Л.В. Шамшурина

Статистика

(Ряды распределения. Средние величины)

Ижевск 2007

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУВПО «УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ

Статистика

(Ряды распределения. Средние величины)

Ижевск 2007

		разработка	•	на	заседании	кафедры
ЭКОНОМІ	ических мето	дов управлен	ия.			
«28» де	кабря 2006 г.					
Зав. каф	едрой ЭМУ				О.Д.	Головина
Рекомен	ндовано для і	использовани	я в учебном	проц	ecce	
« <u> </u> »_		2007 г.				
Председ	цатель УМК				A.C.	Баскин

Методическая разработка является частью учебно-методического комплекса по статистике. Она будет полезна тем, кто почувствовал потребность в помощи при изучении темы «Ряды распределения. Средние величины».

Шамшурина Л.В. Статистика: Ряды распределения. Средние величины. Для студентов экономических специальностей вузов. – Ижевск: Издательство ИЭиУ ГОУВПО «УдГУ», 2007, с. 20

- © Л.В. Шамшурина, 2007
- © ИЭиУ УдГУ, 2007

Содержание

1. Вариационные ряды	4
2. Средние величины	8
3. Показатели вариации	13
Задача 1	
Задача 2	
Задача 3	

1. Вариационные ряды

Первым шагом упорядочивания исходной информации является подсчет единиц изучаемой совокупности. В результате этого получаем ряд распределения.

Статистический ряд распределения — это упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности (рис. 1).

Ряды распределения, построенные по атрибутивным признакам, называются *атрибутивными* (таблица 1).

Ряды распределения, построенные по количественному признаку (в порядке возрастания или убывания наблюдаемых значений), называются *вариационными* (таблицы 2-4).

Вариационный ряд (ВР) включает изучаемый признак и повторяемость признака (в виде частоты или частости).

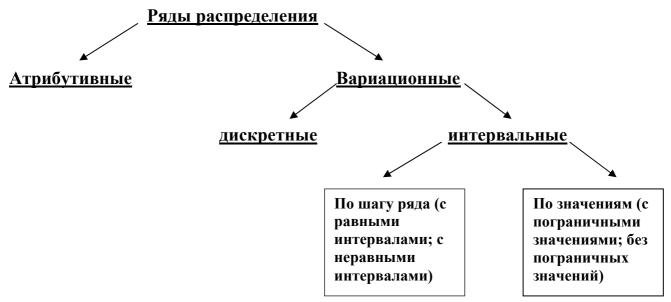


Рис. 1. Состав и классификация рядов распределения

Таблица 1 Численность незанятых трудовой деятельностью граждан, тыс. чел.

Федеральный округ	2000 г.		
1. Центральный	212,0		
2. Северо-западный	141,1		
3. Южный	144,0		
4. Приволжский	247,3		
5. Уральский	96,7		
6. Сибирский	202,0		
7. Дальневосточный	95,1		

Размер домохозяйства в РФ (по микропереписи населения 1994 г., в процентах)

Таблица 2

	Домохозяйства					
	Из 1	Из 2	Из 3	Из 4	Из 5 и	
	человека	человек	человек	человек	более	
					человек	
Bce						
домохозяйства:	19,2	26,2	22,6	20,5	11,5	
городские	18,1	26,1	24,3	21,0	10,5	
сельские	22,0	26,8	18,1	19,0	14,1	

Таблица 3

Распределение населения УР по среднедушевому денежному доходу в 1999 г. (%)

μοπομή Β 1999 1. (70)	
	За год
Все население	100,0
в том числе со среднедушевым	
денежным доходом в месяц, руб.	
до 400,0	4,3
400,1 - 600,0	15,2
600,1-800,0	20,6
800,1-1000,0	18,7
1000,1-1200,0	14,1
1200,1-1600,0	16,0
1600,1-2000,0	6,6
Свыше 2000,0	4,5

Источник: Удмуртия в цифрах 1999г., с.28.

Таблица 4

Продолжительность ярмарок в России (по переписи 1894г.)

Продолжительность	Число ярмарок		
ярмарки, дни			
Однодневная	10667		
От 2 до 3 дней	4079		
3 - 7	1347		
7 - 12	267		
12 - 20	184		
20 - 30	63		
30 и более	11		

Источник: Россия: «Энциклопедический словарь, -Л.: Лениздат, 1991, с. 324.

