http://topology.auburn.edu/tp/

E-Published on September 15, 2009

ON NON-NORMALITY POINTS IN ČECH-STONE REMAINDERS OF METRIZABLE CROWDED SPACES

SERGEI LOGUNOV

ABSTRACT. Let X be a realcompact locally compact metrizable crowded space and $p \in X^*$. If p is not a P-point in X^* , then $X^* \setminus \{p\}$ is not normal.

What open subsets of compact spaces are normal?

In the theory of Čech-Stone compactification βX , this common question has usually the following form:

Is $\beta X \setminus \{p\}$ (or $X^* \setminus \{p\}$) not normal for any point p of Čech-Stone remainder $X^* = \beta X - X$?

If so, then p is called a non-normality point of βX (X*).

As is well known, $\omega_1 = \beta \omega_1 \setminus \{\omega_1\}$ is normal.

What about realcompact spaces? Despite strained efforts, for $X = \omega$ these questions have been solved only by assuming either additional axioms, like CH [9], [10], or some special properties of p. If either p is an accumulation point of some countable discrete subset of ω^* [1], or there is a discrete set D in ω^* such that $|D| = \omega_1$ and $|D \setminus O| \leq \omega$ for any neighborhood O of p (Eric K. van Douwen, unpublished), then $\omega^* \setminus \{p\}$ is not normal in ZFC. Nonnormality points of another type are strong \mathbb{R} -points [3], having a rather technical definition and the following property: There is

²⁰⁰⁰ Mathematics Subject Classification. 54D15, 54D35, 54D40, 54D80, 54E35, 54G20.

Key words and phrases. attracted family, butterfly-point, nice family, nonnormality point, p-ultrafilter.

^{©2009} Topology Proceedings.

open σ -compact $U \subset \omega^* \setminus \{p\}$ such that $p \in [U]$, but $p \notin [V]$ for any $V \subset U$ with |V| < C.

Is $\beta X \setminus \{p\}$ non-normal whenever X is realcompact and crowded and $p \in X^*$? Probably, but we unaware of any counterexample. First, an affirmative answer was obtained by the author for the real line \mathbb{R} [4]. Locally compact Lindelöf separable crowded spaces with $\pi w(X) \leq \omega_1$, assuming that p is remote, and some other spaces as well, were considered in [5], [6], [7], and [14]. In particular, the following result was obtained independently in [8] and [15].

Theorem 1. Let X be a metrizable crowded space. Then any point $p \in X^*$ is a butterfly-point in βX . Hence, $\beta X - \{p\}$ is not normal.

Jun Terasawa [14], [15] asked whether $X^* \setminus \{p\}$ is non-normal for metrizable crowded locally compact spaces. We give a partial answer to this question, which remains open for *P*-points.

Theorem 2. Let X be a metrizable crowded space and $p \in X^*$. Let the following hold for some zero-set Z in βX and a set $K \subset X^* \setminus Z$: $p \in [K]_{\beta X} \setminus K \subset Z \subset X^*$. Then $X^* \setminus \{p\}$ is not normal.

Corollary 3. Let X be a realcompact locally compact metrizable crowded space and $p \in X^*$. If p is not a P-point in X^* , then $X^* \setminus \{p\}$ is not normal.

Corollary 4. Let \mathbb{R} be the real line and $p \in \mathbb{R}^*$. If p is not a P-point in \mathbb{R}^* , then $\mathbb{R}^* \setminus \{p\}$ is not normal.

Recall that a point p is called a P-point in X if any intersection of countably many neighborhoods of p in X contains a neighborhood of p. As is well known, P-points do exist in ω^* under some additional axioms, like CH [11], but not in ZFC [13]. Moreover, there are P-points in ω^* if and only if there are P-points in X^* for a variety of spaces, e.g., X is any locally compact nonpseudocompact space [2]. A point p is called a b-point or a butterfly-point in X if $\{p\} = [A] \cap [B]$ for some $A, B \subset X \setminus \{p\}$ [12]. We say that $p \in X^*$ is a b-point in βX if $\{p\} = [A]_{\beta X} \cap [B]_{\beta X}$ for some $A, B \subset X^* \setminus \{p\}$ with $[A \cup B]_{\beta X} \subset X^*$.

