УДК 517.977

В. А. Зайцев

РАВНОМЕРНАЯ ПОЛНАЯ УПРАВЛЯЕМОСТЬ И ЛЯПУНОВСКАЯ ПРИВОДИМОСТЬ ДВУМЕРНОГО КВАЗИДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ¹

Доказано, что двумерная линейная управляемая система с ограниченными измеримыми коэффициентами, эквивалентная квазидифференциальному уравнению, равномерно вполне управляема и обладает свойством ляпуновской приводимости к произвольной заданной системе, эквивалентной обыкновенному дифференциальному уравнению.

Ключевые слова: управляемость, ляпуновская приводимость, квазидифференциальное уравнение.

§1. Обозначения

Рассмотрим линейную управляемую систему

$$\dot{x} = A(t)x + B(t)u, \quad (t, x, u) \in \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R},$$
 (1)

$$A(t) = \begin{vmatrix} a_{11}(t) & b_1(t) \\ a_{21}(t) & a_{22}(t) \end{vmatrix}, \quad B(t) = \begin{vmatrix} 0 \\ b_2(t) \end{vmatrix}.$$
 (2)

Пусть выполнены следующие условия:

- 1) коэффициенты матриц (2) измеримые функции;
- 2) $a_{21}(t), \ a_{22}(t), \ b_2^{-1}(t), \ t \in \mathbb{R}$ ограниченные функции;
- 3) $a_{11}(t), b_1(t), t \in \mathbb{R}$ интегрально ограничены [1, с. 252], то есть

$$\sup_{t\in\mathbb{R}} \int_{t}^{t+1} \left(|a_{11}(\xi)| + |b_{1}(\xi)| \right) d\xi \leqslant K < \infty;$$

- 4) функция $b_1(t)$ отделена от нуля, то есть существует $\varkappa > 0$ такое, что $|b_1(t)| \geqslant \varkappa > 0$ для почти всех (п.в.) $t \in \mathbb{R}$;
- 5) существует l>0 такое, что $\mathbb R$ разбивается на отрезки (с общими концами) $\Delta_k=[\tau_k,\tau_{k+1}],\ k\in\mathbb Z$ такие, что $|\Delta_k|\geqslant l$ и $b_1(t)$ знакопостоянна для п.в. $t\in\Delta_k$ для каждого k.

 $^{^{1}}$ Работа выполнена при финансовой поддержке РФФИ (грант 06–01–00258).

Условия 1—3 — это естественные условия, в частности, они обеспечивают для матрицы Коши X(t,s), то есть для решения матричной задачи Коши $\dot{X}=A(t)X$, X(s)=I, следующее свойство:

$$\forall \vartheta > 0 \quad \exists c > 0 \quad \forall \tau \in \mathbb{R} \quad \forall t, s \in [\tau, \tau + \vartheta]$$

$$\left(0 < c^{-1} \leqslant |X(t, s)| \leqslant c\right) \& \left(0 < c^{-1} \leqslant \det X(t, s)\right). \tag{3}$$

Условия 4–5 — это нетривиальные условия, которые существенно будут использоваться в дальнейшем. Заметим, в частности, что всякая отделенная от нуля кусочно непрерывная функция будет удовлетворять этим условиям.

Без ограничения общности можно считать, что длины всех отрезков Δ_k не превосходят некоторого числа L>0. Действительно, если $|\Delta_{k_0}|>L$, то разобьем Δ_{k_0} на конечное число промежутков длины $\leqslant L$, если Δ_{k_0} ограничен. Если Δ_{k_0} неограничен, то $\Delta_{k_0}=[\tau_{k_0},+\infty)$ (или $\Delta_{k_0}=(-\infty,\tau_{k_0+1}]$, или $\Delta_{k_0}=(-\infty,+\infty)$); тогда разобьем его на счетное множество отрезков $\Delta_{k_0},\Delta_{k_0+1},\ldots$ (или соответственно $\ldots,\Delta_{k_0-1},\Delta_{k_0},$ или $\ldots,\Delta_{k_0-1},\Delta_{k_0},\Delta_{k_0+1},\ldots$), каждый из которых имеет длину $\leqslant L$. Таким образом, множество концов $\mathcal{T}:=\{\tau_k,k\in\mathbb{Z}\}$ отрезков Δ_k относительно плотно в \mathbb{R} и $l\leqslant\tau_{k+1}-\tau_k\leqslant L$.

Матрица A системы (1) является порождающей матрицей для квазидифференциального уравнения. Определим квазипроизводные функции $z: \mathbb{R} \to \mathbb{R}$ равенствами [2]

$${}^{0}z := z,$$

$${}^{1}z := b_{1}^{-1}(t) \left(\frac{d}{dt} ({}^{0}z) - a_{11}(t) ({}^{0}z) \right),$$

$${}^{2}z := b_{2}^{-1}(t) \left(\frac{d}{dt} ({}^{1}z) - a_{21}(t) ({}^{0}z) - a_{22}(t) ({}^{1}z) \right).$$

Тогда система (1) эквивалентна квазидифференциальному уравнению второго порядка $[3,\,4]$

$$^{2}z = u. (4)$$

Эквивалентность устанавливается равенствами $x_1 = {}^0z$, $x_2 = {}^1z$. Решением уравнения (4) называется всякая функция $z: \mathbb{R} \to \mathbb{R}$, имеющая локально абсолютно непрерывную квазипроизводную 1z и почти всюду в \mathbb{R} удовлетворяющая уравнению (4). Известно [2], что если функции $A(\cdot)$, $b_2(\cdot)u(\cdot)$ локально суммируемые, то решение задачи Коши для уравнения (4) существует и единственно. В нашем случае $A(\cdot)$ будет локально суммируемой, а управление всегда будет выбираться в виде $u(t) = b_2^{-1}(t)v(t)$, где v(t) — измеримая ограниченная функция. Таким образом условия существования и единственности решения будут выполнены.