Числовые значения количественного признака в вариационном ряду распределения называются *вариантами*.

Частоты — это численности отдельных вариантов или каждой группы вариационного ряда, то есть это числа, показывающие как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется *объемом* совокупности и определяет число элементов всей совокупности.

Частости — это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице (или 100%). Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

В зависимости от характера вариации ВР могут быть дискретными (см. таблицу 2) и интервальными (см. таблицы 3,4).

Дискретные BP основаны на дискретных (прерывных) признаках, имеющих только целые значения; на дискретных признаках, представленных в виде интервалов; интервальные — на непрерывных признаках.

Если необходимо построить ряд с заданным числом равных интервалов, то шаг в таком ряду считают по формуле:

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{n} \,, \tag{1}$$

где h – шаг интервала;

 $X_{\text{max(min)}}$ — соответственно наибольшее (наименьшее) значение признака;

n – число заданных равных интервалов.

Если количество интервалов не названо, то их можно рассчитать:

$$n=1+3,322 lg N,$$
 (2)

где п – число интервалов в ряду;

N – число единиц совокупности.

Центральное (срединное) значение интервала (X_{cp}) рассчитывается одним из методов:

$$X_{cp} = \frac{X_H + X_B}{2}, \qquad (3)$$

$$\mathbf{x}_{\rm cp} = \mathbf{x}_{\rm H} + \frac{h}{2},\tag{4}$$

ИЛИ

$$\mathbf{x}_{\rm cp} = \mathbf{x}_{\rm B} - \frac{h}{2}. \tag{5}$$

2. Средние величины

1. Средняя арифметическая взвешенная

a)
$$\overline{x} = \frac{\sum x \cdot f}{\sum f}$$
, если $f_1 \neq f_2 \neq f_3 \neq \dots \neq const.$ (6)

б)
$$\bar{x} = \frac{\sum x \cdot d}{100}$$
, если $d_1 \neq d_2 \neq d_3 \neq ... \neq const.$ (7)

в)
$$\overline{x} = \sum x \cdot d$$
., если $d_1 \neq d_2 \neq d_3 \neq \dots \neq const$. (8)

2. Средняя арифметическая простая

a)
$$\bar{x} = \frac{\sum x}{n}$$
, если $f_1 = f_2 = ... = const.$, то (9) $n -$ число уровней ряда.

б) $\bar{x} = \frac{\sum x}{n}$, если невозможно определить повторяемость, то (10)

n – размер изучаемой совокупности.

3. Средняя гармоническая простая

$$\overline{x} = \frac{n}{\sum \frac{1}{x}},$$
(11)

n – число вариантов,

 $\frac{1}{x}$ - отдельные варианты обратного признака, встречающиеся по одному разу.

4. Средняя гармоническая взвешенная

$$\bar{x} = \frac{\sum x \cdot f}{\sum \frac{x \cdot f}{x}}$$
, когда известны: x , xf . (12)

Структурные средние

1. Мода

Значение признака, которое чаще всего встречается (M_o) :

$$M_0 = X_{\scriptscriptstyle H} + h \frac{f_2 - f_1}{(f_2 - f_1) + (f_2 - f_3)}$$
(13)
$$M_0 = X_{\scriptscriptstyle H} + h \frac{d_2 - d_1}{(d_2 - d_1) + (d_2 - d_3)}$$
(14)

где X_{H} – нижняя граница модального интервала,

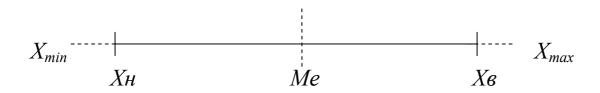
h — шаг модального интервала,

 f_1 , f_2 , f_3 — соответственно частота предмодального, модального и послемодального интервала.

 d_1 , d_2 , d_3 — соответственно частость предмодального, модального и послемодального интервала.

2. Медиана

Значение признака находящегося в середине упорядоченного ряда (Me):



$$Me = XH + h \frac{N_{Me} - S_{Me-1}}{f_{Me}} \tag{15}$$

или

$$Me = X_{H} + h \frac{50\% - S_{Me-1}^{d}}{d_{Me}}$$
 (16)

где Хн – нижняя граница медианного интервала,

h – шаг медианного интервала ($X_{\theta} - X_{H}$),

 N_{Me} – порядковый номер медианы,

 S_{Me-1} — накопленная частота до медианного интервала,

 f_{Me} – частота медианного интервала,

 $S^{\scriptscriptstyle d}_{\scriptscriptstyle Me-1}$ - накопленная частость до медианного интервала,

 $d_{\scriptscriptstyle Me}$ - частость медианного интервала.

