COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

Fundavit Academicus E. ČECH

Editum cura Facultatis mathematico-physicalis Universitatis Carolinae Pragensis

On non-normality points and metrizable crowded spaces

Sergei Logunov

Abstract. $\beta X - \{p\}$ is non-normal for any metrizable crowded space X and an arbitrary point $p \in X^*$.

Keywords: nice family, p-filter, p-ultrafilter, projection, non-normality point, butterfly-point

Classification: 54D35

1. Introduction

We investigate non-normality points in Čech-Stone remainders $X^* = \beta X - X$ of metrizable spaces.

There are several simple proofs that, under CH, $\omega^* - \{p\}$ is not normal for any $p \in \omega^*$ [7], [8]. "Naively" it is known only for special points of ω^* . If p is an accumulation point of some countable discrete subset of ω^* , or if p is a *strong R-point*, or if p is a *Kunen's point*, then $\omega^* - \{p\}$ is not normal (Blaszczyk and Szymanski [1], Gryzlov [2], van Douwen respectively).

What about realcompact crowded spaces? Is $\beta X - \{p\}$ non-normal whenever X is realcompact and crowded and $p \in X^*$? Probably, but we are unaware of any counterexample. On the other hand, the answer is "yes" if X is a locally compact Lindelöf separable crowded space with $\pi w(X) \leq \omega_1$ and p is remote [5]. It is also "yes" if X is a second countable crowded space and either X is locally compact, or X is zero-dimensional, or p is remote [3], [4], [6]. Using the regular base of Arhangel'skiĭ J. Terasawa has omitted the separability condition in the last two cases. He has obtained the affirmative answer in case if X is a metrizable crowded space and either X is strongly zero-dimensional or p is remote [10]. Here, introducing p-filters into this construction, we answer affirmatively for all metrizable crowded spaces.

B. Shapirovskij [9] has defined a *butterfly-point* (or *b-point*) in a space X. We call $p \in X^*$ a *butterfly-point* in βX , if $\{p\} = \operatorname{Cl} F \cap \operatorname{Cl} G$ for some $F, G \subset X^* - \{p\}$ with $\operatorname{Cl}(F \cup G) \subset X^*$.

Theorem. Let X be a non-compact metrizable crowded space. Then any point $p \in X^*$ is a butterfly-point in βX . Hence $\beta X - \{p\}$ is not normal.

2. Proofs

From now on a space X is non-compact, metrizable and crowded, i.e. X has no isolated points, and $p \in X^*$ is an arbitrary point. We denote by cl- and Clthe closure operations in X and βX respectively, $3 = \{0, 1, 2\}$.

Let π and σ be an arbitrary families. A set $U \in \pi$ is called a maximal member of the family π if $U \subsetneq V$ for no $V \in \pi$. If members of π are mutually disjoint (with closure), then π is called (strongly) cellular. We write $\pi \prec \sigma$ if $U \cap V \neq \emptyset$ implies $U \supseteq V$ for any $U \in \pi$ and $V \in \sigma$. We denote by $\text{Exp } \pi$ the set of subfamilies $\{F : F \subset \pi\}$. We define a projection f_{σ}^{π} from $\text{Exp } \pi$ to $\text{Exp } \sigma$ by $f_{\sigma}^{\pi}F = \{V \in \sigma : \bigcup F \cap V \neq \emptyset\}$ for every $F \in \text{Exp } \pi$.

A maximal locally finite cellular family of open sets is called *nice*. The introduced in [6] *cellular refinement* Cel $(\pi) = \{ \bigcap \phi - \text{cl } \bigcup (\pi - \phi) : \phi \subset \pi \}$ of π is nice, if π is an open locally finite cover of X.

Let π and σ be nice families. A collection $\mathcal{F} = \{F\}$ of subfamilies $F \subseteq \pi$ is called a *p*-filter on π , if $p \in \operatorname{Cl} \cup \bigcap_{k=0}^{n} F_k$ for any finite subcollection $\{F_0, \ldots, F_n\} \subset \mathcal{F}$. Obviously, the union of any increasing family of *p*-filters is also a *p*-filter. So by Zorn's lemma there are maximal *p*-filters or *p*-ultrafilters \mathcal{F}' on π , that is $\mathcal{F}' = \mathcal{G}$ for any *p*-filter \mathcal{G} with $\mathcal{F}' \subseteq \mathcal{G}$. Adding step-by-step new subfamilies from $\operatorname{Exp} \pi - \mathcal{F}$ to \mathcal{F} , while possible, we can embed any *p*-filter \mathcal{F} into some *p*-ultrafilter \mathcal{F}' . If *p* is not a remote point, distinct *p*-ultrafilters \mathcal{F}' may exist. But each of them contains $\pi(O) = \{V \in \pi : V \cap O \neq \emptyset\}$ for any neighborhood O of p and its image $f_{\sigma}^{\pi}\mathcal{F} = \{f_{\sigma}^{\pi}F : F \in \mathcal{F}\}$ is a *p*-filter on σ . We write $\pi \prec_{\mathcal{F}} \sigma$, if there is $F \in \mathcal{F}$ with $F \prec \sigma$. We denote $\bigcap \mathcal{F}^* = \bigcap \{\operatorname{Cl} \bigcup F : F \in \mathcal{F}\}$.

