РОССИЙСКАЯ АКАДЕМИЯ НАУК НАУЧНЫЙ СОВЕТ ПО ФИЗИКО-ХИМИЧЕСКИМ ОСНОВАМ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ – УПИ ЧЕЛЯБИНСКИЙ НАУЧНЫЙ ЦЕНТР УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТРУДЫ Х РОССИЙСКОЙ КОНФЕРЕНЦИИ «СТРОЕНИЕ И СВОЙСТВА МЕТАЛЛИЧЕСКИХ И ШЛАКОВЫХ РАСПЛАВОВ»

Том 1 Теоретическое изучение металлических и оксидных расплавов

> Екатеринбург–Челябинск Издательство ЮУрГУ 2001

Табулированные значения коэффициентов температурной зависимости констант равновесия базовых реакций (10a, 11–15) lgK = a + (b/T) приведены в таблице. Эти зависимости рассчитаны методом наименьших квадратов по значениям констант равновесия, соответствующих определенным температурным точкам (с интервалом в 100 K) в диапазоне 800–1200 K.

Таблица

Реакция		lgK = a + (b/T)	
	a	b	R ²
10a	-4,8998	11178	0,9996
11	-1,2418	26616	0,9950
12	3,2468	1631,8	0,9739
13	0,2257	8377	0,9899
14	5,5282	2064,7	0,9952
15	2,9201	2547,7	0,9581

Параметры уравнения lgK = a + (b/T) для констант равновесия основных химических реакций

R - коэффициент корреляции.

Работа выполнена при финансовой поддержке РФФИ (проект №01-03-96498).

РАСЧЕТ ЭЛЕКТРОННОЙ СТРУКТУРЫ КАТИОНОВ ТЕТРААЛКИЛАММОНИЯ

Е.В. Бесогонов, <u>Ю.С. Митрохин</u>, И.Б. Широбоков Удмуртский государстенный университет E-mail: <u>bev@uni.udm.ru</u>

1. Введение

Ограниченным методом Хартри-Фока (ОХФ, RHF ~ restricted Hartree-Fock) были произведены расчеты симметричных катионов тетраалкиламмония (далее ТАА⁺). Изучаемые объекты представляют собой ионы аммония, в которых все водородные атомы замещены одинаковыми алкильными группами (Ме - метил, Et - этил, Pr - пропил, Bu - бутил, Am - пентил (амил)). Катионы ТАА⁺ являются типичными поверхностно-активными веществами (ПАВ) и используются в качестве ингибиторов коррозии. В литературе [1, 2] приводятся многочисленные экспериментальные данные, свидетельствующие о влиянии катионов ТАА⁺ на структуру воды, причем предполагается, что катионы TMeA⁺ и TEtA⁺ разрушают, а катион TPrA⁺ и высшие - упорядочивают её. В связи с этим можно высказать предположение о том, что катионы ТАА⁺ оказывают весьма существенное влияние и на строение двойного электрического слоя (ДЭС), определяя тем самым механизмы разряда присутствующих в растворе катионов. Особенно важным в этом отношении представляется влияние катионов ТАА⁺ на процесс разряда ионов водорода, который часто определяет протекание коррозионных процессов.

2. Метод расчета

Расчеты проводились неэмпирическим (ab initio) ограниченным методом Хартри-Фока (ОХФ) с полной оптимизацией геометрии до достижения величиной градиента энергии значения в 10^{-6} (для TMeA⁺) или 10^{-5} (для остальных) Хартри/Бор (Hartree/Bohr). Корреляция электронов учитывалась по теории воз-

мущений Мёллера-Плессета 2-го порядка. Оптимизация геометрии проводилась с использованием стандартных валентно-расщепленных атомных базисных наборов TZV (triple zeta valence) (для TMeA⁺) и STO-6-31G (для остальных). Базис TZV включает орбитали (5s)/[3s] для H и (11s, 6p)/[5s, 3p] для С и N. Здесь в квадратных скобках указывается, сколько s-, p-, d- или f-орбиталей принимается в расчет, а в круглых – линейная комбинация (ЛК) скольки примитивных экспоненциальных гауссовых функций (ГФ) аппроксимирует орбитали соответствующего типа. Базис STO-6-31G разработан Поплом и означает следующее [3]: невалентные АО включаются в остов и аппроксимируются ЛК шести ГФ, валентные АО делятся (расщепляются) на плотную и диффузную компоненты, которые аппроксимируются соответственно ЛК трех и одной ГФ.

Оптимизация геометрии катиона тетраметиламмония проводилась в рамках симметрии T_d , благодаря чему его электронное строение было изучено более полно. Геометрия остальных катионов оптимизировалась без учета симметрии. Полученные в результате оптимизации структуры катионов TAA⁺ приведены на рис. 1.