0.1. Proofs.

We follow [8] in notations, terminology, and some facts, including the proofs for completeness (lemmas 8 and 9). From now on a space X is non-compact, metrizable, and crowded; i.e., X has no isolated points. By $Ox \subset X$, we denote any open neighborhood of x in X by [] and [] $_{\beta X}$ – the closure operators in X and βX , respectively, $3 = \{0, 1, 2\}$. If $U \subset X$ is open, then $U^{\varepsilon} = \beta X \setminus [X \setminus U]_{\beta X}$ is the maximal open set in βX , whose trace on X is U. A space X is realcompact if, for any point $p \in X^*$, $p \in Z \subset X^*$ for some zero-set Z in βX .

Let π and σ be arbitrary families. A set $U \in \pi$ is called a *maximal* member of π if U is not a proper subset of any other member of π . If members of π are mutually disjoint (with closure), then π is called (strongly) cellular. We write $\pi \succeq \sigma$ ($\pi \succ \sigma$) if $U \in \pi$ is a (proper) subset of $V \in \sigma$ whenever $U \cap V \neq \emptyset$. By $\exp \pi$, we denote all subfamilies $\{F : F \subset \pi\}$ of π , and f_{σ}^{π} – the map from $\exp \pi$ to $\exp \sigma$ – is defined as $f_{\sigma}^{\pi}F = \{V \in \sigma : \bigcup F \cap V \neq \emptyset\}$ for every $F \in \exp \pi$.

A maximal cellular locally finite family of open sets is called *nice*. As introduced in [7], the *cellular refinement*

$$Cel (\pi) = \{ \bigcap \phi - [\bigcup (\pi - \phi)]_{\beta X} : \phi \subset \pi \}$$

of π is nice, if π is an open locally finite cover of X (Lemma 6).

Let π and σ be nice families, and $\mathcal{F} \subset \exp \pi$. For a point $p \in X^*$, we say that \mathcal{F} is a *p*-filter on π if $p \in [\bigcup(F_0 \cap ... \cap F_n)]_{\beta X}$ for any finite subcollection $\{F_0, ..., F_n\} \subset \mathcal{F}$. If so, then we denote $\bigcap \mathcal{F}^* = \bigcap \{[\bigcup F]_{\beta X} : F \in \mathcal{F}\}$. We write $\pi \prec_{\mathcal{F}} \sigma$ if $F \prec \sigma$ for some $F \in \mathcal{F}$. The image $f_{\sigma}^{\pi} \mathcal{F} = \{f_{\sigma}^{\pi} F : F \in \mathcal{F}\}$ of \mathcal{F} is a *p*filter on σ . If \mathcal{F} is the union of any increasing sequence of *p*-filters, then \mathcal{F} is a *p*-filter as well. So, by the Kuratowski-Zorn lemma, every *p*-filter \mathcal{F} is contained in some *p*-ultrafilter $\hat{\mathcal{F}}$ on π , that is, $\hat{\mathcal{F}} = \mathcal{G}$ whenever \mathcal{G} is a *p*-filter and $\hat{\mathcal{F}} \subseteq \mathcal{G}$. If *p* is not a remote point, distinct *p*-ultrafilters may exist. But each of them contains $\pi(Op) = \{U \in \pi : U \cap Op \neq \emptyset\}$ for any neighborhood $Op \subset \beta X$.