3. Квартили

Значения признака, делящие упорядоченный ряд на 4 равные части (Q):

$$X_{min}$$
 Q_1 Q_2 Q_3

Нижний квартиль:

$$Q_{1} = X_{HQ_{1}} + h \frac{\frac{\sum f}{4} - S_{Q_{1-1}}}{f_{Q_{1}}}$$
 (17)

Средний квартиль:

$$Q_2 = Me \tag{18}$$

Верхний квартиль:

$$Q_{3} = X_{HQ_{3}} + h \frac{\frac{3 \cdot \Sigma f}{4} - S_{Q_{3}-1}}{f_{Q_{3}}},$$
 (19)

где X_{HQ1} - нижняя граница интервала содержащая нижний квартиль,

h – шаг интервала ($X_{\scriptscriptstyle \theta}$ - $X_{\scriptscriptstyle H}$),

 $S_{\mathrm{Q_1-1}}$ - накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль,

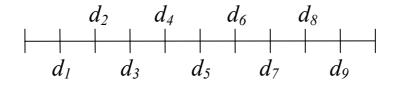
 $S_{{
m Q}_3-{
m I}}$ - накопленная частота интервала, предшествующего интервалу, содержащему верхний квартиль,

 $f_{\mathrm{Q_{\scriptscriptstyle 1}}}$ - частота интервала, содержащего нижний квартиль,

 $f_{\mathrm{Q}_{\scriptscriptstyle 3}}$ - частота интервала, содержащего верхний квартиль.

3. Децили

Варианты, делящие упорядоченный ряд на 10 равных частей (d).



Первый дециль:

$$d_{1} = X_{Hd_{1}} + h \frac{\sum f}{10} - S_{d_{1}-1}$$

$$fd_{1}$$
(20)

Второй дециль:

$$d_2 = X_{Hd_2} + h \frac{\frac{2 \cdot \sum f}{10} - S_{d_2 - 1}}{f d_2}$$
 (21)

. . .

Девятый дециль:

$$d_{9} = X_{Hd_{9}} + h \frac{\frac{9 \cdot \sum f}{10} - S_{d_{9} - 1}}{f d_{9}}, \tag{22}$$

где $X_{H_{d_1}}$ - нижняя граница интервала, содержащего первый дециль,

 $X_{H_{d_9}}$ - нижняя граница интервала, содержащего девятый дециль,

h – шаг интервала,

 S_{d_1-1} - накопленная частота интервала, предшествующего интервалу, содержащему первый дециль,

 S_{d_9-1} - накопленная частота интервала, предшествующего интервалу, содержащему девятый дециль,

 f_d - частота интервала, содержащего первый дециль,

 f_{d_9} - частота интервала, содержащего девятый дециль.

3. Показатели вариации

- 1. Размах вариации: $R = X_{max} X_{min}$ (23)
- 2. Среднее линейное отклонение:
 - а) для несгруппированных данных

$$\overline{d} = \frac{\sum |x - \overline{x}|}{n} \tag{24}$$

б) для сгруппированных данных

$$\overline{d} = \frac{\sum |x - \overline{x}| f}{\sum f} \tag{25}$$

- 3. Дисперсия:
 - а) для несгруппированных данных

$$\sigma^2 = \frac{\sum (x - \overline{x})^2}{n} \tag{26}$$

ИЛИ

$$\sigma^2 = \overline{x}^2 - (\overline{x})^2 \tag{27}$$

б) для сгруппированных данных

$$\sigma^2 = \frac{\sum (x - \overline{x})f}{\sum f}$$
(28)

$$\sigma^2 = \overline{x}^2 - (\overline{x})^2 \tag{29}$$

в) для альтернативного признака

$$\sigma_p^2 = g \cdot p \tag{30}$$

- 4. Среднее квадратическое отклонение:
 - а) для несгруппированных данных

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$
 (31)

б) для сгруппированных данных

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2 f}{\sum f}}$$
 (32)

