Russian National Committee on Automatic Control Belarus National Association on Automatic Control Chelyabinsk State University

NONSMOOTH AND DISCONTINUOUS PROBLEMS OF CONTROL AND OPTIMIZATION

Chelyabinsk, Russia, June, 17-20, 1998

Proceedings of the International Workshop

Chelyabinsk 1998 [2] Krasovskii N. N. and Subbotin A. I. Game-Theoretical Control Problems. Berlin etc.: Springer. 1987. 515 p.

On Controllability of Ergodic System Lyapunov Exponents

Zaitsev V. A.

We consider a topological dynamical system (Ω, f^t) . Ω is a metric complete separable space, f^t is a flow on Ω that is one-parameter group of transformation which continuous with respect to $(t,\omega) \in \mathbb{R} \times \Omega$. We will denote by $\gamma(\omega)$ the trajectory of motion $t \to f^t \omega$, $\overline{\gamma}(\omega)$ is the completion of $\gamma(\omega)$ by metric of the space Ω . The set $E \subset \Omega$ is said to be invariant if $f^t E \subset E$ for all $t \in \mathbb{R}$ and E is said to be minimal if it is invariant, compact and $\overline{\gamma}(\omega) = E$ for any $\omega \in E$.

To each pair (\mathbb{A}, ω) , where $\mathbb{A} \doteq (A_0, A_1, \ldots, A_r) : \Omega \rightarrow M_{n,m}$, m = n(r+1) and vector $u = (u_1, \ldots, u_r)$ we associate the equation

$$\dot{x} = A_0(f^t\omega)x + u_1A_1(f^t\omega)x + \dots + u_rA_r(f^t\omega)x, \quad x \in \mathbb{R}^n.$$
(1)

We suppose that A satisfies the following condition: for each fixed $\omega_0 \in \Omega$, the function $t \to |\mathbb{A}(f^t\omega_0)|$ is Lebesgue measurable, bounded on \mathbb{R} and for any $\varepsilon > 0$ and N > 0 there exists

 $\delta > 0$ such that $\rho(\omega, \omega_0) < \delta$ imply $\max_{|t| \leq N} \int_t^{t+1} |\mathbb{A}(f^s \omega) - \mathbb{A}(f^s \omega_0)| ds < \varepsilon$, where ρ is the metric in Ω .

We will identify (1) and (\mathbb{A}, ω) .

Let $U \subset \mathbb{R}^r$ be convex, compact and $0 \in U$. We will call the set $U \doteq \{u : \mathbb{R} \to U\}$, where u is Lebesgue measurable, the set of permissible controls. Let the equation (\mathbb{A}, ω) be fixed. To each permissible control u = u(t) we associate Cauchy function $X_u(t, s, \omega)$ of the equation (1).

Let us consider the matrix equation

$$\dot{X} = A_0(f^t\omega)X + u_1A_1(f^t\omega)X + \dots + u_rA_r(f^t\omega)X, (2)$$
$$X \in M_n,$$

which is corresponding to the equation (1). For any $\vartheta > 0$ we will construct the attainable set $\mathfrak{D}_{\vartheta}(\omega) = \{X \in M_n : X = X_{\boldsymbol{u}}(\vartheta, 0, \omega), \ \boldsymbol{u}(\cdot) \in \mathcal{U}\}$ of the equation (2).

Definition 1. The equation (1) is called

a) local attainable if there exists $\vartheta > 0$ and $\varepsilon > 0$ such that

$$\mathcal{B}_{\varepsilon}(I)X_0(\vartheta,0,\omega)\subset\mathfrak{D}_{\vartheta}(\omega),$$
 (3)

where $\mathcal{B}_{\varepsilon}(I) = \{H \in M_n : |H - I| \leq \varepsilon\}$, I is identity matrix.

b) uniformly local attainable if there exists $\vartheta > 0$ and $\varepsilon > 0$ such that for all $\omega_0 \in \overline{\gamma}(\omega)$ the inclusion (3) holds;

Theorem 1. Let $\overline{\gamma}(\omega_0)$ be minimal. Then (\mathbb{A}, ω_0) is local attainable if and only if it is uniformly local attainable.

Now, let the phase space Ω of the dynamical system (Ω, f^t) be compact on Borel σ -algebra \mathfrak{B} of Ω , a probabilistic Borel measure μ is given, let it be invariant over flow f^t : $\mu(\Omega_0) = \mu(f^{-t}\Omega_0), (t, \Omega_0) \in \mathbb{R} \times \mathfrak{B}$. Recall that the dynamical system is said to be ergodic if measure of any invariant set is null ore one.

We will denote by $\hat{\sigma}$ the set of uniformly local attainable equations, by σ_0 the set of local attainable equations.

Theorem 2. Let the dynamical system be ergodic and $\sigma_0 \neq \emptyset$. Then $\widehat{\sigma}$ is compact if and only if $\mu(\widehat{\sigma}) = \mu(\sigma_0)$ (and hence $\widehat{\sigma} = \sigma_0 = \Omega$).

We consider whole spectrum $\lambda_1(\omega, u), \ldots, \lambda_n(\omega, u)$ of equation (1) Lyapunov exponents.

Definition 2. The equation (\mathbb{A}, ω_0) possesses uniformly local controllability of Lyapunov exponents if there is $\delta > 0$ such that for any $\beta = (\beta_1, \ldots, \beta_n), |\beta| \leq \delta$ and $\omega \in \overline{\gamma}(\omega_0)$ there exist a permissible control $u : \mathbb{R} \times \overline{\gamma}(\omega_0) \to U$ that imply $\lambda_j(\omega, u) = \lambda_j(\omega, 0) + \beta_j, \quad j = 1, \ldots, n$.

Definition 3. The matrix $A_0(f^t\omega_0)$ is said to be *diagonalizable* if we can reduce the equation

$$\dot{x} = A_0(f^t \omega_0) x$$

by Lyapunov transformation to an equation with the diagonal matrix.

Theorem 3. Let $A_0(f^t\omega_0)$ be diagonalizable and (\mathbb{A}, ω_0) be uniformly local attainable. Then (\mathbb{A}, ω_0) possesses uniformly local controllability of Lyapunov exponents.

Theorem 4. Let the dynamical system be ergodic, σ_0 be not empty, $\widehat{\sigma}$ be compact and $A_0(f^t\omega)$ be diagonalizable for all $\omega \in \Omega$. Then (\mathbb{A}, ω) possesses uniformly local controllability of Lyapunov exponents for all $\omega \in \Omega$.

The work is supported by Russian Foundation for Basic Research (grant 97–01–00413) and by Grant Center for Natural Science (grant 97–0–1.9)

References

- [1] **Tonkov E. L.** Zadachi upravleniya pokazatelyami Lyapunova. Differencial'nye uravneniya. 1995. v. 31. No. 10. pp. 1682–1686.
- [2] Popova S. N. and Tonkov E. L. Soglasovannye sistemy i upravleniya pokazatelyami Lyapunova. Differencial'nye uravneniya. 1995. v. 33. No. 2. pp. 226–235.
- [3] Zaitsev V. A. and Tonkov E. L. Dostizhimost', soglasovannost' i metod povorotov V.M. Millionshchikova. Izvestiya VUZov. Matematika. Математика. (to appear).