We construct a sequence $\{\mathcal{P}_k\}_{k\in N}$ of open locally finite covers \mathcal{P}_k of X so that diam $U \leq \frac{1}{k}$ for any $U \in \mathcal{P}_k$ and any two different members of the family $\mathcal{P} = \bigcup_{k\in N} \mathcal{P}_k$ are different sets. Then it is well known and easy to see that the family of maximal members of

any cover $\pi \subset \mathcal{P}$ of X is a locally finite subcover of X. Moreover, \mathcal{P} is a regular base as defined by A. V. Arhangel'skii, i.e., for any point $x \in X$ and, for any of its neighborhood $O \subset X$, there is another neighborhood $\hat{O} \subset X$ of x with the following properties: $\hat{O} \subset O$ and at most finitely many members of \mathcal{P} meet both \hat{O} and $X \setminus O$ simultaneously.

By induction, we define the families of non-empty open sets \mathcal{D}_k and $\mathcal{W}_k \subset \mathcal{P}$ for all $k \in N$ as

$$\mathcal{D}_1 = Cel(\mathcal{P}_1).$$

If a nice family $\mathcal{D}_k = \{U\}$ has been constructed, then

$$\mathcal{W}_k = \{ U(\nu) : U \in \mathcal{D}_k \text{ and } \nu \in 3 \}$$

is strongly cellular with $[U(\nu)] \subset U$ for any of its members and

$$\mathcal{D}_{k+1} = Cel \ (\mathcal{D}_k \cup \mathcal{W}_k \cup \mathcal{P}_{k+1}).$$

Then $\mathcal{D}_k \prec \mathcal{D}_{k+1}$ for all $k \in N$. For any $U \in \mathcal{P}$, there is a unique $k_0 \in N$ with $U \in \mathcal{P}_{k_0}$. We put

$$\hat{U} = \{ V \in \mathcal{D}_{k_0} : V \subset U \} = \{ V \in \mathcal{D}_{k_0} : V \cap U \neq \emptyset \}.$$

Then \hat{U} is locally finite cellular and everywhere dense in U.

For any locally finite cover $\pi \subset \mathcal{P}$ of X, we denote by $\sigma(\pi)$ all maximal members of the family $\bigcup \{\hat{U} : U \in \pi\}$. Then $\sigma(\pi)$ is nice. Define

 $\Sigma = \{\sigma(\pi) : \pi \subset \mathcal{P} \text{ is a locally finite cover of } X\}$

and put $\sigma(\nu) = \{U(\nu) : U \in \sigma\}$ for any $\sigma \in \Sigma$ and $\nu \in 3$. Notice that $\{[\bigcup \sigma(\nu)]_{\beta X} : \nu \in 3\}$ is cellular.

With the notations of Theorem 2, for each $n \in \omega$, we choose open $O_n \subset \beta X$ so that $[O_{n+1}]_{\beta X} \subset O_n$ and $Z = \bigcap_{n \in \omega} O_n$. Denote $\hat{O}_n = [O_n]_{\beta X} \setminus O_{n+1}$. We say that a family $\mathcal{R} = \{U\}$ is Z-attracted if $\{U \in \mathcal{R} : U \not\subset O_n\}$ is finite for all $n \in \omega$. Obviously, any finite union of Z-attracted families is Z-attracted.

Define π_0 to be all maximal members of the cover

$$\{U \in \mathcal{P} : [U]_{\beta X} \cap [K]_{\beta X} = \emptyset \text{ and} \\ \forall n \in \omega(U \cap \hat{O}_{n+1} \neq \emptyset \Rightarrow U \subset O_n \setminus [O_{n+3}]_{\beta X}) \}.$$

Let $T = X^* \setminus Z \setminus \bigcup \{U^{\varepsilon} : U \in \pi_0\}$ and $Y = X \cup T$.

Proposition 5. Let X be a normal space and let Z be a non-empty closed G_{δ} -subset of βX contained in X^* . If T is a closed subset of $\beta X \setminus Z$ contained in X^* , then the subspace $X \cup T$ is normal and $[T]_{\beta X} = \beta T$. In particular, if $p \in [T]_{\beta X} \setminus T$ and p is a b-point of $[T]_{\beta X}$, then p is a non-normality point of X^* .