§2. Равномерная полная управляемость

О п р е д е л е н и е 1. Система (1) называется вполне управляемой на отрезке $T=[\tau,\tau+\vartheta]$, если для любого $x^0\in\mathbb{R}^2$ найдется измеримое и ограниченное на T управление u(t), переводящее систему (1) из состояния $(\tau,x^0)\in\mathbb{R}^1\times\mathbb{R}^2$ в состояние $(\tau+\vartheta,0)\in\mathbb{R}^1\times\mathbb{R}^2$. Система (1) называется равномерно вполне управляемой, если существуют $\vartheta>0$ и M>0 такие, что система (1) вполне управляема на каждом отрезке $[\tau,\tau+\vartheta]$, $\tau\in\mathbb{R}$, причем управление, переводящее систему (1) из состояния (τ,x^0) в состояние $(\tau+\vartheta,0)$, удовлетворяет равномерной оценке $|u(t)|\leqslant M|x^0|$, $t\in[\tau,\tau+\vartheta]$ (M не зависит от x^0 и от τ).

Известно достаточное условие полной управляемости [5, с. 148], когда коэффициенты системы (1) гладкие в окрестности некоторой точки $t_* \in T$: если существует точки $t_* \in T$, такая что при $t=t_*$ ранг матрицы $K(t):=[B(t),A(t)B(t)-\dot{B}(t)]$ равен 2, то система (1) вполне управляема на отрезке T. Однако в нашем случае функции $A(\cdot),B(\cdot)$, вообще говоря, не гладкие. Поэтому это условие нельзя применить, даже если взять $B(t)\equiv \begin{pmatrix} 0\\1 \end{pmatrix}$ (а это можно сделать: достаточно положить

 $u(t)=b_2^{-1}(t)\widetilde{u}(t)$). В этом случае $\dot{B}(t)\equiv\begin{pmatrix}0\\0\end{pmatrix}$. Тогда $K(t)=\begin{pmatrix}0&b_1(t)\\1&a_{22}(t)\end{pmatrix}$. Пусть $b_1(t_*)=1$, $b_1(t)\equiv0$, $t\in T\setminus\{t_*\}$. Тогда $\mathrm{rank}\,K(t_*)=2$, но система (1) не является вполне управляемой на T. Таким образом, полная управляемость системы (1) зависит от функции $b_1(t)$. Покажем, что если выполнено условие знакопостоянства функции $b_1(t)$ для п.в. $t\in T$, то система (1) вполне управляема на T.

Теорема 1. Пусть система (1) удовлетворяет условиям 1-3 и $b_1(t) > 0$ для п.в. $t \in T$ (или $b_1(t) < 0$ для п.в. $t \in T$). Тогда система (1) вполне управляема на T.

Доказательство. Произведем преобразование системы (1):

$$u = S(t)x + m(t)\widetilde{u}, \quad x = \widetilde{x},$$
 (5)

где $S(t)=b_2^{-1}(t)\big(-a_{21}(t),-a_{22}(t)\big), \quad m(t)=b_2^{-1}(t).$ Тогда S(t) и m(t) — измеримые ограниченные функции. Система (1) после преобразования (5) перейдет в систему

$$\dot{\widetilde{x}} = \widetilde{A}(t)\widetilde{x} + \widetilde{B}\widetilde{u}, \quad (t, \widetilde{x}, \widetilde{u}) \in \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R},
\widetilde{A}(t) = \begin{vmatrix} a_{11}(t) & b_1(t) \\ 0 & 0 \end{vmatrix}, \quad \widetilde{B} \equiv \begin{vmatrix} 0 \\ 1 \end{vmatrix}.$$
(6)

Известно (см., например, [6]), что если система (6) вполне управляема на T, то система (1) также вполне управляема на T (обратное тоже верно, если функция $b_1(\cdot)$ ограничена на T). Более того, несложно проверить (используя свойство (3) и ограниченность S(t) и m(t)), что из равномерной вполне управляемости системы (6) следует равномерная вполне управляемость системы (1) (здесь также обратное верно, если $b_1(\cdot)$ ограничена на \mathbb{R}). Докажем, что система (6) вполне управляема на T. Обозначим через $\widetilde{X}(t,s)$ матрицу Коши системы $\dot{\widetilde{x}}=\widetilde{A}(t)\widetilde{x}$. В силу критерия Калмана [7, теорема 2.16] система (6) вполне управляема на отрезке $[\tau,\tau+\vartheta]$ тогда и только тогда, когда матрица $\widetilde{W}(\tau+\vartheta,\tau)$ положительно определена, где

$$\widetilde{W}(t,\tau) = \int_{\tau}^{t} \widetilde{X}(\tau,\xi)\widetilde{B}\widetilde{B}^{*}\widetilde{X}^{*}(\tau,\xi)\,d\xi \tag{7}$$

— матрица Калмана. Это эквивалентно тому, что строки матрицы $\widetilde{X}(\tau,\cdot)\widetilde{B}$ линейно независимы на T, то есть только тривиальная линейная комбинация строк тождественно равна нулю почти всюду на T. Поскольку матрица $\widetilde{A}(t)$ верхняя треугольная, можно выписать $\widetilde{X}(t,s)$ в явном виде.

