The Adjoint Riemann-Stieltjes Integral

V. I. Rodionov

Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia E-mail: rodionov@uni.udm.ru Received April 26, 2005

DOI: 10.3103/S1066369X07020107

1. THE ALGEBRA G[a, b] OF DISCONTINUOUS FUNCTIONS

Fix a segment K = [a, b] and denote by G = G[a, b] the space of *discontinuous* ([1], p. 16) functions, i. e., the functions $x : K \to \mathbb{C}$ which have finite limits $x(t - 0) = \lim_{\tau \to t - 0} x(\tau)$ for all $t \in (a, b]$ and $x(t + 0) = \lim_{\tau \to t + 0} x(\tau)$ for all $t \in [a, b)$. Denote by G_0 the space of functions $x : K \to \mathbb{C}$ such that for each $\varepsilon > 0$ the set $\{t \in K : |x(t)| \ge \varepsilon\}$ is finite. The inclusion $G_0 \subset G$ is true. A function $x : K \to \mathbb{C}$ is said to be *staircase*, if a finite decomposition $a = \tau_0 < \tau_1 < \cdots < \tau_n = b$ exists such that on each interval $(\tau_{k-1}, \tau_k), k = 1, \ldots, n$, the function x identically equals a constant value $c_k \in \mathbb{C}$. A staircase function is discontinuous.

Theorem 1.1 ([1], p. 16). If $x \in G[a, b]$, then x is bounded and measurable, and the space G[a, b] is a Banach one with respect to the norm $||x|| = \sup_{t \in [a,b]} |x(t)|$ (moreover, G[a, b] is a Banach algebra)

and represents the closure of the space of staircase functions with respect to the sup-norm.

Theorem 1.2 (ibid., p. 17). The set T(x) of all discontinuity points of a function $x \in G[a, b]$, is at most countable.

Theorem 1.3 ([2]). For any function $x \in G[a, b]$ and any continuous function of bounded variation $y \in CBV[a, b]$ the Riemann–Stieltjes integrals $\int_{a}^{b} x \, dy$ and $\int_{a}^{b} y \, dx$ exist.

2. ALGEBRAS $G^{T}[a, b]$, $\Gamma[a, b]$, AND BV[a, b]

We call an arbitrary finite or countable set $T \doteq \{\tau_1, \tau_2, ...\}$ of pairwise different points $\tau_k \in K$ a *decomposition* of the segment K; we denote the set of all decompositions of K by $\mathbb{T}(K)$. We also include the empty set into the family $\mathbb{T}(K)$.

Fix $T \in \mathbb{T}(K)$ and for any $x \in G$ and $\tau_k \in T$ introduce the notation: $x_k^- \doteq x(\tau_k - 0) - x(\tau_k)$, $x_k^+ \doteq x(\tau_k + 0) - x(\tau_k)$. Assume that $x_k^- = 0$ with $\tau_k = a$ and $x_k^+ = 0$ with $\tau_k = b$. Denote by $\lceil x \rceil_T$ the series (and its sum, if the series converges) $\lceil x \rceil_T \doteq \sum_{\tau_k \in T} (|x_k^-| + |x_k^+|)$; let $G^T \doteq G^T[a, b]$ stand for the family of all $x \in C$ such that the series $\lceil x \rceil$ accurately with respect to the network expectations of addition and

of all $x \in G$ such that the series $\lceil x \rceil_T$ converges. With respect to the natural operations of addition and multiplication G^T is an algebra over \mathbb{C} .

If *T* is a finite set, then the equality $G^T = G$ is true, in particular, $G^{\emptyset} = G$. Any function of bounded variation belongs to G^T with any $T \in \mathbb{T}(K)$. Between the algebras BV and G^T an algebra $\Gamma \doteq \Gamma[a, b]$ exists, consisting of functions $x \in G$ such that the series $\lceil x \rceil_{T(x)}$ converges. Therefore, $BV \subset \Gamma \subset G^T \subseteq G$.

For any $\tau_k \in T$ two staircase functions are defined: $\xi_k(t) = -1$ for $t < \tau_k$ and $\xi_k(t) = 0$ for $t \ge \tau_k$; $\eta_k(t) = 0$ for $t \le \tau_k$ and $\eta_k(t) = 1$ for $t > \tau_k$. For any $\alpha \in K$ and $x \in G^T$ the functional series

$$x_T(t) \doteq -\sum_{\tau_k \in T} x_k^- \int_\alpha^t d\xi_k + \sum_{\tau_k \in T} x_k^+ \int_\alpha^t d\eta_k$$
(2.1)

converges on K absolutely and uniformly (because the series $\lceil x \rceil_T$ majorizes that composed of the modules). Denote the sum of a series, as the series itself, by $x_T(t)$. For $T = \emptyset$ we put $x_T(t) \equiv 0$. In accordance with [3] (p. 336) the functions of the form (1) are said to be *saltus functions*. Ibid one notes that $x_T \in BV$ and $\operatorname{Var} x_T = \lceil x \rceil_T$ (we denote by $\operatorname{Var} y$ the overall variation of a function y on the segment K). Together with (1) the function $x^T(t) \doteq x(t) - x_T(t)$ is defined. It is continuous at any point $\tau_k \in T$.