Proof: Let A and B be any closed disjoint subsets of $X \cup T$. Since X is normal, $A \cap X$ and $B \cap X$ have disjoint open neighborhoods in βX . Since T is σ -compact, $\hat{A} = A \cap T$ and $B \cap T$ have disjoint open neighborhoods in βX .

Now it is enough to separate \hat{A} and $B \cap X$. For every point $x \in \hat{A}$, we choose a neighborhood $Ox \subset \beta X$ so that $x \in \hat{A} \cap \hat{O}_{n+1}$ implies $[Ox]_{\beta X} \subset O_n \setminus [B]_{\beta X}$ for each $n \in \omega$. Since every $\hat{A} \cap \hat{O}_{n+1}$ is compact, there is a Z-attracted family $\mathcal{R} \subset \{Ox : x \in \hat{A}\}$ with $\hat{A} \subset \bigcup \mathcal{R}$. But then $\hat{\mathcal{R}} = \{O \cap X : O \in \mathcal{R}\}$ is locally finite in X. So $\hat{A} \subset (\bigcup \hat{\mathcal{R}})^{\varepsilon}$ and $B \cap X \cap [\bigcup \hat{\mathcal{R}}]_{\beta X} = \emptyset$.

Let $f: T \to [0,1]$ be any continuous map. Since T is closed in normal $Y = X \cup T$, $f \subset g$ for some continuous map $g: Y \to [0,1]$. Since $X \subset Y \subset \beta X$, $g \subset h$ for some continuous map $h: \beta X \to [0,1]$. Then its restriction $\hat{f} = h/_{[T]_{\beta X}}$ is a continuous extension of fover $[T]_{\beta X}$. So $[T]_{\beta X}$ is a Čech-Stone compactification of T as well as $\hat{T} = [T]_{\beta X} \setminus \{p\}$. If $\{p\} = [A]_{\beta X} \cap [B]_{\beta X}$ for some closed disjoint $A, B \subset \hat{T}$, then \hat{T} is non-normal. Since \hat{T} is closed in $X^* \setminus \{p\}$, our proof is complete.

Our task from now on is to construct A and B.

Lemma 6. If π is an open locally finite cover of X, then $Cel(\pi)$ is nice.

Proof: If $\varphi \subset \pi$ has non-empty intersection, then φ is finite. So $\cap \varphi \setminus [\bigcup(\pi \setminus \varphi)]$ is open.

If $U \in \varphi \setminus \hat{\varphi}$, then $\bigcap \varphi \subset U$ and $\bigcap \hat{\varphi} \cap U = \emptyset$.

If $\psi = \{U \in \pi : U \cap Ox \neq \emptyset\}$ is finite for some $Ox \subset X$, then $\{\varphi \subset \pi : \bigcap \varphi \cap Ox \neq \emptyset\} \subset \exp \psi$ is finite as well.

Let $x \notin [U] \setminus U$ for any $U \in \pi$ and $\varphi = \{U \in \pi : x \in U\}$. Then $x \in \bigcap \varphi \setminus [\bigcup(\pi \setminus \varphi)]$ and $Cel(\pi)$ is maximal.

Lemma 7. There is a sequence $\{\sigma_{\alpha} : \alpha < \lambda\} \subset \Sigma$ and p-ultrafilters \mathcal{F}_{α} on σ_{α} with the following properties for all $\alpha < \beta < \lambda$ and $f_{\beta}^{\alpha} = f_{\sigma_{\beta}}^{\sigma_{\alpha}}$:

(1) $\bigcap \mathcal{F}_0 \subset Z$; (2) $\sigma_\alpha \prec_{\mathcal{F}_\alpha} \sigma_\beta$; (3) $f^{\alpha}_{\beta} \mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta}$; (4) for any $\sigma \in \Sigma \setminus \{\sigma_\alpha : \alpha < \lambda\}$, there is $\alpha < \lambda$ with $\neg (\sigma_\alpha \prec_{\mathcal{F}_\alpha} \sigma)$.

