

### УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

# Известия

### Института математики и информатики

Выпуск 2 (36)

$$\dot{x}(t) = \int_{-r}^{0} dA(t, s) x_t(s), \ t \in \mathbb{R}$$
$$x_t(s) \doteq x(t+s), \ s \in [-r, 0]$$

Ижевск 2006

#### Главный редактор д. ф.-м. н., профессор Е. Л. Тонков

Заместитель главного редактора д. ф.-м. н., профессор В. Я. Дерр

#### Редакционная коллегия:

д. ф.-м. н., профессор **А. П. Бельтюков**, д. ф.-м. н., профессор **А. А. Грызлов**, д. ф.-м. н., профессор **Г. Г. Исламов**, д. ф.-м. н., профессор **А. В. Летчиков**, д. ф.-м. н., профессор **Ю. П. Чубурин** 

Выпуск содержит труды научной конференции—семинара «Теория управления и математическое моделирование», посвященной 50-летию Ижевского государственного технического университета и 30-летию кафедры прикладной математики и информатики ИжГТУ.

Для специалистов по дифференциальным уравнениям и теории управления.

<sup>©</sup> Удмуртский государственный университет, 2006

УДК 517.5 + 517.9

## © Д. С. Пешков, В. И. Родионов rodionov@uni.udm.ru

#### ОБ ОБОБЩЕННЫХ ИМПУЛЬСНЫХ СИСТЕМАХ

**Ключевые слова:** прерывистая функция, обобщенная функция, присоединенный интеграл, импульсное уравнение.

Abstract. The theorem about continuous dependence of initial point and parameters for solutions of linear impulse system in adjoint Riemann-Stieltjes distributions form are proved.

1°. Пусть  $K \doteq [a,b]$ . Ванахово пространство n-мерных векторов z с элементами  $z_i \in G \doteq G[a,b]$  обозначаем  $G^n \doteq G^n[a,b]$  и применяем норму  $\|z\| \doteq \max_i |z_i|$ , где  $\|x\| \doteq \sup_{t \in K} |x(t)|$  — норма в пространстве прерывистых функций G (то есть в пространстве таких функций  $x: K \to \mathbb{C}$ , что для всех  $t \in K$  существуют пределы x(t-0) и x(t+0)). Через  $BV \doteq BV[a,b]$  обозначаем пространство функций ограниченной вариации, через  $CBV \doteq CBV[a,b]$  — его подпространство, состоящее из непрерывных функций, а через  $C \doteq C[a,b]$  — пространство непрерывных функций (очевидно,  $C \subset G$ ). Пространство  $\Gamma \doteq \Gamma[a,b]$  такое, что  $BV \subset \Gamma \subset G$ , состоит из функций x, представимых в виде x = y + h, где  $y \in C$ , а  $h \in H \doteq H[a,b]$  — функция скачков.

Если матрицы A,B,C таковы, что  $A_{ik},C_{\ell j}\in {\rm G}$ ,  $B_{k\ell}\in {\rm CBV}$  и определено произведение ABC, то матричный интеграл — это матрица  $\int\limits_{\alpha}^{\beta}A\cdot dB\cdot C\doteq \Big(\sum\limits_{k,\ell}\int\limits_{\alpha}^{\beta}A_{ik}\cdot dB_{k\ell}\cdot C_{\ell j}\Big)_{i,j}$  соответствующего строения. В традиционной («привычной») записи элементы матричного интеграла — это суммы интегралов Римана—Стилтьеса

 $\sum\limits_{k,\ell}\int\limits_{lpha}^{eta}\left(A_{ik}C_{\ell j}
ight)dB_{k\ell}$ . Если A=E — единичная матрица (или C=E), то пишем  $\int\limits_{lpha}^{eta}dB\cdot C$  (соответственно  $\int\limits_{lpha}^{eta}A\cdot dB$ ).

 $2^{\circ}$ . Квадратная матрица Q порядка n, состоящая из непрерывных функций ограниченной вариации (то есть  $Q_{ij} \in \mathrm{CBV}$ ), вектор-столбец  $f \in \mathrm{G}^n$  и точка  $\alpha \in K$  порождают уравнение

$$x(t) - \int_{0}^{t} dQ \cdot x = f(t), \quad t \in K,$$
 (1)