For any $x \in \mathbf{G}^T$ the inclusions $x_T, x^T \in \mathbf{G}^T$ are true and each operator

$$P_T: x \to x_T$$
 and $P^T: x \to x^T$

is a projector in G^T .

If $x \in \Gamma$ (or BV), then for all T such that $T \supseteq T(x)$ we have $x_T = x_{T(x)}$ and $x^T = x^{T(x)}$; in addition, $x^T \in C$ (or $x^T \in CBV$). Denoting $x_c \doteq x_{T(x)}$ and $x^c \doteq x^{T(x)}$, we establish that the representation $x = x^{T(x)} + x_{T(x)}$ with $x \in BV$ coincides with the known decomposition of the function x into the sum of a continuous component and a saltus function $x = x^c + x_c$. Therefore, in Γ (or in BV) the projectors $P_c : x \to x_c$ and $P^c : x \to x^c$ are also defined.

3. TOPOLOGICAL PROPERTIES

With respect to the sup-norm the family of algebras $\{\mathbf{G}^T\}_{T \in \mathbb{T}(K)}$ contains both complete and incomplete algebras.

Theorem 3.1. Algebras $\{G^T[a,b], \|\cdot\|_T\}$ and $\{\Gamma[a,b], \|\cdot\|_{\Gamma}\}$ with the norms

$$||x||_T \doteq ||x^T|| + |x|_T = ||x^T|| + \operatorname{Var} x_T$$
 and $||x||_\Gamma \doteq \sup_{T \in \mathbb{T}(K)} ||x||_T = ||x^c|| + \operatorname{Var} x_c$

are commutative Banach algebras with the unit element.

Remark. The algebra BV[a, b] with the norm $||x||_{BV} \doteq |x(\alpha)| + Var x$ is also a commutative Banach algebra with the unit element, and for all $x \in BV$ and $T \in T(K)$,

$$||x|| \leq ||x||_T \leq ||x||_\Gamma \leq ||x||_{\text{BV}}.$$

4. THE ADJOINT MULTIPLICATION AND INTEGRAL IN $G^{T}[a, b]$

The projectors $P_T : x \to x_T$ and $P^T : x \to x^T$ are endomorphisms of the space G^T , but not those of the algebra G^T . They become so, if we introduce a new multiplication operation in G^T .

Definition 4.1. If $x, y \in G^T$, then the function $z \doteq x \cdot y \doteq x^T y^T - x_T y_T$ is said to be the *adjoint product* of functions x and y, and the binary operation "·" is said to be the *adjoint multiplication* in G^T .

Theorem 4.1. The space $G^T[a, b]$ endowed with the operation of the adjoint multiplication is a commutative associative algebra (in general, without the unit element). It is a Banach one with respect to the norm $\|\cdot\|_T$.

Theorem 4.2. Each operator $P_T : x \to x_T$ and $P^T : x \to x^T$ represents an endomorphism of the algebra G^T with the adjoint multiplication. The image $\operatorname{Im} P_T$ (= Ker P^T) and the kernel Ker P_T (= Im P^T) are bilateral ideals of the algebra. The operators P_T and P^T are continuous orthogonal (with respect to the adjoint multiplication) projectors of the algebra.

Definition 4.2. Let $T \in \mathbb{T}(K)$ and $x, y \in \mathbf{G}^T$. If the integral $\int_K x \, dy$ exists, then the function $\int_{\alpha}^t x \cdot dy \doteq \int_{\alpha}^t x^T dy^T - \int_{\alpha}^t x_T dy_T$ is said to be the *indefinite adjoint integral* of the function x with respect to that y.

Theorem 4.3. Let $x, y, z \in G^T$. The existence of one of the integrals $\int_{\alpha}^{t} x \cdot dy$ or $\int_{\alpha}^{t} y \cdot dx$ implies the existence of the other one and the equality $\int_{\alpha}^{t} x \cdot dy + \int_{\alpha}^{t} y \cdot dx = x \cdot y|_{\alpha}^{t}$. Let the integral $w(t) \doteq \int_{\alpha}^{t} y \cdot dz$ exist. Both integrals $\int_{\alpha}^{t} x \cdot dw$ and $\int_{\alpha}^{t} (x \cdot y) \cdot dz$ either exist or not concurrently. If the integrals exist, then $\int_{\alpha}^{t} x(s) \cdot d(\int_{\alpha}^{s} y \cdot dz) = \int_{\alpha}^{t} (x \cdot y) \cdot dz$.