Proof: Let \mathcal{F}_0 be any *p*-ultrafilter on $\sigma_0 = \sigma(\pi_0)$. Then, for each $n \in \omega$, $\sigma_0(O_n) \in \mathcal{F}_0$ and $\bigcap \mathcal{F}_0^* \subset [\bigcup \sigma_0(O_{n+1})]_{\beta X} \subset [O_n]_{\beta X}$.

Assume that a sequence $\{\sigma_{\alpha} : \alpha < \lambda\} \subset \Sigma$ and *p*-ultrafilters \mathcal{F}_{α} on σ_{α} have been constructed for some ordinal λ so that conditions (1)-(3) hold. If some $\sigma \in \Sigma \setminus \{\sigma_{\alpha} : \alpha < \lambda\}$ satisfies the condition $\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma$ for all $\alpha < \lambda$, then we put $\sigma_{\lambda} = \sigma$ and embed the *p*filter $\bigcup_{\alpha < \lambda} f_{\lambda}^{\alpha} \mathcal{F}_{\alpha}$ into some *p*-ultrafilter \mathcal{F}_{λ} on σ_{λ} . Otherwise, our construction is complete.

Lemma 8. If $\alpha < \beta < \lambda$, then $\bigcap \mathcal{F}^*_{\beta} \subset \bigcap \mathcal{F}^*_{\alpha}$.

Proof: There is $F \in \mathcal{F}_{\alpha}$ with $F \prec \sigma_{\beta}$ by (2). For any $G \in \mathcal{F}_{\alpha}$, we have $G \cap F \in \mathcal{F}_{\alpha}$ and $G \cap F \prec \sigma_{\beta}$. But then

$$\bigcap \mathcal{F}^*_{\beta} \subset [\bigcup f^{\alpha}_{\beta}(G \cap F)]_{\beta X} \subset [\bigcup (G \cap F)]_{\beta X} \subset [G]_{\beta X}. \qquad \Box$$

Lemma 9. For any neighborhood O of p in βX , there is $\alpha < \lambda$ with $\bigcap \mathcal{F}^*_{\alpha} \subset O$.

Proof: Let $[\hat{O}]_{\beta X} \subset O$ for a neighborhood \hat{O} of p and let π be all maximal members of the cover $\{U \in \mathcal{P} : U \cap \hat{O} \neq \emptyset \Rightarrow U \subset O\}$. For $\sigma = \sigma(\pi)$, there is $\alpha < \lambda$ with $\neg(\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma)$ by (2) or (4). Since $\sigma_{\alpha}(\hat{O}) \in \mathcal{F}_{\alpha}, F = \{V \in \sigma_{\alpha}(\hat{O}) : V \subseteq U \text{ for some } U \in \sigma\}$ belongs to \mathcal{F}_{α} as well. So

$$\bigcap \mathcal{F}^*_{\alpha} \subset [\bigcup F]_{\beta X} \subset [\bigcup \sigma(\hat{O})]_{\beta X} \subset [O]_{\beta X}.$$

Lemma 10. If $\mathcal{R} \subset \pi_0$ is Z-attracted, then $p \notin [\bigcup \mathcal{R}]_{\beta X}$.

Proof: By our construction, K and $[\bigcup \mathcal{R}]_Y$ are closed in normal $Y = X \cup T$ disjoint sets and $p \in [K]_{\beta X}$.

Lemma 11. For any $\alpha < \lambda$ and $\nu \in 3$,

 $\bigcap_{\beta \in \lambda - \alpha} [\bigcup \sigma_{\beta}(\nu)]_{\beta X} \cap (\bigcap \mathcal{F}^*_{\alpha}) \setminus (\bigcup \{ (\bigcup \mathcal{R})^{\varepsilon} : \mathcal{R} \subset \pi_0 \text{ is } Z \text{ -attracted } \})$

is non-empty.

