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Abstract: New necessary and sufficient conditions in the pole assignment problem are obtained
for linear systems with incomplete feedback. The concept of consistency is brought in, which
is generalization the concept of complete controllability to systems with incomplete feedback.
The conditions are obtained under which the property of consistency is equivalent to global
controllability of spectrum for systems with incomplete feedback.

Keywords: Feedback control, pole assignment, stabilization.

1. INTRODUCTION

Consider a linear control system
ẋ = A(t)x+B(t)u, (t, x, u) ∈ R×Rn ×Rm, (1)

y = C∗(t)x, y ∈ Rk (2)
with bounded continuous matrix functions. Let the control
in system (1), (2) be constructed as linear incomplete
feedback u = U(t)y, where U is a bounded piecewise
continuous function. Then the closed-loop system is

ẋ = (A(t) +B(t)U(t)C∗(t))x, x ∈ Rn. (3)
If feedback is complete, i.e. C(t) ≡ I, then closed-loop
system is

ẋ = (A(t) +B(t)U(t))x, x ∈ Rn. (4)

Let system (4) be stationary. By λ1(A+BU), . . . , λn(A+
BU) denote the eigenvalue spectrum of the matrix A+BU.
The problem of stabilization for system (4) consists in
constructing a stationary control U such that Reλi(A +
BU) ≤ −α < 0 for all i = 1, n. If for any given µi there
exists an U such that λi(A + BU) = µi for all i = 1, n
then system (4) is stabilizable. This more general problem
is called pole assignment problem. In Russian-speaking
literature it is said to be problem of global control over
spectrum.

It was shown (see Popov (1964)) that the spectrum for sys-
tem (4) is globally controllable iff system (1) is completely
controllable (i.e. rank [B,AB, . . . , An−1B] = n). It was
shown later (Wonham (1967)) that if the set {µ1, . . . , µn}
is the spectrum of the real type (i.e. there exists a real ma-
trix having this spectrum) then one can choose a feedback
matrix U which is real.

A sufficient condition for nonstationary system (4) to be
uniform stabilizable is uniform complete controllability of
system (4) (Tonkov (1979)).

For systems with incomplete feedback, the above problems
is more complicated. In this work, new results about global
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control over spectrum for system (3) is obtained. The main
results are contained in the theorem 8.

2. CONSISTENT SYSTEMS

The system (1), (2) is said to be consistent on [t0, t0 +ϑ] if
there exists l > 0 such that for any (n×n)-matrix G we can
find a piesewise continuous control UG(t), t ∈ [t0, t0 + ϑ]
such that the solution of the matrix initial value problem

Ż = A(t)Z +B(t)UG(t)C∗(t)X(t, t0), Z(t0) = 0
satisfies condition Z(t0) = G, and the inequality |UG(t)| ≤
l|G|, t0 ≤ t ≤ t0+ϑ is satisfied; X(t, s) denotes the Cauchy
matrix of the system of equations ẋ = A(t)x. The system
(1), (2) is said to be uniformly consistent if there exists
ϑ > 0 such that it is consistent on every segment [t0, t0+ϑ],
t0 ∈ R, and the last estimate is uniform, i.e. l does not
depend on t0.

The concept of consistency is generalization of the concept
of complete controllability to systems with incomplete
feedback. If C(t) ≡ I then these properties are equivalent.
The definition of consistency has been given in Popova and
Tonkov (1994a). On the basis of this property results about
local control over Lyapunov exponents of system (3) have
been obtained in Popova and Tonkov (1994b), Popova and
Tonkov (1995).

Consistent systems have following properties.
Proposition 1. If system (1), (2) is consistent on [t0, t0+ϑ],
then system (1) is completely controllable on [t0, t0 + ϑ],
and the system

ẋ = A(t)x, y = C∗(t)x
is completely observable on [t0, t0 + ϑ].

In general, the converse statement is not true.

Let us construct so-called “big system”
q̇ = F (t)q +G(t)v (5)

from system (1), (2), where the (n2 × n2)-matrix F and
the (n2 ×mr)-matrix G are defined as
F (t) = A(t)⊗ I − I ⊗A∗(t), G(t) = B(t)⊗ C(t), (6)



and the symbol ⊗ denotes the direct (Kronecker) product
of matrices.
Proposition 2. System (1), (2) is consistent on [t0, t0 + ϑ]
if and only if system (5) is completely controllable on
[t0, t0 + ϑ].