Обозначим
$$p(t) = \exp\left(\int_{-\tau}^{t} a_{11}(\xi) d\xi\right)$$
. Тогда

$$\widetilde{X}(t,s) = \left\| p(t)p^{-1}(s) \quad p(t) \int_{s}^{t} p^{-1}(\xi)b_{1}(\xi) d\xi \right\|, \quad t, s \in T,$$

$$\widetilde{X}(\tau,s)\widetilde{B} = \left\| p(\tau) \int_{s}^{\tau} p^{-1}(\xi)b_{1}(\xi) d\xi \right\| = \left\| -\int_{\tau}^{s} p^{-1}(\xi)b_{1}(\xi) d\xi \right\|.$$

Обозначим $f(s) = \int_{-\tau}^{s} p^{-1}(\xi)b_1(\xi) d\xi$. Тогда функция f(s) абсолютно непрерывна и $\dot{f}(s) = p^{-1}(s)b_1(s)$ для п.в. $s \in T$. Если $b_1(s) > 0$ для п.в. $s \in T$, то $\dot{f}(s) > 0$ для п.в. $s \in T$, поскольку $p^{-1}(s) > 0$ для всех $s \in T$. Следовательно, f(s) строго монотонно возрастает на T, поэтому функции -f(s) и 1 линейно независимы на T. Аналогично разбирается случай, когда $b_1(s) < 0$ для п.в. $s \in T$. Теорема доказана.

Из доказательства теоремы 1 вытекает, что в условиях теоремы система (1) будет вполне управляемой на любом отрезке $T_1 \subset T$. Таким образом, если система (1) удовлетворяет условиям 1-5, то она будет вполне управляемой на каждом отрезке Δ_k , $k \in \mathbb{Z}$ и на любом подотрезке $T_1 \subset \Delta_k$. Заметим, что в доказательстве теоремы 1 условие 4 отделенности от нуля не использовалось. Оно требуется при доказательстве теоремы о равномерной вполне управляемости системы (1).

Теорема 2. Пусть система (1) удовлетворяет условиям 1-5. Тогда система (1) равномерно вполне управляема.

Докажем предварительно некоторые вспомогательные утверждения.

Лемма 1. Пусть $\beta(t)$, $t \in \mathbb{R}$ — абсолютно непрерывная функция, $\beta(0) = 0$, $u \beta'(t) \geqslant 1$ для п.в. $t \in \mathbb{R}$. Тогда для любого $\vartheta > 0$

$$\int_0^{\vartheta} \beta^2(s) \, ds \cdot \int_0^{\vartheta} 1 \, ds - \left(\int_0^{\vartheta} \beta(s) \, ds \right)^2 \geqslant \frac{\vartheta^4}{12}.$$

Доказательство. Рассмотрим функцию

$$r(t) = \int_0^t \beta^2(s) \, ds \cdot \int_0^t 1 \, ds - \left(\int_0^t \beta(s) \, ds \right)^2, \quad t \geqslant 0.$$

Тогда r(0)=0. Покажем, что $r(\vartheta)\geqslant \frac{\vartheta^4}{12}$ для любого $\vartheta>0$. Из условий леммы следует, что функцию $\beta(t)$ можно представить в виде $\beta(t)=t+\gamma(t)$, где $\gamma(t)$ — абсолютно непрерывная, $\gamma(0)=0$ и $\gamma'(t)\geqslant 0$ для п.в. $t\in\mathbb{R}$. Отсюда следует, что $\gamma(t)\geqslant 0$ при $t\geqslant 0$. Тогда при $t\geqslant 0$ получим

$$r(t) = \int_0^t (s + \gamma(s))^2 ds \cdot \int_0^t 1 ds - \left(\int_0^t (s + \gamma(s)) ds \right)^2 =$$

$$= \int_0^t s^2 ds \cdot \int_0^t 1 ds + 2 \int_0^t s \gamma(s) ds \cdot \int_0^t 1 ds + \int_0^t \gamma^2(s) ds \cdot \int_0^t 1 ds -$$

$$- \left(\left(\int_0^t s ds \right)^2 + 2 \left(\int_0^t s ds \right) \left(\int_0^t \gamma(s) ds \right) + \left(\int_0^t \gamma(s) ds \right)^2 \right).$$

Сгруппируем первое слагаемое с четвертым и обозначим через $r_1(t)$, второе с пятым — $r_2(t)$, третье с шестым — $r_3(t)$. Тогда при $t\geqslant 0$ $r_3(t):=\int\limits_0^t \gamma^2(s)\,ds\cdot\int\limits_0^t 1\,ds-\left(\int\limits_0^t \gamma(s)\,ds\right)^2\geqslant 0$ в силу неравенства Коши—

Буняковского, $r_1(t) := \int_0^t s^2 ds \cdot \int_0^t 1 ds - \left(\int_0^t s ds\right)^2 = \frac{t^4}{12}$. Для завершения доказательства леммы достаточно показать, что при $t \ge 0$

$$r_2(t) := 2\left(\int_0^t s\gamma(s) \, ds \cdot \int_0^t 1 \, ds - \left(\int_0^t s \, ds\right) \left(\int_0^t \gamma(s) \, ds\right)\right) \geqslant 0. \tag{8}$$