Proof: For any finite sequence $\alpha < \beta_0 < \ldots < \beta_n < \lambda$, $F \in \mathcal{F}_{\alpha}$ and Z-attracted $\mathcal{R} \subset \pi_0$, we shall show by induction that

$$L = \bigcap_{i \le n} (\bigcup \sigma_{\beta_i}(\nu)) \cap (\bigcup F) \setminus (\bigcup \mathcal{R})$$

is non-empty.

Since $\sigma(\pi_0) \preceq_{\mathcal{F}_0} \sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma_{\beta_0}$, we may assume $\mathcal{R} \preceq F \prec \sigma_{\beta_0}$. Since $\sigma_{\beta_i} \prec_{\mathcal{F}_{\beta_i}} \sigma_{\beta_{i+1}}$ for each $i < n, G_i \prec \sigma_{\beta_{i+1}}$ for some $G_i \in \mathcal{F}_{\beta_i}$. Define $F_0 = f^{\alpha}_{\beta_0} F \cap G_0$ and $F_{i+1} = f^{\beta_i}_{\beta_{i+1}} F_i \cap G_{i+1}$. Then $F_i \in \mathcal{F}_{\beta_i}$, $F_i \prec F_{i+1}$, and $\bigcup F_i \supseteq \bigcup F_{i+1}$. For $F_n \in \mathcal{F}_{\beta_n}$, we denote

$$\hat{F} = \{ U \in F : V \subset U \text{ for some } V \in F_n \}.$$

Then $\bigcup \hat{F} \supseteq \bigcup F_n$ implies $\hat{F} \in \mathcal{F}_{\alpha}$ and $p \in [\bigcup \hat{F}]_{\beta X}$. Since $\mathcal{R} \preceq \hat{F}$ and $p \notin [\bigcup \mathcal{R}]_{\beta X}$ by Lemma 10, $\bigcup \mathcal{R} \cap U = \emptyset$ for some $U \in \hat{F}$. There are pairwise different $U_{\beta_i} \in F_i$ with

$$U_{\beta_n} \subset \ldots \subset U_{\beta_1} \subset U_{\beta_0} \subset U \subset X \setminus \bigcup \mathcal{R}.$$

Consider the initial segment $\{U_{\beta_1}, \ldots, U_{\beta_n}\}$. For $i = 1, \ldots, n$, we can replace $U_{\beta_i} \in \sigma_{\beta_i}$ with the same or another member $U_{\beta_i}^0 \in \sigma_{\beta_i}$ of the same σ_{β_i} so that

$$\bigcap_{i=1}^{n} U^{0}_{\beta_{i}} \cap U_{\beta_{0}}(\nu) \neq \emptyset$$

because σ_{β_i} is nice. By our construction, since U_{β_i} is a proper subset of U_{β_0} , $U^0_{\beta_i} \subset U_{\beta_0}(\nu)$. Possibly, $\{U^0_{\beta_1}, ..., U^0_{\beta_n}\}$ enjoys a new embedded order, directed by subscript β^0 and having some coinciding sets:

$$U^0_{\beta^0_n} \subset \ldots \subset U^0_{\beta^0_{k+1}} \subset U^0_{\beta^0_k} = \ldots =$$
$$U^0_{\beta^0_1} \subset U_{\beta_0}(\nu) \subset U_{\beta_0} \subset U \subset X \setminus \bigcup \mathcal{R}.$$