For every $i \in \mathbb{N}$ we fix an open locally finite cover \mathcal{P}_i of X so that diam $U \leq \frac{1}{i}$ for any $U \in \mathcal{P}_i$ and $\{V \in \mathcal{P}_j : V \cap U \neq \emptyset\}$ is finite for each j < i. Then it is easy to see that

$$\mathcal{P} = \bigcup_{i \in \mathbb{N}} \mathcal{P}_i$$

is a regular base of Arhangel'skiĭ, i.e. for any point $x \in X$ and for any its neighborhood $O \subset X$ there is another neighborhood $O' \subset X$ of x with the following properties: $O' \subset O$ and at most finitely many members of \mathcal{P} meet booth O' and X - O simultaneously. Moreover, for any cover $\pi \subset \mathcal{P}$ the family of its maximal members is a locally finite subcover of X.

By induction (see, also, [6]) we define the families of non-empty open sets \mathcal{D}_k and $\mathcal{W}_k \subset \mathcal{P}$ for all $k \in \mathbb{N}$ as follows:

$$\mathcal{D}_1 = \operatorname{Cel}\left(\mathcal{P}_1\right).$$

If a nice family $\mathcal{D}_k = \{U\}$ has been constructed, then

$$\mathcal{W}_k = \{U(\nu) : U \in \mathcal{D}_k \text{ and } \nu \in 3\}$$

is strongly cellular with cl $U(\nu) \subset U$ for any its member and

$$\mathcal{D}_{k+1} = \operatorname{Cel}\left(\mathcal{D}_k \cup \mathcal{W}_k \cup \mathcal{P}_{k+1}\right).$$

By our construction, if $U, V \in \bigcup_{k \in \mathbb{N}} \mathcal{D}_k$ are not disjoint, then either $U \subseteq V$ or $U \supseteq V$. For any $U \in \mathcal{P}_k$ the family $\hat{U} = \{V \in \mathcal{D}_k : V \cap U \neq \emptyset\}$ is locally finite and nice in U. For any locally finite cover $\pi \subset \mathcal{P}$ we denote $\sigma(\pi)$ all maximal members of the family $\bigcup \{\hat{U} : U \in \pi\}$. Then $\sigma(\pi)$ is nice. Define

 $\Sigma = \{ \sigma(\pi) : \pi \subset \mathcal{P} \text{ is a locally finite cover of } X \}$

and put $\sigma(\nu) = \{U(\nu) : U \in \sigma\}$ for any $\sigma \in \Sigma$ and $\nu \in 3$.

Lemma 1. If π is an open locally finite cover of X, then Cel (π) is nice.

PROOF: Let $\phi \subset \pi$. If $\bigcap \phi \neq \emptyset$, then ϕ is finite. So $\bigcap \phi$ and, hence, $\bigcap \phi - \operatorname{cl}(\pi - \phi)$ is open.

Let $\phi, \phi' \subset \pi$ be different and $U \in \phi - \phi'$. Then $\bigcap \phi \subset U$ and $\bigcap \phi' \cap U = \emptyset$, because $U \in \pi - \phi'$.

Let a neighborhood O of $x \in X$ meet finitely many members of π , say U_1, \ldots, U_k . If $\phi \subset \pi$ contains some $U \in \pi - \{U_1, \ldots, U_k\}$, then $\bigcap \phi \subseteq U \subseteq X - O$. So O meets at most 2^k members of Cel (π) .

As π is a locally finite family of open sets, $K = \bigcup \{ \operatorname{cl} U - U : U \in \pi \}$ is nowhere dense. Let $x \notin K$ and $\phi = \{ U \in \pi : x \in U \}$. Then $U \notin \phi$ implies $x \notin \operatorname{cl} U$. So $x \in \bigcap \phi - \operatorname{cl} \bigcup (\pi - \phi)$, because π is conservative, and $\operatorname{Cel}(\pi)$ is maximal. Our proof is complete.