Имеем $r_2(0)=0$. Покажем, что $r_2'(t)\geqslant 0$ при $t\geqslant 0$. Тогда неравенство (8) будет доказано. Найдем $r_2'(t)$:

$$r_2'(t) = 2\left(\int_0^t s\gamma(s) \, ds + t \cdot \gamma(t) \cdot t - t \cdot \int_0^t \gamma(s) \, ds - \frac{t^2}{2} \cdot \gamma(t)\right) =$$

$$= t^2 \gamma(t) + 2\left(\int_0^t s\gamma(s) \, ds - t \int_0^t \gamma(s) \, ds\right).$$

Тогда $r_2'(+0)=0$. Далее $r_2''(t)=2t\gamma(t)+t^2\gamma'(t)+2t\gamma(t)-2t\gamma(t)-2\int\limits_0^t\gamma(s)\,ds=t^2\gamma'(t)+2t\gamma(t)-2\int\limits_0^t\gamma(s)\,ds$. Имеем: $t^2\gamma'(t)\geqslant 0$ для п.в. $t\geqslant 0$. Обозначим $r_4(t):=2t\gamma(t)-2\int\limits_0^t\gamma(s)\,ds$. Тогда $r_4(0)=0,\ r_4'(t)=2t\gamma'(t)\geqslant 0$ для п.в. $t\geqslant 0\Longrightarrow r_4(t)\geqslant 0$ при $t\geqslant 0\Longrightarrow r_2''(t)\geqslant 0$ для п.в. $t\geqslant 0\Longrightarrow r_2'(t)\geqslant 0$ для всех $t\geqslant 0$. Лемма доказана.

Лемма 2. Пусть $\beta(t)$, $t \in \mathbb{R}$ — абсолютно непрерывная функция, $\beta(0) = 0$, $u \beta'(t) \geqslant \varkappa_1 > 0$ для п.в. $t \in \mathbb{R}$. Тогда для любого $\vartheta > 0$

$$\int_0^{\vartheta} \beta^2(s) \, ds \cdot \int_0^{\vartheta} 1 \, ds - \left(\int_0^{\vartheta} \beta(s) \, ds \right)^2 \geqslant \varkappa_1^2 \cdot \frac{\vartheta^4}{12}.$$

Для доказательства достаточно применить лемму 1 к функции $\frac{\beta(t)}{\varkappa_1}$. \square

Лемма 3. Пусть $\beta(t)$, $t \in [\tau, \tau + \vartheta_1]$ — абсолютно непрерывная функция, $\beta(\tau) = 0$ и для п.в. $t \in [\tau, \tau + \vartheta_1]$ функция $\beta'(t)$ знакопостоянна и отделена от нуля, то есть $|\beta'(t)| \ge \varkappa_1 > 0$. Тогда

$$\int_{\tau}^{\tau+\vartheta_1} \beta^2(s) \, ds \cdot \int_{\tau}^{\tau+\vartheta_1} 1 \, ds - \left(\int_{\tau}^{\tau+\vartheta_1} \beta(s) \, ds \right)^2 \geqslant \varkappa_1^2 \cdot \frac{\vartheta_1^4}{12}. \tag{9}$$

Доказательство. Если $\beta'(t)\geqslant \varkappa_1>0$ для п.в. $t\in [\tau,\tau+\vartheta_1],$ то утверждение очевидно вытекает из леммы 2 после замены переменной $t\to t-\tau$. Если $\beta'(t)\leqslant -\varkappa_1<0$ для п.в. $t\in [\tau,\tau+\vartheta_1],$ то $-\beta'(t)\geqslant \varkappa_1>0$ для п.в. $t\in [\tau,\tau+\vartheta_1].$ Применим первую (уже доказанную) часть леммы 3 к функции $-\beta(t),$ неравенство (9) при этом сохраняется.

Дока зательство теоремы 2. Перейдем от системы (1) к системе (6). Докажем, что она является равномерно вполне управляемой; согласно замечанию в доказательстве теоремы 1 отсюда будет следовать равномерная вполне управляемость системы (1). В силу критерия Калмана система (6) равномерно вполне управляема тогда и только тогда, когда существует число $\vartheta > 0$ такое, что для всех $\tau \in \mathbb{R}$ выполняются неравенства $\delta_2(\vartheta)I \geqslant \widetilde{W}(\tau + \vartheta, \tau) \geqslant \delta_1(\vartheta)I > 0$, понимаемые в смысле квадратичных форм, где числа δ_1, δ_2 не зависят от τ , а зависят только от ϑ . Неравенство $\delta_2(\vartheta)I \geqslant \widetilde{W}(\tau + \vartheta, \tau)$ очевидно в силу свойства (3). Докажем неравенство $\widetilde{W}(\tau + \vartheta, \tau) \geqslant \delta_1(\vartheta)I > 0$. Выберем в качестве ϑ число l > 0, где l из условия 5. Положим $\vartheta_1 = \vartheta/2 > 0$. Пусть дано любое число $\tau \in \mathbb{R}$. Рассмотрим два отрезка $[\tau, \tau + \vartheta_1]$ и $[\tau + \vartheta_1, \tau + \vartheta]$. Поскольку длина каждого отрезка $\Delta_k = [\tau_k, \tau_{k+1}]$ больше или равна l, то какой-либо из