Let $U^0_{\beta_1^0}$ be a maximal member of $\{U^0_{\beta_1^0}, ..., U^0_{\beta_n^0}\}$ and let $U^0_{\beta_{k+1}^0}$ be a maximal proper subset of $U^0_{\beta_1^0}$. Consider $\{U^0_{\beta_{k+1}^0}, ..., U^0_{\beta_n^0}\}$. For i = k + 1, ..., n, we replace $U^0_{\beta_i^0} \in \sigma_{\beta_i^0}$ with the same or another member $U^{1}_{\beta^{0}} \in \sigma_{\beta^{0}_{i}}$ of the same $\sigma_{\beta^{0}_{i}}$ so that

$$\bigcap_{i=k+1}^n U^1_{\beta^0_i} \cap U^0_{\beta^0_1}(\nu) \neq \emptyset.$$

Possibly, $\{U^1_{\beta^0_{k+1}}, ..., U^1_{\beta^0_n}\}$ enjoys a new embedded order, directed by subscript β^1 : $U^1_{\theta^1} \subset ... \subset U^1_{\theta^1} \subset U^1_{\theta^1} = ... =$

$$U_{\beta_{n}^{1}}^{1} \subset \ldots \subset U_{\beta_{k_{0}+1}^{1}}^{1} \subset U_{\beta_{k_{0}}^{1}}^{1} = \ldots = U_{\beta_{k+1}^{1}}^{1} \subset U_{\beta_{k}^{0}}^{0}(\nu) \subset U_{\beta_{k}^{0}}^{0} = \ldots = U_{\beta_{1}^{0}}^{0} \ldots$$

Consider $\{U^1_{\beta^1_{k_0+1}}, \ldots, U^1_{\beta^1_n}\}$. For $i = k_0 + 1, \ldots, n$, we replace $U^1_{\beta^1_i} \in \sigma_{\beta^1_i}$ with the same or another $U^2_{\beta^1_i} \in \sigma_{\beta^1_i}$ so that

$$\bigcap_{i=k_0+1}^n U_{\beta_i^1}^2 \cap U_{\beta_{k+1}^1}^1(\nu) \neq \emptyset$$

and obtain

$$U_{\beta_n^2}^2 \subset \ldots \subset U_{\beta_{k_1+1}^2}^2 \subset U_{\beta_{k_1}^2}^2 = \ldots = U_{\beta_{k_0+1}^2}^2 \subset U_{\beta_{k_0}^1}^1(\nu) \subset U_{\beta_{k_0}^1}^1 = \ldots = U_{\beta_{k+1}^1}^1 \ldots$$

and so on until, for some $m \leq n$, the initial segment is empty, i.e., $k_m = n$. Then $U^{m+1}_{\sigma_{\beta_{k_m}^{m+1}}}(\nu) \subset L$ is not empty and our proof is complete.

Define from now on $p_{\alpha}(\nu)$ to be any point of the set in Lemma 11. Then $p_{\alpha}(\nu) \in \mathbb{Z}$ by lemmas 8 and 9.

Lemma 12. If $q \in Z$ and $q \notin (\bigcup \mathcal{R})^{\varepsilon}$ for any Z-attracted $\mathcal{R} \subset \pi_0$, then $q \in [T]_{\beta X}$.

Proof: Let $[Oq]_{\beta X} \cap T = \emptyset$ for some neighborhood $Oq \subset \beta X$. Then, by our construction,

$$[Oq]_{\beta X} \setminus Z \subset \bigcup \{ U^{\varepsilon} : U \in \pi_0 \}.$$

Since every $K_n = [Oq]_{\beta X} \cap \hat{O}_n$ is compact, $K_n \subset (\bigcup \pi_{0n})^{\varepsilon}$ for some finite $\pi_{0n} \subset \{U \in \pi_0 : U^{\varepsilon} \cap K_n \neq \emptyset\}$. Then $\mathcal{R} = \bigcup_{n \in \omega} \pi_{0n}$ is Z-attracted and $q \in (\bigcup \mathcal{R})^{\varepsilon}$.

Lemma 13. The point p is a butterfly-point in $[T]_{\beta X}$.

Proof: Consider $F_{\nu} = \{p_{\alpha}(\nu) : \alpha < \lambda\}$ for each $\nu \in 3$. By the previous lemma, $F_{\nu} \subset [T]_{\beta X}$.