в) для альтернативного признака

$$\sigma_p = \sqrt{gp} = \sqrt{p(1-p)} \tag{33}$$

5. Коэффициент вариации:

$$V = \frac{\sigma}{\overline{x}} 100\% \tag{34}$$

6. Внутригрупповая (частная) дисперсия:

a)
$$\sigma_i^2 = \frac{\sum (x - \overline{x_i})^2}{n}$$
 (35)

$$\sigma_i^2 = \frac{\sum (x - \overline{x_i})^2 f}{\sum f}, \qquad (36)$$

где X – отдельное значение признака внутри группы;

Х_і – средняя арифметическая группы (групповая средняя)

7. Межгрупповая дисперсия:

$$\delta^2 = \frac{\sum (\overline{x}_i - \overline{x})^2 f}{\sum f}$$
 (37)

Где $X_{\rm i}$ – групповые средние,

X – общая средняя,

f – численность единиц в группе.

8. Общая средняя внутригрупповых дисперсий:

$$\overline{\sigma}_i^2 = \frac{\sum \sigma_i^2 f}{\sum f} \tag{38}$$

9. Общая дисперсия (согласно правилу сложения дисперсий):

$$\sigma^2 = \overline{\sigma}_i^2 + \delta^2 \tag{39}$$

10. Эмпирический коэффициент детерминации:

$$\eta^2 = \frac{\delta^2}{\sigma^2} \tag{40}$$

при отсутствии связи: $\eta^2 = 0$

при функциональной связи: $\eta^2 = 1$

11. Эмпирическое корреляционное отношение:

$$\eta_{9} = \sqrt{\frac{\delta^{2}}{\sigma^{2}}} \tag{41}$$

Задача 1

Случайным образом были опрошены 15 сотрудников. При ответе на вопрос о количестве детей в семье были получены следующие данные:

Число детей в семье, чел.	Число ответов		
1	8		
2	4		
3	2		
4	1		

Определить:

- а) среднее число детей в семье,
- б) моду,
- в) медиану,
- г) дисперсию.

Решение

Расчеты представим в таблице:

X	f	Xf	S	X^2	$X^2 \cdot f$
1	8	8	8	1	8
2	4	8	12	4	16
3	2	6	14	9	18
4	1	4	15	16	16
Итого	15	26	-	30	58

a)
$$\overline{X} = \frac{\sum Xf}{\sum f} = \frac{26}{15} = 1,7 \partial eme \ddot{u}$$

б) M_0 =1 ребенок

B)
$$N_{Me} = \frac{\sum f + 1}{2} = \frac{15 + 1}{2} = 8$$
-oŭ ombem,

Me=1 ребенок

$$\Gamma \sigma^2 = \overline{x}^2 - (\overline{x})^2 = \frac{\sum x^2 \cdot f}{\sum f} - \left(\frac{\sum xf}{\sum f}\right)^2 = \frac{58}{15} - \left(\frac{26}{15}\right)^2 = 3,87 - 2,89 = 0,98$$

На основе данных* о распределении пенсионеров РФ по уровню получаемой пенсии в 1996г.

	Общая численность
Пенсия, денном. руб.	пенсионеров
	1996г., %
До 150	3,9
150-200	7,9
200-250	17,2
250-300	29,0
300-350	15,4
350-400	12,2
400-500	7,9
Свыше 500	6,5

Определим:

- 1) среднюю пенсию;
- 2) моду;
- 3) медиану, квартили;
- 4) дисперсию;
- 5) среднее квадратическое отклонение;
- 6) коэффициент вариации.

Решение

Расчет представим в следующей таблице.

Пенсия, деном. Руб., X	Численность, %, d	X _{cp}	$\frac{x_{cp}d}{100}$	S	$x_{cp} - \overline{x}$	$(x_{cp}-\bar{x})^2$	$\left((x_{cp} - \bar{x})^2 \frac{d}{100} \right)$
До 150	3,9	125	4,9	3,9	-180	32400	1263,6
150-200	7,9	175	13,8	11,8	-130	16900	1335,1
200-250	17,2	225	38,7	29,0*	-80	6400	1100,8
250-300	29,0	275	79,8	58,0	-30	900	261
300-350	15,4	325	50,1	73,4	20	400	61,6
350-400	12,2	375	45,8	85,6	70	4900	597,8
400-500	7,9	450	35,6	93,5	145	21025	1661,0
Свыше	6,5	550	35,8	100	245	60025	3901,6
500							
Итого	100,0	-	304,5	-	-	-	10182,5