Рис. 1. Структуры катионов ТАА⁺, полученные в результате оптимизации геометрии

Все расчеты были выполнены с помощью квантово-химического программного пакета GAMESS (General Atomic and Molecular Electronic Structure System) [4] на PC-кластере (2 процессора Intel Pentium III 800, 512 Mb RAM) в операционной среде LINUX. В качестве результатов расчетов были получены данные по электронной структуре (C3 MO, коэффициенты разложения MO по AO, анализ заселенностей по Малликену (Mulliken) и Лёвдину (Löwdin)), геометрии и дипольным моментам ионов TAA⁺.

Результаты расчетов сравнивались с литературными данными по длинам связей в третичных аминах [5] (см. табл. 1) и стоксовским радиусам несольватированных катионов ТАА⁺ [6] (см. табл. 2). К сожалению, не удалось найти данных по квантово-химическим расчетам как катионов ТАА⁺, так и родственных соединений (аминов).

Таблица 1

Сравнение рассчитанных длин связей в катионах ТАА⁺ со справочными данными [5] по третичным аминам

Частица	Длина связи N-С1 Å	Длина связи С1-С2 Å	Длина связи С1-Н Å	Длина связи С2-Н Å	
Триметипамин	1.47+0.01	-	1.06		
Катион ТМеА ⁺	1,491		1,078		
Триэтиламин	1,47±0,02	1,54±0,02	нет данных	нет данных	
Катион TEtA ⁺	1,529	1,524	1,078	1,080-1,083	

Таблица 2

Сравнение рассчитанных радиусов катионов TAA⁺ (расстояние от азота до наиболее удаленного водорода) с приведенными в литературе [6] стоксовкими радиусами

Катион	TMeA ⁺	TEtA ⁺	TPrA ⁺	TBuA ⁺	TAmA ⁺
Рассчитанный радиус, Å	2,11	3,48	4,74	6,04	7,30
Стоксовский радиус, Å	2,16	2,80	3,37	3,85	4,30

3. Обсуждение результатов

В ходе анализа расчетных данных (см. табл. 3 и рис. 2) и сравнения их с литературными были выявлены следующие общие закономерности:

 длина связи N – C
превышает аналогичную в
третичных аминах на 0,04– 0,06 Å, что объясняется обедненностью частицы электронами;

 длины связей С – С и С – Н практически не отличаются от таковых в углеводородных радикалах аминов и других органических соединений;

3) один из атомов водорода при последнем в цепочке углеродном атоме отличается от двух других большим зарядом и меньшим порядком связи с углеродом;

Рис. 2. Распределение заряда (по Малликену) в катионе ТАтА⁺

187

4) азот несет отрицательный заряд в 0,60 ат. ед.;

5) с увеличением алкильного радикала заряд на азоте возрастает, стремясь к значению предположительно в -0,60 ат. ед. По-видимому, это связано с увеличением положительного индуктивного эффекта алкильных групп, также стремящегося к некоему пределу;

6) рассчитанные радиусы катионов TAA⁺ не совпадают с приведенными в литературе [6] стоксовскими радиусами, за исключением TMeA⁺, для которого наблюдается хорошее соответствие рассчитанного и экспериментального значений. В связи с этим можно высказать предположение, что обладающая высокой симметрией структура катиона TMeA⁺ практически не изменяется под действием полярного растворителя, в то время как структуры не таких симметричных катионов TEtA⁺ – TAmA⁺ искажаются.

Таблица 3

Катион	TMeA ⁺	TEtA ⁺	TPrA ⁺	TBuA ⁺	TAmA ⁺
Длина связи N – С1, Å	1,508	1,529	1,529	1,529	1,529
Длина связи C1 – C2, Å	-	1,524	1,529	1,529	1,529
Длина связи C2 – C3, Å	_	-	1,536	1,539	1,539
Длина связи C3 – C4, Å	_	_	-	1,531	1,534
Длина связи C4 – C5, Å	_	_		-	1,531
Длина связи С1 – Н _{при С1} , Å	1,078	1,078	1,078	1,078	1,078
Длина связи C2 – Н _{при C2} , Å	_	1,080	1,082	1,083	1,083
Длина связи С3 – Н _{при С3} , Å		-	1,084	1,086	1,087
Длина связи C4 – Н _{при C4} , Å	-			1,084	1,087
Длина связи C5 – H _{при C5} , Å				_	1,085
Длина связи Споследний -	1,078	1,083	1,082	1,082	1,083
Н _{концевой} , Å					
Заряд на N, ат. ед.	-0,5668	-0,5567	0,5905	-0,5931	-0,5932
Заряд на С1, ат. ед.	-0,2669	-0,1362	-0,1177	-0,1220	-0,1217
Заряд на С2, ат. ед.	-	-0,4548	-0,3085	-0,2981	0,3038
Заряд на СЗ, ат. ед.		_	0,4221	0,2730	-0,2640
Заряд на С4, ат. ед.	_	-	-	0,4144	-0,2641
Заряд на С5, ат. ед.	-	-	_	-	-0,4133
Заряд на Н1, ат. ед.	0,2195	0,2081	0,2012	0,2010	0,2006
Заряд на Н2, ат. ед.		0,2056	0,1982	0,1977	0,1974
Заряд на НЗ, ат. ед.	-	0,1809	0,1727	0,1678	0,1680
Заряд на Н4, ат. ед.	-	0,1786	0,1701	0,1654	0,1658
Заряд на Н5, ат. ед.	-	0,2070	0,1610	0,1538	0,1495
Заряд на Нб, ат. ед.		-	0,1596	0,1524	0,1482
Заряд на Н7, ат. ед.		-	0,1830	0,1499	0,1435
Заряд на Н8, ат. ед.				0,1487	0,1423
Заряд на Н9, ат. ед.			-	0,1693	0,1454
Заряд на Н10, ат. ед.	-	_			0,1449
Заряд на Н11, ат. ед.	-		-		0,1597
Дипольный момент, D	0,000000	0,000362	0,000161	0,000652	0,000126