If $\gamma < \lambda$, then $\{p_{\alpha}(\nu) : \alpha < \gamma\} \subset [\bigcup \sigma_{\gamma}(\nu)]_{\beta X}$. As the last sets are disjoint for $\nu \in 3$, then $\{F_{\nu} : \nu \in 3\}$ is cellular. So p belongs to F_{ν} for no more then one unique F_{ν} .

For any neighborhood $Op \subset \beta X$, there is $\gamma < \lambda$ with $\bigcap \mathcal{F}_{\gamma}^* \subset Op$ by Lemma 9. For all $\alpha \in \lambda \setminus \gamma$, we have $p_{\alpha}(\nu) \in \bigcap \mathcal{F}_{\alpha}^* \subset \bigcap \mathcal{F}_{\gamma}^* \subset Op$ by Lemma 8. So $\{p_{\alpha}(\nu) : \alpha \in \lambda - \gamma\} \subset Op$. As $\{p_{\alpha}(\nu) : \alpha < \gamma\} \subset [\bigcup \sigma_{\gamma}(\nu)]_{\beta X}$, the sets $[F_{\nu} \setminus Op]_{\beta X}$ are disjoint for $\nu \in 3$. But then $[F_{\nu}]_{\beta X} \setminus \{p\}$ are mutually disjoint and at least two of them ensure that p is a b-point in βX .

By Proposition 5, our proof is complete.

References

- A. Błaszczyk and A. Szymański, Some non-normal subspaces of the Čech-Stone compactification of a discrete space, Proc. Eighth Winter School on Abstract Analysis and Topology, Prague, 1980.
- [2] Eric K. van Douwen, Transfer of information about βN N via open remainder maps, Illinois J. Math. 34 (1990), no. 4, 769–792.
- [3] A. A. Gryzlov, On the question of hereditary normality of the space βω_ω (Russian), in Topology and Set Theory. Ed. A. A. Gryzlov. Izhevsk: Udmurt. Gos. Univ., 1982. 61-64
- [4] Sergej Logunov, On hereditary normality of compactifications, Topology Appl. 73 (1996), no. 3, 213–216.
- [5] _____, On hereditary normality of zero-dimensional spaces, Topology Appl. 102 (2000), no. 1, 53–58.
- [6] _____, On remote points, non-normality and π -weight ω_1 , Comment. Math. Univ. Carolin. 42 (2001), no. 2, 379–384.
- [7] _____, On remote points and butterfly-points (Russian), Izvestia instituta matematiki i informatiki 3 (2002), (26), 115–120.
- [8] _____, On non-normality points and metrizable crowded spaces, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523-527.
- [9] J. van Mill, An easy proof that $\beta N \setminus N \setminus \{p\}$ is non-normal, Ann. Math. Sil. 2(1984), 81-84.
- [10] M. Rajagopalan, $\beta N N p$ is not normal, $\beta N N p$ is not normal J. Indian Math. Soc. (N.S.) **36** (1972), 173–176.
- [11] Walter Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23 (1956), 409-419.

 \square

- [12] B. É. Šapirovskil, The imbedding of extremally disconnected spaces in bicompacta, b-points and weight of pointwise normal spaces (Russian), Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1083–1086.
- [13] Saharon Shelah, Proper Forcing. Lecture Notes in Mathematics, 940. Berlin-New York: Springer-Verlag, 1982.
- [14] Jun Terasawa, On the non-normality of $\beta X \setminus p$ for non-discrete spaces X, Topology Proc. 27 (2003), no. 1, 335–344.
- [15] \dots , $\beta X \setminus p$ are non-normal for non-discrete spaces X, Topology Proc. **31** (2007), no. 1, 309–317.

DEPARTMENT OF ALGEBRA AND TOPOLOGY; UDMURTIA STATE UNIVER-SITY; UNIVERSITETSKAYA 1, IZHEVSK 426034 RUSSIA *E-mail address*; teddys**G**udm.net

394