УДК 517.977

© **B. A. Зайцев** verba@udm.ru

СТАЦИОНАРНАЯ СТАБИЛИЗАЦИЯ ЛИНЕЙНЫХ УПРАВЛЯЕМЫХ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С НЕПОЛНОЙ ОБРАТНОЙ СВЯЗЬЮ¹

Ключевые слова: линейная управляемая система, стабилизация, обратная связь.

Abstract. The sufficient conditions of stationary stabilization for linear stationary control systems of differential equations are obtained in the case if the matrix of the system is similar to some Frobenius matrix.

Рассматривается линейная стационарная управляемая система с наблюдателем

$$\dot{x} = Ax + Bu, \quad y = C^*x, \quad (x, u, y) \in \mathbb{R}^{n+m+k}.$$

Управление строится по принципу неполной обратной связи в виде u=Uy , соответствующая замкнутая система имеет вид

$$\dot{x} = (A + BUC^*)x, \qquad x \in \mathbb{R}^n. \tag{1}$$

Требуется построить постоянную матрицу U так, чтобы система (1) была асимптотически устойчива, то есть чтобы все корни λ_i характеристического многочлена

$$\chi(A + BUC^*; \lambda) = \lambda^n + \gamma_1 \lambda^{n-1} + \dots + \gamma_n$$
 (2)

 $^{^{1}}$ Работа выполнена при поддержке гранта РФФИ (№06–01–00258).

матрицы $A + BUC^*$ имели отрицательную вещественную часть. Пусть матрицы системы (1) имеют следующий вид

$$A = \begin{vmatrix} a_{11} & \beta_1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \beta_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n-1,1} & a_{n-1,2} & \dots & \dots & \beta_{n-1} \\ a_{n1} & a_{n2} & \dots & \dots & a_{nn} \end{vmatrix},$$

где $\beta_i>0,$ и для некоторого $p\in\{1,\ldots,n\}$ первые (p-1) строк матрицы B и последние (n-p) строк матрицы C нулевые. Пусть

$$J_1:=egin{bmatrix} 0&1&0&\dots&0\\0&0&1&\dots&0\\\dots&\dots&\dots&\dots\\0&0&0&\dots&1\\0&0&0&\dots&0 \end{pmatrix}$$
 — это первый единичный косой ряд. По-

ложим $J_p:=J_1^p$. Тогда $J_0=I$ и $J_p=0$ при $p\geqslant n$. Построим по характеристическому многочлену $\chi(A;\lambda)=\lambda^n+\alpha_1\lambda^{n-1}+\ldots+\alpha_n$ матрицы A матрицу $G:=J_0^*+\alpha_1J_1^*+\ldots+\alpha_{n-1}J_{n-1}^*$. Тогда

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ \alpha_1 & 1 & 0 & 0 & \dots & 0 & 0 \\ \alpha_2 & \alpha_1 & 1 & 0 & \dots & 0 & 0 \\ \alpha_3 & \alpha_2 & \alpha_1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \alpha_{n-1} & \alpha_{n-2} & \dots & \dots & \alpha_1 & 1 \end{pmatrix}.$$

Построим по матрице A $(n \times n)$ -матрицы

$$S_1 := \left\| \begin{array}{ccccc} 1 & 0 & 0 & \dots & 0 \\ a_{11} & \beta_1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \beta_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n-1,1} & a_{n-1,2} & \dots & \dots & \beta_{n-1} \end{array} \right\|,$$

$$S_{2} = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & a_{11} & \beta_{1} & \dots & 0 \\ \dots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n-2,1} & a_{n-2,2} & \dots & \beta_{n-2} \end{vmatrix}, \dots,$$

$$S_{n-1} = \begin{vmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & a_{11} & \beta_{1} \end{vmatrix}.$$

Здесь матрица S_1 получена вычеркиванием из матрицы A последней строки и приписыванием сверху строки $(1,0,\ldots,0)$, и для каждого $i=2,\ldots,n-1$ матрица S_i получена вычеркиванием из матрицы S_{i-1} последней строки и последнего столбца и приписыванием сверху строки $(1,0,\ldots,0)$ и слева столбца $\operatorname{col}(1,0,\ldots,0)$.

Построим теперь матрицу $S = S_{n-1} \cdot \ldots \cdot S_1$. Заметим, что все матрицы S_i и S нижние треугольные и невырожденные.

 ${\bf T}$ е о р е м а 1. Матрица S приводит матрицу A к матрице Фробениуса, то есть

$$SAS^{-1} = \begin{vmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -\alpha_n & -\alpha_{n-1} & -\alpha_{n-2} & \dots & -\alpha_1 \end{vmatrix}.$$

Из этой теоремы и теорем 4.1, 4.2 работы [1] вытекает следующее достаточное условие стационарной стабилизируемости системы (1).

Теорема 2. Если матрицы

$$C^*S^{-1}J_0GSB, C^*S^{-1}J_1GSB, \dots, C^*S^{-1}J_{n-1}GSB$$

линейно независимы, то система (1) стационарно стабилизируема, и матрица U, обеспечивающая для наперед заданных чисел γ_i равенство (2), находится из системы линейных уравнений

$$\operatorname{Sp} C^* S^{-1} J_0 GSBU = \alpha_1 - \gamma_1,$$

$$\operatorname{Sp} C^* S^{-1} J_1 GSBU = \alpha_2 - \gamma_2,$$

$$\ldots \ldots$$

$$\operatorname{Sp} C^* S^{-1} J_{n-1} GSBU = \alpha_n - \gamma_n,$$

* * *

1. Зайцев В. А. Согласованность и управление показателями Ляпунова // Изв. Ин-та математики и информатики УдГУ. 1999. Вып. 2 (17). С. 3–40.