Now, let us assume that system (1), (2) is stationary.
Consider the system

ẋ = Ax+Bu, (x, u) ∈ Rn ×Rm, (7)
y = C∗x, y ∈ Rk. (8)

One can formulate following criteria of consistency for
stationary systems.
Proposition 3. Suppose rankC = n. Then system (7),
(8) is consistent if and only if system (7) is completely
controllable.
Proposition 4. Suppose rankB = n. Then system (7), (8)
is consistent if and only if the system

ẋ = Ax, y = C∗x (9)
is completely observable.
Proposition 5. System (7), (8) is consistent if and only if

rank [G,FG, . . . , Fn
2−1G] = n2,

where F and G defined by (6).

The propositions 3, 4 are clear. However, if rankB = m <
n and rankC = k < n then these statements are inapplica-
ble. The proposition 5 follows from the proposition 2. But
this criterion is ineffective owing to the big dimensions.
The following necessary condition is more convenient for
application.
Theorem 6. If the minimal polynomial of matrix A has
degree n and the system (7), (8) is consistent then matrices

C∗B,C∗AB, . . . , C∗An−1B (10)
are linearly independent. In general, the converse state-
ment is not true.

3. GLOBAL CONTROL OVER SPECTRUM

Consider system (7), (8), and stationary closed-loop sys-
tem

ẋ = (A+BUC∗)x (11)

We say the spectrum of system (11) instead of the eigen-
value spectrum of the matrix of system (11). We shall say
that the spectrum of system (11) is globally controllable if
for any polynomial p(λ) = λn + γ1λ

n−1 + . . . + γn with
γi ∈ R there exists a real constant control Uγ such that
the characteristic polynomial χ(A+BUγC

∗;λ) is equal to
p(λ). The following statements are clear.
Proposition 7. 1. Suppose rankC = n. Then the spectrum
of system (11) is globally controllable iff system (7) is
completely controllable.
2. Suppose rankB = n. Then the spectrum of system
(11) is globally controllable iff system (9) is completely
observable.
3. If the spectrum of system (11) is globally controllable
then system (7) is completely controllable and system (9)
is completely observable.

E.L. Tonkov has asked a following question. Is consistency
of system (7), (8) equivalent to global controllability of the

spectrum of system (11)? On this question the following
answer has been received (Zaitsev (1999)). If n = 2 then
these properties are equivalent and reduced to one of two
above trivial cases, rankB = n or rankC = n. If n > 2
then neither implication is true.

Supposem < n, k < n.One has a question: what necessary
and (or) sufficient conditions for global controllability of
the spectrum of system (11) exist there? Various condi-
tions which are either necessary or sufficient are known.
For example, the sufficient condition in typical case is the
condition m + k > n (Davison and Wang (1975)), and
the necessary condition in typical case is the condition
mk ≥ n. In general, there are no conditions which would
be simultaneously necessary and sufficient in contrast to
the system with complete feedback. The following theorem
shows that in a special case such conditions exist.
Theorem 8. Suppose the matrices of system (7), (8) are

A =

∥∥∥∥∥∥∥∥∥
a11 a12 0 . . . 0
a21 a22 a23 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
an−1,1 an−1,2 . . . . . . an−1,n

an1 an2 . . . . . . ann

∥∥∥∥∥∥∥∥∥ ,

B =

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0
...

...
0 . . . 0
bp1 . . . bpm
...

...
bn1 . . . bnm

∥∥∥∥∥∥∥∥∥∥∥∥∥
, C =

∥∥∥∥∥∥∥∥∥∥∥∥∥

c11 . . . c1k
...

...
cp1 . . . cpk
0 . . . 0
...

...
0 . . . 0

∥∥∥∥∥∥∥∥∥∥∥∥∥
,

where ai,i+1 6= 0 for all i = 1, n− 1; p ∈ {1, . . . , n}. Then
following statements are equivalent.
1. System (7), (8) is consistent.
2. The spectrum of system (11) is globally controllable.
3. Matrices (10) are linearly independent.
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