и последовательность матриц  $\left\{C^m(t,\tau),\; (t,\tau)\in K^2\right\}_{m=0}^\infty$  таких, что  $C^0(t,\tau)\doteq E$ , а прочие элементы определяются рекурсивно:  $C^m(t,\tau)\doteq\int\limits_{\tau}^t C^{m-1}(t,s)\cdot dQ(s)$ . Согласно [1] функциональный ряд  $C(t,\tau)\doteq C_Q(t,\tau)\doteq C(Q;t,\tau)\doteq \sum\limits_m C^m(t,\tau)$  равномерно сходится в квадрате  $(t,\tau)\in K^2$ , а его сумма называется матрицей Коши уравнения (1). Функция  $C\colon K^2\to \mathbb{C}^{n\times n}$  непрерывна, каждое из сечений  $C_{ij}(\cdot,\tau)$ ,  $C_{ij}(t,\cdot)$  принадлежит CBV и справедливо

$$C(t,\tau)-\int\limits_{ au}^{t}dQ(s)\cdot C(s, au)=E, \quad C(t, au)-\int\limits_{ au}^{t}C(t,s)\cdot dQ(s)=E,$$
  $C(t,s)\,C(s, au)=C(t, au)$  , где  $t,s, au\in K$  . Единственное решение уравнения (1) имеет вид  $x(t)=f(t)-\int\limits_{ au}^{t}d_sC(t,s)\cdot f(s)$  .

Пусть квадратные матрицы Q и R порядка n таковы, что  $Q_{ij},\ R_{ij}\in \mathrm{CBV}(K)$ . Если  $C_Q(t,\tau)$  — матрица Коши уравнения  $(1),\ \mathrm{a}\ C_R(t,\tau)$  — матрица Коши уравнения  $x(t)-\int\limits_{\alpha}^{t}dR\cdot x=f(t)\,,$  то при всех  $t,\tau\in K$  справедливо тождество

$$C_R(t, au) - C_Q(t, au) = \int\limits_{ au}^t C_Q(t,s) \cdot d\left[R(s) - Q(s)\right] \cdot C_R(s, au).$$

Прямое произведение  $[a,b]^2 \times \mathrm{CBV}^{n \times n}[a,b] \times \mathrm{C}^n[a,b]$  обозначим через  $\Omega \doteq \Omega \left[a,b\right]$ . Всякий элемент  $\omega = (t,\alpha,Q,f) \in \Omega$  порождает в  $\mathbb{C}^n$  вектор  $x(\omega) = x(t,\alpha,Q,f) \doteq f(t) - \int\limits_{\alpha}^t d_s C_Q(t,s) \cdot f(s)$ ,

причем при фиксированных значениях параметров  $\alpha, Q, f$  функция  $x = x(t, \alpha, Q, f)$ ,  $t \in [a, b]$ , является единственным решением уравнения (1). Соответствие  $\omega \to x(\omega)$  порождает оператор  $\Phi: (\Omega, \varrho) \to (\mathbb{C}^n, |\cdot|_{\mathbb{C}^n})$ , действующий в полных метрических пространствах с метриками  $|x^1-x^2|_{\mathbb{C}^n} \doteq \max_i |x_i^1-x_i^2|$  и  $\varrho(\omega^1, \omega^2) \doteq \max \left\{ |t^1-t^2|, \; |\alpha^1-\alpha^2|, \; \max_{i,j} |Q_{ij}^1-Q_{ij}^2|_{\mathrm{BV}}, \; ||f^1-f^2|| \right\}.$ 

T е о р е м а 1. Пусть  $x=x(t,\alpha,Q,f),\ t\in K$ , — единственное решение уравнения (1). Оператор  $\Phi: (\Omega,\varrho)\to (\mathbb{C}^n,|\cdot|_{\mathbb{C}^n})$  такой, что  $(t,\alpha,Q,f)\to x(t,\alpha,Q,f)$ , непрерывен.

