£i) contains the eigenvectors of matrix A\, v\ =
col(0,1,0) and V2 = col(l, 1, 0) that correspond to the eigenvalues Ai = 1 and Л2 = 2; the
matrix A\ also has the eigenvalue A3 = —1. The subspace £(£2) contains the eigenvector
Vi = col(l,2,l) of matrix A2, corresponding Ai = 1, the other eigenvalues of A2 are
A2 = —2, A3 = —3. EYom the Theorem 4.1 it follows that the system £ is the non-
predicting controlled on the segment [0, T] with the probability fi(T), which satisfies the
next inequality for T ^ 2N :

Let us describe the construction of the non-predicting control for this system and
obtain the corresponding positional controls. Assume that in the initial moment the
system £ is in the state ф\. First we translate the points Жо G Oe to the set Л4 П Oei

by the program control u(t) G U for the time a = 0, 5. If the system has not the jumps
during the time interval a, that is n ^ a, then we restrain the trajectories of the system
£1 in the set Л4 П Oei by the control u(x) to the jump moment Tk, when the system
goes to the state ip2- For obtaining the control u(x) we represent the vector x G Л4 in
the form ж = col(xi, 2a;i,xi), then from the system (6) we have u{x) = co\(u\,U2) =
col(—3xi, — 7x{). We obtain the solution x(t,a,xo,u) of the system £1, closed by the
control u(x), going from the point x0 = (X\,2XQ,X\) :

x{t, a, x6,u) = c

Note, that this solutions satisfies the inequality ||ж(£,а,жо,м)|| ^ ||^o|| < £i a n d its
trajectory contains in the subspace M. for all t ^ a. Further, when the state £2 appears
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in the moment тц, we translated the points from M. Л O£l to null by the corresponding
program control.

Suppose that T\ < a and in the moment T\ the state -02 appears, then the trajectories
of the system cannot always reach the set MC\Oei for the moment T\. In this case after т\
we must restrain the trajectories in some neighbourhood of the origin for the moment rg,
when the system will be in the state 'фх again. For this aim we construct the positional
control for the system £2 : u(x) = —x\ — x%, such that all eigenvalues of the matrix of
closed system are equal —2. Then there exist e > 0 that u(x) e U for \\x\\ < e and
8 = S(e) > 0 that for any point \\XQ\\ < 5 the solution \\x(t,TI,XO,U)\\ < e for all t ^ т\.
After appearing the state фх we deal as in the first case. In the same way, if in the moment
t = 0 appears the state Ф2, we must restrain the trajectories in some neighbourhood of
the origin for the moment rq, when the system will be in the state ip\.

The work is supported by Russian Foundation of Basic Research (grant No. 06-01-
00-258).
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