этих двух отрезков лежит в Δ_k . Пусть, к примеру, $[\tau, \tau + \vartheta_1] \subset [\tau_k, \tau_{k+1}]$. Тогда для п.в. $t \in [\tau, \tau + \vartheta_1]$ функция $b_1(t)$ знакопостоянна и отделена от нуля. По свойствам матрицы Калмана $\widetilde{W}(\tau + \vartheta, \tau) \geqslant \widetilde{W}(\tau + \vartheta_1, \tau)$. Покажем, что

$$\widetilde{W}(\tau + \vartheta_1, \tau) \geqslant \delta_1(\vartheta)I > 0,$$
 (10)

где δ_1 зависит только от длины отрезка $\vartheta/2$ и не зависит от концов отрезка. Тем самым теорема будет доказана. Имеем

$$\widetilde{W}(\tau + \vartheta_1, \tau) = \left\| \begin{array}{ccc} \tau + \vartheta_1 \\ \int \int f^2(s) \, ds & -\int \int f(s) \, ds \\ \tau \\ -\int \int f(s) \, ds & \int \tau \\ \tau + \vartheta_1 \\ -\int \tau f(s) \, ds & \int \tau \\ \tau \end{array} \right\|,$$

где $f(s)=\int\limits_{\tau}^{s}p^{-1}(\xi)b_{1}(\xi)\,d\xi,\ p(t)=\exp\left(\int\limits_{\tau}^{t}a_{11}(\xi)\,d\xi\right).$ Отметим, что в силу интегральной ограниченности функции $a_{11}(s)$ существует d>0 такое, что $\forall\,\tau\in\mathbb{R}\ \forall\,t\in[\tau,\tau+\vartheta_{1}]\ p^{-1}(t)\geqslant d>0.$ Пусть $\lambda_{2}(\tau)\geqslant\lambda_{1}(\tau)>0$ — собственные числа матрицы $\widetilde{W}(\tau+\vartheta_{1},\tau).$ Тогда $\lambda_{1}(\tau)\lambda_{2}(\tau)=\det\widetilde{W}(\tau+\vartheta_{1},\tau).$ Для доказательства неравенства (10) достаточно показать, что наименьшее собственное значение $\lambda_{1}(\tau)$ отделено от нуля числом $\delta_{1}(\vartheta)$, не зависящим от $\tau.$ Поскольку $\delta_{2}(\vartheta)I\geqslant\widetilde{W}(\tau+\vartheta,\tau)\geqslant\widetilde{W}(\tau+\vartheta_{1},\tau),$ то $\delta_{2}(\vartheta)\geqslant\lambda_{2}(\tau),$ поэтому достаточно показать, что

$$\det \widetilde{W}(\tau + \vartheta_1, \tau) := \int_{\tau}^{\tau + \vartheta_1} f^2(s) \, ds \cdot \int_{\tau}^{\tau + \vartheta_1} 1 \, ds - \left(\int_{\tau}^{\tau + \vartheta_1} f(s) \, ds \right)^2$$

отделен от нуля. А это вытекает из леммы 3, примененной к функции $\beta(t):=f(t)$. Действительно, функция f(t) абсолютно непрерывна, $f(\tau)=0,\ f'(t)=p^{-1}(t)b_1(t)$ и функции $p^{-1}(t),\ b_1(t)$ знакопостоянны и отделены от нуля для п.в. $t\in [\tau,\tau+\vartheta_1]$. Следовательно, f удовлетворяет условиям леммы 3 и $\det \widetilde{W}(\tau+\vartheta_1,\tau)$ отделен от нуля константой, не зависящей от τ . Теорема доказана.

З а м е ч а н и е 1. Условие отделенности от нуля функции $b_1(t)$ существенно для равномерной вполне управляемости. Рассмотрим пример: пусть в системе (1), (2) $a_{11}=a_{21}=a_{22}=0,\ b_2=1,\ b_1(t)=1,\ t<1;$ $b_1(t)=1/[t],\ t\geqslant 1.$ Поскольку для всех $t\in\mathbb{R}$ $b_1(t)>0$, система является вполне управляемой на любом отрезке. Однако несложно показать, что она не является равномерно вполне управляемой, поскольку ни при каком ϑ нет равномерной относительно τ отделенности от нуля наименьшего собственного значения матрицы Калмана $W(\tau+\vartheta,\tau)$.

З а м е ч а н и е 2. Рассмотрим линейную систему вида (1), (2) n-го порядка. Матрицы (2) будут иметь следующий вид: матрица B(t) состоит из одного столбца, все элементы которого равны нулю, за исключением последнего $b_n(t)$, такого что функция $b_n^{-1}(t)$ ограничена; матрица A(t) есть сумма нижней треугольной матрицы и «наддиагонали» $\{b_1(t),\ldots,b_{n-1}(t)\}$, элементы выше наддиагонали равны нулю. Тогда такая система эквивалентна квазидифференциальному уравнению n-го порядка, аналогичного уравнению (4) (см. [3, 4]). Предположим, что для элементов наддиагонали $b_i(t)$ выполнены условия 3–5. По аналогии с двумерным случаем можно выдвинуть гипотезу о том, что всякая такая система является равномерно вполне управляемой (однако доказательство этого утверждения автору неизвестно). В гладком случае это утверждение очевидно следует из теоремы Н. Н. Красовского.