1.
$$\overline{x} = \frac{\sum x_{cp} \cdot d}{100} = 304.5 \approx 305 \, py 6.$$

2. Модальный интервал: 250-300

$$x_{H}=250$$
 $d_{2}=29$
 $h=50$ $d_{3}=15,4$
 $d_{I}=17,2$
 $M_{0}=250+50\frac{29-17,2}{(29-17,2)+(29-15,4)}\approx 273 py \delta.$

3. Медианный интервал: 250-300

$$x_{H}$$
=250 S_{Me-1}^{d} =29* d_{Me} =29 N_{Me} =50

$$Me = 250 + 50 \frac{50 - 29 *}{29} \approx 286 \, py 6.$$

305>286>273

 $(\bar{x} > Me > M_o)$, т.е. правосторонняя асимметрия.

$$Q_1 = 200 + 50 \frac{\frac{100}{4} - 11.8}{17.2} \approx 238 py \delta.$$

$$Q_2=Me$$

$$Q_3 = 350 + 50 \frac{\frac{3}{4}100 - 73,4}{12,2} \approx 357 py \delta.$$

4.
$$\sigma^2 = 10182,5$$

5.
$$\sigma = \sqrt{\sigma^2} = \sqrt{10182.5} = 100.9 \, \text{py} \delta.$$

6.
$$V = \frac{100.9}{305} \cdot 100\% = 33.08\%$$

Средний размер пенсии в 1996г. составил 305 рублей. Типичный размер пенсии - 273 рубля.

Половина пенсионеров получали пенсию не более 286 рублей. Другая половина – более этой суммы.

Четверть пенсионеров имеют пенсию не более 238 рублей. Четверть пенсионеров – более 357 рублей.

Пенсионеры по получаемой пенсии - качественно однородны.

Задача 3

Имеются следующие выборочные данные о вкладах населения района:

Группы	Число	Средний	Коэффициент
населения	вкладов,	размер	вариаций
	тыс. ед. f	вклада, тыс.	вклада, %, V
		руб., $\bar{x_i}$	
Городское	7	4	20
Сельское	3	6	30
Итого	10	4,6	-

Определим тесноту связи между средним размером вклада и группой населения, исчислив эмпирическое корреляционное отношение.

Решение:

$$\eta_{3} = \sqrt{\frac{\delta^{2}}{\sigma^{2}}}$$

$$\delta^{2} = \frac{\sum (\bar{x}_{i} - \bar{x})^{2} f}{\sum f},$$

$$\bar{x} = \frac{\sum x \cdot f}{\sum f} = \frac{4 \cdot 7 + 6 \cdot 3}{7 + 3} = 4,6 \text{mbic.py} \delta.$$

$$\delta^{2} = \frac{\sum (\bar{x}_{i} - \bar{x})^{2} f}{\sum f} = \frac{(4 - 4,6)^{2} \cdot 7 + (6 - 4,6)^{2} \cdot 3}{10} = 0,84$$

$$\sigma^{2} = \bar{\sigma}_{i}^{2} + \delta^{2}$$

$$\bar{\sigma}_{i}^{2} = \frac{\sum \sigma_{i}^{2} \cdot f}{\sum f},$$

$$V = \frac{\sigma}{\overline{x}} \cdot 100; \quad \sigma_i = \frac{v_i \cdot \overline{x}}{100}$$

$$\sigma_1 = \frac{20 \cdot 4}{100} = 0.8; \quad \sigma_2 = \frac{30 \cdot 6}{100} = 1.8$$

$$\overline{\sigma}_i^2 = \frac{\sum \sigma_i^2 \cdot f}{\sum f} = \frac{0.8^2 \cdot 7 + 1.8^2 \cdot 3}{7 + 3} = 1.42$$

$$\sigma^2 = 1.42 + 0.84 = 2.26$$

$$\eta^2 = \frac{0.84}{2.26} = 0.3717 \cdot 100 = 37.17\%$$

Т.о. средний размер вкладов только на 37,17% зависит от места проживания и на 62,83% - от внутригрупповых причин.

$$\eta_9 = \sqrt{0.3717} = 0.6097$$

Связь среднего размера вклада и места жительства населения заметная.

Шамшурина Людмила Витальевна

Статистика (Ряды распределения. Средние величины.)

Учебное издание