МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Тамбовский государственный университет им. Г.Р. Державина

Институт Информатики, Математики и Физики

Третья Всероссийская научная internet-конференция

Компьютерное и математическое моделирование в естественных и технических науках

Вып. 13.

Тамбов 2001

РАСЧЕТ ЭЛЕКТРОННОЙ СТРУКТУРЫ КАТИОНОВ ТЕТРААЛКИЛАММОНИЯ

Широбоков И.Б., Назаров А.В., Бесогонов Е.В.

Удмуртский государственный университет, 426034.. Ижевск, ул. Университетская 1. Удмуртский госуниверситет. Биолого-химический факультет. Кафедра физической и органической химии, e-mail: ibsh@µni.udm.ru

Соли тетраалкиламмония являются типичными ПАВ и используются в качестве ингибиторов кислотной коррозии металлов. В литературе приводятся многочисленные экспериментальные данные о влиянии катионов тетралкиламмония (ТАА⁺) структуру воды. В связи с этим можно высказать предположение о том, что катионы ТАА⁺ оказывают существенное влияние на строение двойного электрического слоя (ДЭС), определяя тем самым механизм разряда присутствующих в растворе катионов-деполяризаторов и в частности ионов водорода.

Для теоретического объяснения ингибирующего действия катионов ТАА⁺ необходимо произвести: 1 – расчет их структуры, 2 – изучить процесс сольватации и 3 – хемосорбции их на поверхности металла. Данная работа посвящена первому этапу работы (расчет структуры) на примере симметричных солей ТАА⁺.

Методом ab initio в ансамбле 3-21G с последующей оптимизацией геометрии, были рассчитаны геометрические характеристики ионов тетраалкиламмония (TAA⁺): тетраметиламмоний [Met₄N]⁺, тетраэтиламмоний [Et₄N]⁺, тетрапропиламмоний [Pr₄N]⁺, тетрабуламмоний [But₄N]⁺, тетрапентиламмоний [Pen₄N]⁺. В качестве исходных данных были использованы декартовы координаты атомов исходя из соображений о строении данного класса соединений.

Результаты расчетов в (заряды на атомах представлены частично) сравнении с литературными данными [2, 3] представлены в таблицах 1 и 2. Атомы углерода пронумерованы по порядку от атома азота (N) по длине углеводородного радикала (C1 – C5).

В ходе анализа расчетных данных (табл. 1, 2) и сравнения их с литературными данными [2, 3] можно сделать следующие выводы:

- 1. длины связей С-N и С-С практически не отличаются от таковых в углеводородных радикалах аминов;
- межатомные расстояния С-N и С-С в ряду [Met₄N]⁺ [Pen₄N]⁺ постепенно увеличиваются (табл.1), это связано с увеличением силы взаимного отталкивания атомов;
- 3. атом азота несет отрицательный заряд приблизительно в -0,883 ат.ед., что хорошо согласуется с его электроотрицательностью. С увеличением алкильного радикала заряд на азоте возрастает до -0,899 ат.ед. По-видимому, это связано с увеличением положительного индуктивного эффекта алкильных групп.
- 4. с увеличением углеводородного радикала структура катионов остается практически неизменной. Углеводородная цепь принимает энергетически наиболее выгодную конформацию – алкильные группы стремятся удалиться друг от друга на как можно большее расстояние. Это объясняется электростати-

ческим взаимодействием положительно заряженных водородов. Валентные углы ∠CNC (табл.1) в целом не изменяются и составляют величину примерно 109°, то есть тетраэдрическая структура ионов не искажается;

5. рассчитанные радиусы катионов ТАА⁺ не совпадают с приведенными в литературе [2], за исключением [Met₄N]⁺, для которого наблюдается хорошее соответствие. Это скорее всего объясняется несоответствием выбранной авторами [2] методики. При измерении стоксовского радиуса электрохимическими методами не учитываются пустоты между алкильными радикалами и высокая степень свободы алкильных радикалов, и объем иона получается меньше объема сферы с радиусом, равным расстоянию от атома азота до наиболее удаленного атома водорода и радиус получается заниженным. В случае [Met₄N]⁺, подобный эффект невозможен, поэтому экспериментальный стоксовский радиус хорошо совпадает с расчетным.

Таблица 1

	Межатон	мные расстоя	ния, Å		Валентные углы, град.		
1	N-C	C-C	C-H	∠CNC	∠HCN	∠HCH	
[Met ₄ N] ⁺	1,430	- 1	1,120	109,471	111,291	107,592	
Триметиламин [3]	1,47±0,0	1 –	1,06				
[E4N] ⁺	1,445	1,468	1,118	109,256	108,183	104,670	
Триэтиламин [3]	1,47±0,02	2 1,54±0,02	2 Нет данны	ах Нет данн	ых Нет данных	Нет данных	
[Pr ₄ N] ⁺	1,446	1,476	1,119	109,406	107,704	104,511	
[But ₄ N] ⁺	1,448	1,478	1,119	109,280	107,571	104,382	
[Pen ₄ N] ⁺	1,535	1,563	1,091	109,327	108,661	105,084	
Таблица 2							
Ион		[McLN] ⁺	[ELN] ⁺	$[Pr_4N]^+$	[But ₄ N] ⁺	[Pen ₄ N] ⁺	
Дипольный момент, D		0,000	0,292	0,539	0,878	1,198	
Rpece, (Å)		2,12	2,90	3,77	4,98	6,67	
R, ner., (Å) [2]		2,16	2,80	3,37	3,85	4,30	
Заряд на N, ат. ед.		-0,860	-0,864	-0,892	-0,899	-0,899	
Заряд на С1, ат. ед.		-0,381	-0,213	-0,173	-0,165	-0,163	
Заряд на С2, ат. ед.		-	-0,618	-0,480	-0,445	-0,455	
Заряд на СЗ, ат. ед.				-0,572	-0,428	-0,420	
Заряд на С4, ат. ед.					-0,565	-0,485	
Заряд на С5, ат. ед.			-			-0,561	

В целом можно сказать, что примененный подход правильно передает основные параметры изученных систем.

- 1. M. Kiselev, T. Kerdcharoen, S. Hannongbua, K. Heinzinger, J. Chemical Physics Letters 327 (2000), p. 425-428.
- On dimensions of tetraalkyl(aryl)onium ions. Krumgalz B.S., Trien. Rept., 1979-1981. ISr Oceanogr. und Limnol. Res. Haifa, 1981, 28.
- 3. Справочник химика. Изд. 3-е испр. Т.1. Изд. "Химия", Л., 1971.