З а м е ч а н и е 3. На самом деле теорема 2 справедлива, если вместо условий 4–5 выполнено более слабое условие: существует относительно плотное множество $\mathcal{T} = \{\tau_k, k \in \mathbb{Z}\} \subset \mathbb{R}$ и существует число l > 0 такое, что на каждом отрезке $\Delta_k = [\tau_k, \tau_{k+1}]$ существует отрезок $T_k \subset \Delta_k$, длина которого $\geqslant l$, такой что $b_1(t)$ знакопостоянна и отделена от нуля для n.s. $t \in T_k$.

§3. Ляпуновская приводимость квазидифференциального уравнения к обыкновенному дифференциальному уравнению

Пусть управление в системе (1) строится в виде u = U(t)x, где U(t), $t \in \mathbb{R}$ — измеримая ограниченная 1×2 -матричная функция. Тогда система (1) перейдет в однородную систему

$$\dot{x} = (A(t) + B(t)U(t))x, \quad x \in \mathbb{R}^2.$$
(11)

Определение 2. Система (11) *обладает свойством глобальной ляпуновской приводимости*, если для любой системы

$$\dot{y} = C(t)y, \quad y \in \mathbb{R}^2$$
 (12)

с измеримой интегрально ограниченной матрицей $C(\cdot)$ существует измеримое ограниченное управление $U(t),\ t\in\mathbb{R}$ такое, что система (11) с этим управлением асимптотически эквивалентна системе (12), то есть система (11) приводима к системе (12) некоторым ляпуновским преобразованием x=L(t)y. Ляпуновским называется такое преобразование, что L(t) абсолютно непрерывна, $L(t),\ L^{-1}(t)$ ограничены и $\dot{L}(t)$ интегрально ограничена на \mathbb{R} [1, с. 247].

Если матрица C(t) является порождающей для некоторого обыкновенного дифференциального уравнения (ОДУ) $\ddot{\xi} + \gamma_1(t)\dot{\xi} + \gamma_2(t)\xi = 0$, то есть имеет вид $C(t) = \begin{pmatrix} 0 & 1 \\ -\gamma_2(t) & -\gamma_1(t) \end{pmatrix}$, то говорят о ляпуновской приводимости системы (11) к ОДУ.

Теорема 3. Пусть система (1) удовлетворяет условиям 1-5. Тогда для любой измеримой ограниченной 1×2 -матричной функции $\widehat{V}(\cdot)$ найдется измеримая ограниченная 1×2 -матричная функция $U(\cdot)$ и лялуновское преобразование $\widehat{x}=L(t)x$, приводящее систему (11) к системе

$$\dot{\widehat{x}} = \left(\begin{vmatrix} 0 & \widehat{b}_1(t) \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 \\ 1 \end{vmatrix} \cdot \widehat{V}(t) \right) \widehat{x}, \tag{13}$$

 $\epsilon \partial e \ \widehat{b}_1(t), \ t \in \mathbb{R} \ - \ \phi y$ нкция, удовлетворяющая условиям 3-5.

Доказательство. Будем строить управление $U(t),\ t\in\mathbb{R}$ в виде $U(t)=b_2^{-1}(t)\Big(\big[-a_{21}(t),-a_{22}(t)\big]+U_1(t)\Big),$ где $U_1(\cdot)$ — измеримая ограниченная функция. Тогда функция $U(\cdot)$ также измеримая и ограниченная, и система (11) с этим управлением имеет вид

$$\dot{x} = \left(\begin{vmatrix} a_{11}(t) & b_1(t) \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 \\ 1 \end{vmatrix} \cdot U_1(t) \right) x. \tag{14}$$

Введем функцию $\delta(t,s) = \exp\left(\int\limits_s^t a_{11}(\xi)\,d\xi\right)$ и рассмотрим ее на относительно плотном множестве \mathcal{T} . В силу интегральной ограниченности функции $a_{11}(\cdot)$ на \mathbb{R} существует такое c>0, что $\forall\,k\in\mathbb{Z}$ $\forall\,t,s\in[\tau_k,\tau_{k+1}]$ $0< c^{-1}\leqslant\delta(t,s)\leqslant c$. На каждом из отрезков $\Delta_k=[\tau_k,\tau_{k+1}]$ рассмотрим функцию $f_k(t)=1-\int\limits_{\tau_k}\delta(\tau_k,s)b_1(s)\mu_k(s)\,ds$, где $\mu_k(s)$, $s\in\Delta_k$ выбирается так, чтобы выполнялись следующие условия: $\mu_k(\tau_k)=\mu_k(\tau_{k+1})=0$; $\mu_k(\cdot)$ гладкая на Δ_k ; $\mu_k(\cdot)$ и $\dot{\mu}_k(\cdot)$ ограничены на Δ_k равномерно для всех $k\in\mathbb{Z}$; $f_k(\tau_{k+1})=\delta(\tau_k,\tau_{k+1})$; $f_k(t),\ t\in\Delta_k$ отделена от нуля равномерно для всех $k\in\mathbb{Z}$. Покажем, что функцию $\mu_k(t)$ можно так выбрать. На отрезке Δ_k функция $b_1(t)$ знакопостоянна и отделена от нуля для п.в. t. Положим $\mu_k(t):=q_k\cdot\sin\frac{(t-\tau_k)\pi}{(\tau_{k+1}-\tau_k)}$, где q_k выберем так, чтобы выполнялось равенство $f_k(\tau_{k+1})=\delta(\tau_k,\tau_{k+1})$, то есть $q_k:=\left(1-\delta(\tau_k,\tau_{k+1})\right)\Big/{\left(\int\limits_{\tau_k}^{\tau_{k+1}}\delta(\tau_k,s)b_1(s)\sin\frac{(s-\tau_k)\pi}{(\tau_{k+1}-\tau_k)}ds\right)}$. В силу того что функция $\delta(\tau_k,s)b_1(s)$ для п.в. $s\in\Delta_k$ знакопостоянна и отделена от