Длины связей, дипольные моменты и распределение заряда по Малликену в катионах TAA⁺ (RHF/STO-6-31G//STO-6-31G для всех катионов)

4. Заключение

Результаты произведенных расчетов в дальнейшем можно использовать для моделирования процессов сольватации и адсорбции катионов TAA⁺ на поверхности металлов, изучения их влияния на структуру и свойства растворов электролитов, а также для интерпретации результатов экспериментальных работ.

Авторы выражают благодарность всем, кто принимал участие в создании программного пакета GAMESS [4].

Литература

1. Структурные особенности водных растворов галогенидов ТАА из данных по растворимости аргона. Крестов Г.А., Виноградов В.И., Кононенкова Т.В. //«Известия АН СССР. Серия химическая».- 1984.- № 9.- с. 1927-1930.

2. Мищенко К.П., Полторацкий Г.М. Термодинамика и строение водных и неводных растворов электролитов. Изд. 2-е, пер. и доп. – Л.: Химия, 1976. – 328 стр., 33 табл., 86 рис., список литературы 557 назв.

3. Степанов Н.Ф., Пупышев В.И. Квантовая механика молекул и квантовая химия: Учебное пособие. – М.: Изд-во МГУ, 1991. – 384 с.: ил.

4. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. //J. Comput. Chem. -14.-1347-1363 (1993).

5. Справочник химика. Изд. 3-е, испр. Том первый. – Л.: Химия, 1971.

6. On dimensions of tetraalkyl(aryl)onium ions. Krumgalz B.S. Trienn. Rept., 1979 – 1981. ISr Oceanogr. und Limnol. – Res. Haifa, 1981. – 28 (англ.).

ТЕРМОДИНАМИЧЕСКИЕ АКТИВНОСТИ КОМПОНЕНТОВ В РАСПЛАВАХ МЕДЬ-НИКЕЛЬ-ПЛАТИНА

Г.П. Мироевский

ОАО Институт Гипроникель, г. Санкт-Петербург, <u>LST@nikel.spb.su</u>

Важная для медно-никелевого производства система Cu-Ni-Pt не изучена экспериментально. На основании обобщения опытных данных для бинарных систем Cu-Ni, Cu-Pt и Ni-Pt, полученных разными методами: давления насыщенного пара, ЭДС, фазовых равновесий, использование усложненных моделей растворов позволяет получить расчетные уравнения для тройной системы, а при необходимости и для более сложных.

<u>Система Cu–Ni.</u> Ранние расчеты [1], последующие экспериментальные измерения [2, 3] и обзор опытных данных разных авторов [4] однозначно указывают на умеренные положительные отклонения от закона Рауля в данной системе. Из данных [1] получим $Q_{Cu-Ni} = 17200 \ Дж/моль$, откуда для $T = 1428 \ K$

$$\lg f_i = 0,629 \ (1 - X_i)^2. \tag{1}$$

Результаты расчетов приведены ниже:

			, <u>,</u> ,	•					
X_{Cu}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
f_{Cu}	3,232	2,527	2,033	1,684	1,436	1,261	1,139	1,060	0,913
α_{Cu}	0,323	0,505	0,610	0,674	0,718	0,756	0,797	0,848	0,913
α_{Ni}	0,913	0,848	0,797	0,756	0,718	0,674	0,610	0,505	0,323
	Эти данн	ные со	огласуют	ся с	результ	атами	[2–4],	что	является
				F + 7					

подтверждением ранних расчетов [1].

<u>Система Cu-Pt</u>. Подробно обсуждены в работе [5] имеющиеся результаты исследований термодинамических свойств, которые больше для твердых растворов. В работе [6] при расчете равновесия линий ликвидуса и солидуса для жидких растворов с учетом двухпараметрических уравнений [1] найдено для жидких растворов Q' = -59000 и Q'' = 49800 Дж/моль, откуда для 1873 К получим