Lemma 2. There is a well-ordered chain $\{\sigma_{\alpha} : \alpha < \lambda\} \subset \Sigma$ and *p*-ultrafilters \mathcal{F}_{α} on σ_{α} with the following properties for all $\alpha < \beta < \lambda$ and $f_{\beta}^{\alpha} = f_{\sigma_{\beta}}^{\sigma_{\alpha}}$:

- (1) $p \notin Cl U$ for each $U \in \sigma_0$;
- (2) $f^{\alpha}_{\beta}\mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta};$
- (3) $\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma_{\beta};$
- (4) for any $\sigma \in \Sigma \{\sigma_{\alpha} : \alpha < \lambda\}$ there is $\alpha < \lambda$ with $\neg (\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma)$.

PROOF: Let π be all maximal members of the cover $\{U \in \mathcal{P} : p \notin Cl U\}$ and let \mathcal{F}_0 be any *p*-ultrafilter on $\sigma_0 = \sigma(\pi)$.

For any ordinal β assume *p*-ultrafilters \mathcal{F}_{α} on $\sigma_{\alpha} \in \Sigma$ have been constructed for all $\alpha < \beta$. If some $\sigma \in \Sigma - \{\sigma_{\alpha} : \alpha < \beta\}$ satisfies the condition $\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma$ for all $\alpha < \beta$, then we put $\sigma_{\beta} = \sigma$ and embed the *p*-filter $\bigcup_{\alpha < \beta} f_{\beta}^{\alpha} \mathcal{F}_{\alpha}$ into some *p*-ultrafilter \mathcal{F}_{β} on σ_{β} . Otherwise our construction is complete.

Lemma 3. $\bigcap \mathcal{F}_0^* \subset X^*$.

PROOF: Let $x \in X$ be an arbitrary point. Then $F = \{U \in \sigma_0 : x \notin cl U\}$ satisfies, obviously, $x \notin cl \bigcup F$ and $F \in \mathcal{F}_0$.

Lemma 4. If $\alpha < \beta < \lambda$, then $\bigcap \mathcal{F}^*_{\beta} \subset \bigcap \mathcal{F}^*_{\alpha}$.

PROOF: There is $F \in \mathcal{F}_{\alpha}$ with $F \prec \sigma_{\beta}$ by (3). For any $G \in \mathcal{F}_{\alpha}$ we have $G \cap F \in \mathcal{F}_{\alpha}$ and $G \cap F \prec \sigma_{\beta}$. But then

$$\bigcap \mathcal{F}^*_{\beta} \subset \operatorname{Cl} f^{\alpha}_{\beta}(G \cap F) \subset \operatorname{Cl} (G \cap F) \subset \operatorname{Cl} G.$$

Lemma 5. For any neighbourhood O of p in βX there is $\alpha < \lambda$ with $\bigcap \mathcal{F}^*_{\alpha} \subset O$.

PROOF: Let Cl $O' \subset O$ for a neigbourhood O' of p and let π be all maximal members of the cover $\{U \in \mathcal{P} : U \cap O' \neq \emptyset \Rightarrow U \subset O\}$. For $\sigma = \sigma(\pi)$ there is $\alpha < \lambda$ with $\neg(\sigma_{\alpha} \prec_{\mathcal{F}_{\alpha}} \sigma)$ by (3) or (4). As $\sigma_{\alpha}(O') \in \mathcal{F}_{\alpha}$ then $F = \{V \in \sigma_{\alpha}(O') : V \subseteq U \text{ for some } U \in \sigma\}$ also belongs \mathcal{F}_{α} . So $\bigcap \mathcal{F}_{\alpha}^* \subset \text{Cl } \bigcup F \subset \text{Cl } \bigcup \sigma(O') \subset \text{Cl } O$.

Proposition 6. For any $\alpha < \lambda$ and $\nu \in 3$ there is a point $p_{\alpha}(\nu) \in \bigcap \mathcal{F}_{\alpha}^{*}$ such that $p_{\alpha}(\nu) \in \operatorname{Cl} \bigcup \sigma_{\beta}(\nu)$ for all $\beta \in \lambda - \alpha$.

PROOF: Let $\alpha < \beta_0 < \ldots < \beta_n < \lambda$ be any finite sequence and $F \in \mathcal{F}_{\alpha}$. Our idea is to find non-empty $W \in \bigcup_{i < n} \sigma_{\beta_i}$ so that

$$W(\nu) \subseteq \bigcap_{i \le n} \bigcup \sigma_{\beta_i}(\nu) \cap \bigcup F.$$

At the first step of induction we put $\Delta_0 = \{\sigma_{\beta_i} : i \leq n\}, \Theta_0 = \emptyset$ and choose $W_0 \in \bigcup \Delta_0$ as follows: We may assume $F \prec \sigma_{\beta_0}$. For any i < n there is $G_i \in \mathcal{F}_{\beta_i}$ with $G_i \prec \sigma_{\beta_{i+1}}$. We denote $F_0 = f_{\beta_0}^{\alpha} F \cap G_0$ and $F_{i+1} = f_{\beta_{i+1}}^{\beta_i} F_i \cap G_{i+1}$. Then $F_{i+1} \succ F_i$ and $\bigcup F_{i+1} \subseteq \bigcup F_i$. Any pairwise intersecting $U_i \in F_i$ make up an embedded sequence $U_n \subseteq \ldots \subseteq U_0 \subseteq \bigcup F$. We define $W_0 = U_0$.