нуля равномерно относительно $k\in\mathbb{Z}$ и длины отрезков Δ_k отделены от нуля, интеграл в знаменателе будет отделен от нуля, поэтому $\exists \, c_1>0$ $\forall \, k\in\mathbb{Z} \ |q_k|\leqslant c_1.$ Если $\delta(\tau_k,\tau_{k+1})=1,$ то $\mu_k(t)\equiv 0.$ Если $\delta(\tau_k,\tau_{k+1})>1$ (< 1), то $q_k<0$ (> 0). В обоих случаях под интегралом стоит знакопостоянная п.в. функция, и $f_k(t)$ будет строго монотонно возрастать (или убывать) на отрезке $[\tau_k,\tau_{k+1}]$ от 1 до $\delta(\tau_k,\tau_{k+1}).$ Следовательно, $f_k(t)$ будет отделено от нуля для $t\in\Delta_k$ равномерно для всех $k\in\mathbb{Z}.$ Далее, равенства $\mu_k(\tau_k)=\mu_k(\tau_{k+1})=0$ будут выполнены, и функции $\mu_k(t)$ и $\dot{\mu}_k(t)=\frac{\pi q_k}{(\tau_{k+1}-\tau_k)}\cos\frac{(t-\tau_k)\pi}{(\tau_{k+1}-\tau_k)}$ ограничены на Δ_k равномерно для всех $k\in\mathbb{Z}$ в силу неравенств $|q_k|\leqslant c_1,\ |\Delta_k|\geqslant l.$

Введем функцию $p_k(t) = \delta(\tau_k, t) / f_k(t)$, $t \in \Delta_k$. Тогда $p_k(\tau_k) = 1$, $p_k(\tau_{k+1}) = 1$. Построим функции $\mu(t) \equiv \mu_k(t)$, $p(t) \equiv p_k(t)$ при $t \in \Delta_k$. Тогда функция p(t), $t \in \mathbb{R}$ ограниченная, отделена от нуля, абсолютно непрерывная и для п.в. t удовлетворяет дифференциальному уравнению $\dot{p}(t) = -a_{11}(t)p(t) + p^2(t)b_1(t)\mu(t)$. Отсюда, в частности, следует, что функция $\dot{p}(t)$ интегрально ограничена. Построим матрицу $L(t) = \begin{pmatrix} p(t) & 0 \\ p(t)\mu(t) & 1 \end{pmatrix}$. Тогда L(t) — это матрица Ляпунова, $L(\tau_k) = I$ для всех $k \in \mathbb{Z}$, и для п.в. $t \in \mathbb{R}$ выполнено равенство

$$\dot{L}(t) = \begin{vmatrix} 0 & p(t)b_1(t) \\ \dot{\mu}(t) & p(t)b_1(t)\mu(t) \end{vmatrix} \cdot L(t) - L(t) \cdot \begin{vmatrix} a_{11}(t) & b_1(t) \\ 0 & 0 \end{vmatrix}.$$

Произведем преобразование $\hat{x} = L(t)x$ системы (14). Тогда система (14) перейдет в систему

$$\dot{\widehat{x}} = \left(\begin{vmatrix} 0 & p(t)b_1(t) \\ \dot{\mu}(t) & p(t)b_1(t)\mu(t) \end{vmatrix} + L(t) \begin{vmatrix} 0 \\ 1 \end{vmatrix} \cdot U_1(t)L^{-1}(t) \right) \widehat{x}.$$
 (15)

Обозначим $\widehat{b}_1(t):=p(t)b_1(t),\ U_2(t):=U_1(t)L^{-1}(t).$ Далее, $L(t)\begin{pmatrix}0\\1\end{pmatrix}=$

 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Построим $U_2(\cdot)$ в виде $U_2(t) = \begin{pmatrix} -\dot{\mu}(t), -p(t)b_1(t)\mu(t) \end{pmatrix} + \hat{V}(t)$, тогда функция $U_2(\cdot)$ измеримая и ограниченная. Следовательно, $U_1(t) = U_2(t)L(t) = \begin{pmatrix} -\dot{\mu}(t)p(t)-p^2(t)b_1(t)\mu^2(t), -p(t)b_1(t)\mu(t) \end{pmatrix} + \hat{V}(t)L(t)$ будет измеримая и ограниченная, и система (15) с таким управлением $U_1(\cdot)$ будет совпадать с системой (13). Очевидно, функция $\hat{b}_1(t)$ удовлетворяет условиям 3–5. Управление $U(\cdot)$ имеет вид: $U(t) = b_2^{-1}(t) \left(\left[-a_{21}(t), -a_{22}(t) \right] + \left[-\dot{\mu}(t)p(t) - p^2(t)b_1(t)\mu^2(t), -p(t)b_1(t)\mu(t) \right] + \hat{V}(t)L(t) \right)$. Система (11) с таким управлением и система (13) асимптотически эквивалентны. Теорема доказана.