5. THE ADJOINT MULTIPLICATION AND INTEGRAL IN $\Gamma[a, b]$ AND IN BV[a, b]

Definition 5.1. If $x, y \in \Gamma$ (or BV), then the function $z \doteq x \circ y \doteq x^c y^c - x_c y_c$ is said to be the *adjoint product* of the functions x and y, and the operation " \circ " is said to be the *adjoint multiplication* in Γ (or in BV).

Theorem 5.1. The space Γ (or BV) endowed with the operation of adjoint multiplication is a commutative associative algebra with the unit element. It is a Banach one with respect to the norm $\|\cdot\|_{\Gamma}$ (or $\|\cdot\|_{BV}$).

Theorem 5.2. Each operator $P_c : x \to x_c$ and $P^c : x \to x^c$ represents an endomorphism of the algebra Γ (or BV) with the adjoint multiplication. The image Im P_c (= Ker P^c) and the kernel Ker P_c (= Im P^c) are bilateral ideals of the algebra. The operators P_c and P^c are continuous orthogonal (with respect to the adjoint multiplication) projectors.

Definition 5.2. Let $x, y \in \Gamma$ (or BV). If the integral $\int_{K} x \, dy$ exists, then the function $\int_{\alpha}^{t} x \circ dy \doteq \int_{\alpha}^{t} x^{c} dy^{c} - \int_{\alpha}^{t} x_{c} dy_{c}$ is said to be the *indefinite adjoint integral* of the function x with respect to that y.

Theorem 5.3. Let $x, y, z \in \Gamma$ (or BV). The existence of one of the integrals $\int_{\alpha}^{t} x \circ dy$ or $\int_{\alpha}^{t} y \circ dx$ implies the existence of the other one and the equality $\int_{\alpha}^{t} x \circ dy + \int_{\alpha}^{t} y \circ dx = x \circ y \Big|_{\alpha}^{t}$. Let $w(t) \doteq \int_{\alpha}^{t} y \circ dz$ exist. Both integrals $\int_{\alpha}^{t} x \circ dw$ and $\int_{\alpha}^{t} (x \circ y) \circ dz$ either exist or not concurrently. If the integrals exist, then $\int_{\alpha}^{t} x(s) \circ d(\int_{\alpha}^{s} y \circ dz) = \int_{\alpha}^{t} (x \circ y) \circ dz$.

6. DISCONTINUOUS FUNCTIONS DEFINED ON AN INTERVAL

Fix an interval $K \doteq (a, b)$ (not necessarily bounded) and denote by $G \doteq G(a, b)$ the space (the algebra) of *discontinuous* functions, i. e., the functions $x : K \to \mathbb{C}$ which have finite limits x(t - 0) and x(t + 0) for all $t \in K$. Let $G_0^{\text{loc}} \doteq G_0^{\text{loc}}(a, b)$ stand for the algebra of functions $x : K \to \mathbb{C}$ such that for any segment $[\alpha, \beta] \subset K$ the contraction $x : [\alpha, \beta] \to \mathbb{C}$ belongs to $G_0[\alpha, \beta]$. The inclusion $G_0^{\text{loc}} \subset G$ is true. We call the functions $x, y \in G$ equivalent $(x \sim y)$, if $x - y \in G_0^{\text{loc}}$. Denote by H^{loc} the algebra

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 51 No. 2 2007

RODIONOV

of functions $x: K \to \mathbb{C}$ such that for any $[\alpha, \beta] \subset K$ the contraction $x: [\alpha, \beta] \to \mathbb{C}$ is a saltus function. For any $M \subseteq K$ the algebra $\mathrm{H}^{\mathrm{loc}}[M]$ consists of $x \in \mathrm{H}^{\mathrm{loc}}$ such that $T(x) \subseteq M$.

We call a finite or countable set $T \doteq \{\tau_1, \tau_2, \dots\}$ of pairwise different points $\tau_k \in K$ a *decomposition* of the interval K and denote the totality of all decompositions of K by $\mathbb{T}(K)$. Let $G_{loc}^T(\Gamma^{loc})$ stand for the algebra of functions $x : K \to \mathbb{C}$ such that for any segment $[\alpha, \beta] \subset K$ the contraction $x : [\alpha, \beta] \to \mathbb{C}$ belongs to the algebra $G^S[\alpha, \beta]$ (respectively, $\Gamma[\alpha, \beta]$), where $S \doteq T \cap [\alpha, \beta]$.