For any m < n let $\Delta_m, \Theta_m \subset \Delta_0$ and $W_m \in \bigcup \Delta_m$ has been constructed so that

(1) $\Delta_m \cap \Theta_m = \emptyset;$

- (2) $\Delta_m \cup \Theta_m = \Delta_0;$
- (3) $W_m \subseteq \bigcup F$;
- (4) $W_m \subseteq \bigcup \sigma(\nu)$ for any $\sigma \in \Theta_m$;
- (5) for any $\sigma \in \Delta_m$ there is $U_{\sigma} \in \sigma$ with $U_{\sigma} \subseteq W_m$.

Let $\Omega_m = \{ \sigma \in \Delta_m : U_\sigma = W_m \}.$

If $\Delta_m \neq \Omega_m$, then we put $\Delta_{m+1} = \Delta_m - \Omega_m$ and $\Theta_{m+1} = \Theta_m \cup \Omega_m$. As $\sigma \in \Delta_{m+1}$ are nice, we can choose $U'_{\sigma} \in \sigma$ so that $\bigcap \{U'_{\sigma} : \sigma \in \Delta_{m+1}\} \cap W_m(\nu) \neq \emptyset$. Then $U_{\sigma} \subsetneq W_m$ implies $U'_{\sigma} \subseteq W_m(\nu)$ by our construction. We define W_{m+1} to be the maximal member of embedded sequence $\{U'_{\sigma} : \sigma \in \Delta_{m+1}\}$.

If, finally, $\Delta_m = \Omega_m$, then W_m is as required.

PROOF OF THEOREM: Define $F_{\nu} = \{p_{\alpha}(\nu) : \alpha < \lambda\}$ for all $\nu \in 3$. By our construction, $F_{\nu} \subset \bigcap \mathcal{F}_0^* \subset X^*$ and for any neighbourhood O of p there is $\alpha < \lambda$ with $\{p_{\beta}(\nu) : \beta \in \lambda - \alpha\} \subset \bigcap \mathcal{F}_{\alpha}^* \subset O$. Then the condition $\{p_{\beta}(\nu) : \beta < \alpha\} \subset$ Cl $|\sigma_{\alpha}(\nu)$ implies that the sets Cl $F_{\nu} - \{p\}$ are pairwise disjoint and $p \in F_{\nu}$ for no more then one unique F_{ν} . The other two ensure that p is a b-point in βX .

Our proof is complete.

References

- [1] Blaszczyk A., Szymanski A., Some nonnormal subspaces of the Čech-Stone compactifications of a discrete space, in: Proc. 8-th Winter School on Abstract Analysis, Prague, 1980.
- [2] Gryzlov A.A., On the question of hereditary normality of the space $\beta \omega \setminus \omega$, Topology and Set Theory (Udmurt. Gos. Univ., Izhevsk) (1982), 61-64 (in Russian).
- [3] Logunov S., On hereditary normality of compactifications, Topology Appl. 73 (1996), 213-216.
- [4] Logunov S., On hereditary normality of zero-dimensional spaces, Topology Appl. 102 (2000), 53-58.
- [5] Logunov S., On remote points, non-normality and π -weight ω_1 , Comment. Math. Univ. Carolin. 42 (2001), no. 2, 379-384.
- [6] Logunov S., On remote points and butterfly-points, Izvestia instituta matematiki i informatiki, Udmurt State University, Izhevsk (in Russian) 3 (26) (2002), 115-120.
- [7] van Mill J., An easy proof that $\beta N \setminus N \setminus \{p\}$ is non-normal, Ann. Math. Silesianea 2 (1984), 81-84.
- [8] Rajagopalan M., $\beta N \setminus N \setminus \{p\}$ is not normal, J. Indian Math. Soc. 36 (1972), 173-176.
- [9] Shapirovskij B., On embedding extremely disconnected spaces in compact Hausdorff spaces, b-points and weight of pointwise normal spaces, Dokl. Akad. Nauk SSSR 223 (1975), 1083-1086.
- [10] Terasawa J., On the non-normality of $\beta X \{p\}$ for non-discrete spaces X, Topology Proc. 27 (2003), 335-344.

DEPARTMENT FOR ALGEBRA AND TOPOLOGY, UDMURTIA STATE UNIVERSITY, UNIVERSITETSKAYA 1, IZHEVSK 426034, RUSSIA

E-mail: slogani@udm.net

(Received June 18, 2005, revised May 22, 2007)