Предположим теперь, что функция $\hat{b}_1(t)$ в системе (13) абсолютно непрерывна и ограничена на \mathbb{R} и ее производная ограничена для п.в. $t \in \mathbb{R}$. В частности, это выполнено, если $b_1(t)$ обладает этими свойствами. Функция $\hat{b}_1^{-1}(t)$ также будет абсолютно непрерывна, отделена от нуля и ограничена. Матрица $L_1(t) = \begin{pmatrix} 1 & 0 \\ 0 & \hat{b}_1(t) \end{pmatrix}$ будет матрицей Ляпунова. Произведем преобразование $z = L_1(t)\hat{x}$ системы (13), тогда она перейдет в систему

$$\dot{z} = \left(\begin{vmatrix} 0 & 1 \\ 0 & -\hat{b}_1(t)/\hat{b}_1(t) \end{vmatrix} + \begin{vmatrix} 0 \\ \hat{b}_1(t) \end{vmatrix} \cdot \hat{V}(t)L_1^{-1}(t) \right) z. \tag{16}$$

Выберем управление $\hat{V}(t) = \hat{b}_1^{-1}(t) \Big(\big[0, -\dot{\hat{b}}_1(t) \big] + VL_1(t) \Big)$. Тогда система (16) будет иметь вид

$$\dot{z} = \left(\begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 \\ 1 \end{vmatrix} V \right) z. \tag{17}$$

Если управление V измеримое и ограниченное, то $\widehat{V}(\cdot)$ также измеримое и ограниченное. Система (17) с управлением V и система (13) с соответствующим управлением $\widehat{V}(\cdot)$ будут асимптотически эквивалентны. Систему (17) с помощью подходящего выбора управления V можно сделать эквивалентной любому наперед заданному ОДУ. Таким образом, справедлива теорема о ляпуновской приводимости КДУ к ОДУ.

Теорема 4. Пусть система (1) удовлетворяет условиям 1-5, функция $b_1(\cdot)$ абсолютно непрерывна, ограничена и $\dot{b}_1(\cdot)$ ограничена п.в. Тогда система (11) обладает свойством ляпуновской приводимости к произвольной системе, эквивалентной ОДУ.

В работе [8] была доказана теорема о глобальной ляпуновской приводимости системы (17). Таким образом, справедлива

Теорема 5. В условиях теоремы 4 система (11) обладает свойством глобальной ляпуновской приводимости.

З а м е ч а н и е 4. Теорема 5 пересекается с результатом работы [9]. В этой работе доказано, что если двумерная система (1) (где $u \in \mathbb{R}^m$, $m \in \mathbb{N}$ — любое) с произвольной ограниченной кусочно непрерывной матрицей $A(\cdot)$ и ограниченной равномерно непрерывной матрицей $B(\cdot)$ равномерно вполне управляема, то система (11) обладает свойством глобальной ляпуновской приводимости (в работе [9] это свойство названо свойством глобальной управляемости полной совокупности ляпуновских инвариантов системы (11)). В теореме 2 было показано, что система (1), (2) в

условиях 1–5 равномерно вполне управляема. Матрицу B(t) без ограничения общности можно считать постоянной (равной \tilde{B}), то есть удовлетворяющей условиям работы [9]. Отличие теоремы 5 от теоремы работы [9] заключается в условиях на коэффициенты $a_{11}(\cdot), a_{21}(\cdot), a_{22}(\cdot)$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Былов Б. Ф., Виноград Р. Э., Гробман Д. М., Немыцкий В. В. Теория показателей Ляпунова. М.: Наука, 1966. 576 с.
- 2. Дерр В. Я. Неосцилляция решений линейного квазидифференциального уравнения // Изв. Ин-та матем. и информ. Уд Γ У. Ижевск, 1999. Вып. 1(16). С. 3–105.
- 3. Тонков Е. Л. Равномерная достижимость и ляпуновская приводимость билинейной управляемой системы // Труды Ин-та математики и механики УрО РАН. Екатеринбург, 2000. Т. 6, № 1. С. 209–238.
- 4. Зайцев В.А. Модальное управление линейным квазидифференциальным уравнением // Вестн. Удм. ун-та. Сер. Математика. 2004. № 1. С. 3—20.
- 5. Красовский Н. Н. Теория управления движением. М.: Наука, 1968. 476 с.
- 6. Тонков Е. Л. Управляемость линейной нестационарной системы // Дифференц. уравнения. 1975. Т. 11, № 7. С. 1206–1216.
- 7. Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М.: УРСС, 2004. 400 с.
- 8. Зайцев В.А. Глобальная ляпуновская приводимость двумерных управляемых систем с кусочно-постоянными коэффициентами // Вестн. Удм. ун-та. Сер. Математика. 2002. № 1. С. 3–12.
- 9. Макаров Е. К., Попова С. Н. О глобальной управляемости полной совокупности ляпуновских инвариантов двумерных линейных систем // Дифференц. уравнения. 1999. Т. 35, № 1. С. 97–106.

Поступила в редакцию 01.11.06

V. A. Zaytsev

Uniform complete controllability and Lyapunov reducibility of a two-dimensional quasi-differential equation

It is proved, that a two-dimensional linear control system with the bounded measurable coefficients equivalent to the quasi-differential equation is uniformly comletely controllable and Lyapunov reducible to any fixed system equivalent to ordinary differential equation.

Зайцев Василий Александрович Удмуртский государственный университет 426034, Россия, г. Ижевск, ул. Университетская, 1 (корп. 4) E-mail: verba@udm.ru