7. GENERALIZED DISCONTINUOUS FUNCTIONS

We call the space $D \doteq D(a, b)$ of finite functions of the space $\operatorname{CBV}^{\operatorname{loc}}(a, b)$ the space of *principal* functions. We say that a sequence of principal functions $\{\varphi_n\}, \varphi_n \in D$, converges to a principal function $\varphi \in D$ (we write $\varphi_n \xrightarrow{D} \varphi$), if all functions φ_n and φ have a common support $[\alpha, \beta] \subset K$ and $\operatorname{Var}(\varphi_n - \varphi) \xrightarrow{n} 0$. Let D' stand for the space of linear continuous functionals $\ell : D(a, b) \to \mathbb{C}$, we call its elements *generalized functions*. For any $x \in G(a, b)$ the generalized functions $\varphi \to (x, \varphi) \doteq \int_K \varphi(t)x(t)dt$ and $\varphi \to (x', \varphi) \doteq \int_K \varphi dx$ are defined.

Theorem 7.1. Let $x \in G(a, b)$. The equality $(x', \varphi) = 0$ is true for all $\varphi \in D(a, b)$ if and only if $x \sim \text{const.}$

8. ADJOINT GENERALIZED FUNCTIONS

Fix a decomposition $T \in \mathbb{T}(K)$. For any $x \in \mathcal{G}_{\text{loc}}^T$ the linear continuous functional $\varphi \to (\dot{x}, \varphi) \doteq (\dot{x}, \varphi)^T \doteq \int_K \varphi \cdot dx$ is defined. Since φ is continuous, we have $\varphi_T = 0$, therefore $\int_K \varphi \cdot dx = \int_K \varphi \, dx^T$, and the identity $(\dot{x}, \varphi) \equiv 0$ is true if and only if $x^T \sim \text{const.}$ For $T = \emptyset$ we have $\dot{x} = x'$.

For functions x from Γ^{loc} (or BV^{loc}) and $\varphi \in D$ the adjoint integral $(\overset{\circ}{x}, \varphi) \doteq \int_{K} \varphi \circ dx$ exists which generates the functional $\varphi \to (\overset{\circ}{x}, \varphi)$ in D'. Due to the continuity of φ the equality $\int_{K} \varphi \circ dx = \int_{K} \varphi \, dx^c$ is

true and the identity $(\overset{\circ}{x}, \varphi) \equiv 0$ takes place if and only if $x^c = \text{const.}$

Theorem 8.1. Let $\alpha \in K$, $Q \in BV^{loc}$; let A be a quadratic matrix of the order n with elements $A_{ij} \in \mathbb{C}$. For an operator $V: X^n \to \Gamma_n^{loc}$ such that $X = \{z \in \Gamma^{loc} : T(z) \cap T(Q) = \emptyset\}$, $(Vx)(t) \doteq x(t) - \int_{\alpha}^{t} Ax \, dQ$, and for any $y \in \Gamma_n^{loc}$ the family of solutions to the equation $\int_{K} \varphi \circ dVx \equiv \int_{K} \varphi \circ dy$ has the form

$$x(t) = e^{AQ^c(t)} \left[h(t) + \int_{\alpha}^{t} e^{-AQ^c(\cdot)} dy^c \right] \ \forall h \in \mathcal{H}_n^{\mathrm{loc}}[K \setminus T(Q)].$$

The totality of $x(t) = e^{AQ^c(t)} \left[c + \int_{\alpha}^{t} e^{-AQ^c(\cdot)} dy^c \right]$, $c \in \mathbb{C}^n$, represents the family of all continuous solutions to this equation.

AN EXAMPLE

The impulse equation $x' = \delta(t)x$ written in terms of the traditional generalized functions ($\varphi \in C^{\infty}$) has the form $-\int_{K} x(t)\varphi'(t)dt \equiv \int_{K} \varphi x \, d\theta$ or $\int_{K} \varphi \, dVx \equiv 0$, where $(Vx)(t) \doteq x(t) - \int_{\alpha}^{t} x \, d\theta$, $\theta(\cdot)$ is the Heaviside function, i. e., $\theta(t) = 0$ with $t \leq 0$, and $\theta(t) = 1$, otherwise. The saltus functions continuous at zero ($x \in H^{\text{loc}}$), and only they, are solutions to the equation $\int_{Y} \varphi \circ dVx \equiv 0$.

In this paper we do not consider the solvability of the equation $\int_{K} \varphi \cdot d\mathbf{V} x \equiv \int_{K} \varphi \cdot dy$.

REFERENCES

- 1. Ch. S. Hönig, Volterra-Stieltjes Integral Equations, Mathematics Studies 16 (North-Holland, Amster-
- dam, 1975).
 2. V. Ya. Derr, "A Generalization of the Riemann–Stieltjes Integral," Izvestiya Inst. Matem. i Inform. UdGU 3, 3-29 (1997).
- 3. A. N. Kolmogorov and S. V. Fomin, Elements of Theory of Functions and Functional Analysis (Nauka, Moscow, 1981).