 $3^{\circ}$ . Пусть  $K \doteq (a, b)$  — интервал (возможно, неограниченный). Пространство  $D \doteq D(K)$ , состоящее из финитных функций пространства  $CBV^{loc}(K)$ , называется пространством основных функций. В нем определено понятие сходящейся последовательности: говорим, что последовательность  $\{\varphi_n\}$ ,  $\varphi_n \in D$ , сходится к  $\varphi \in D$  (и пишем  $\varphi_n \xrightarrow{D} \varphi$ ), если у всех функций  $\varphi_n$  и arphi есть общий носитель  $[lpha,eta]\subset K$  и  $\mathop{
m Var}_{[lpha,eta]}(arphi_n-arphi) o 0$  . Если  $x\in \Gamma^{\mathrm{loc}}\dot{=}\Gamma^{\mathrm{loc}}(K)$  , то определены линейные непрерывные функционалы  $(x,\varphi) \doteq \int\limits_K \varphi(t) \, x(t) \, dt$   $(\overset{\circ}{x},\varphi) \doteq \int\limits_K \varphi \circ dx$  , где второй функционал задан через присоединенный интеграл Римана-Стилтьеса и называется присоединенной обобщенной производной. Напомним [2], что  $\int\limits_{\alpha}^{\beta}x\circ dy\doteq\int\limits_{\alpha}^{\beta}x^cdy^c-\int\limits_{\alpha}^{\beta}x_cdy_c$ , где функции  $x^c,y^c\in \mathrm{C} \doteq \mathrm{C}(K)\,,\;\;x_c,y_c\in \mathrm{H}^\mathrm{loc}\stackrel{lpha}{\doteq}\mathrm{H}^\mathrm{loc}(K)$  являются компонентами разложения функций  $x,y\in\Gamma^{\mathrm{loc}}$  в суммы  $x=x^c+x_c$  и  $y=y^c+y_c$  . Пусть  $X\subseteq \Gamma^{\mathrm{loc}}$  — произвольное подмножество в пространстве прерывистых функций. Оператор  $V:X\to \Gamma^{\mathrm{loc}}$  и произвольная функция  $x \in X$  порождают в D линейный непрерывный функционал  $(\check{\mathbf{V}}x,\varphi) \doteq \int\limits_{\kappa} \varphi \circ d\mathbf{V}x$  , а  $\mathbf{V}$  и произвольная правая часть  $f \in \Gamma^{\mathrm{loc}}$  порождают импульсное уравнение  $(\overset{\circ}{\mathrm{V}} x, \varphi) \equiv (\overset{\circ}{f}, \varphi)$  .

T е о р е м а 2. 1. Пусть  $\alpha \in K$ , Q — квадратная матрица порядка n с элементами  $Q_{ij} \in \mathrm{BV^{loc}}$ ,  $X \doteq \{x \in \Gamma_n^{\mathrm{loc}} : \partial$ ля любых  $\beta \in K$  существует интеграл  $\int\limits_{\alpha}^{\beta} dQ \cdot x \}$ . Для оператора  $V: X \to \Gamma_n^{\mathrm{loc}}$ , где  $(Vx)(t) \doteq x(t) - \int\limits_{\alpha}^{t} dQ \cdot x$ , u для любого столбца  $f \in \Gamma_n^{\mathrm{loc}}$  семейство всех решений уравнения  $(\mathring{V}x, \varphi) \equiv (\mathring{f}, \varphi)$  представимо в виде

$$x(t) = C(Q^c;t,lpha)\,h(t) + \int\limits_lpha^t C(Q^c;t,s)\cdot df^c(s), \quad h\in \mathrm{H}_n^\mathrm{loc}\cap X\,.$$

- 2. Совокупность  $x(t)=C(Q^c;t,\alpha)\left[\,c+\int\limits_{\alpha}^t C(Q^c;\alpha,s)\cdot df^c(s)\right]$ ,  $c\in\mathbb{C}^n$ , является семейством всех непрерывных решений уравнения, а функция  $x(t)=C(Q^c;t,\alpha)\left[\,f(\alpha)+\int\limits_{\alpha}^t C(Q^c;\alpha,s)\cdot df(s)\right]$  является единственным непрерывным решением начальной задачи  $(\mathring{\mathrm{V}}x,\varphi)\equiv(\mathring{f},\varphi)$ ,  $x(\alpha)=f(\alpha)$ , в которой  $f\in\mathbb{C}^n$ .
- 3. Пусть  $x=x(t,\alpha,Q,f),\ t\in [a,b]$ , единственное непрерывное решение задачи  $(\mathring{\mathrm{V}} x,\varphi)\equiv (\mathring{f},\varphi)$ ,  $x(\alpha)=f(\alpha)$ ,  $t\in [a,b]$ , где  $\alpha\in [a,b]$ ,  $f\in \mathrm{C}^n[a,b]$ . Оператор  $\Phi\colon (\Omega,\varrho)\to (\mathbb{C}^n,|\cdot|_{\mathbb{C}^n})$  такой, что  $(t,\alpha,Q,f)\to x(t,\alpha,Q,f)$ , непрерывен.

#### \* \* \*

- Пешков Д.С., Родионов В.И. О линейных импульсных системах // Вестн. Удм. ун-та. Сер. Математика. 2006. № 1. С. 95–106.
- 2. Родионов В.И. Присоединенный интеграл Римана-Стилтьеса в алгебре прерывистых функций // Изв. Ин-та матем. и информ. УдГУ. 2005. Вып. 1 (31). С. 3–78.