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Abstract

We consider the two-particle discrete Schrédinger operator H with a periodic
potential perturbed by an exponentially decreasing interaction potential. This
operator can be considered as the Hamiltonian of the two-magnon states of
ferromagnets with periodically arranged impurities. The operator H can be
naturally decomposed in the direct integral of spaces that is related to the
analogous direct integral for the periodic operator. We show that the essential
spectrum of H in the cell coincides with the band spectrum of the corresponding
periodic operator. It is proved that for sufficiently small coupling constants
there exists a unique quasi-level (an eigenvalue or a resonance) near the non-
degenerate stationary points of eigenvalues of the periodic Schrédinger operator
with respect to the chosen component of the quasimomentum. The asymptotic
behavior of these quasi-levels for the coupling constant tending to zero is
investigated. We obtain the simple sufficient condition when a quasi-level is
an eigenvalue,

PACS numbers: 03.65.Ge, 02.70.Hm, 76.60.+g

1. Introduction

We consider the Hamiltonian on /?(Z?) given by

H=Hy+Vn)+Wn, —n;) 1)
with n = (n1, np) € Z?, where
(Hoy)(ng,na) =¥+ Lm) + ¢ (ny — L no) + Yr(ny, na+ D+ ¥ (ny,ma — 1),
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V(n) is a real function periodic in ny, ny with period 7 > 0 (if V (n) is periodic in n j with
period T; > 0, j = 1,2, then we set T = T1T>), and W(n,) is a real function satisfying the
estimate

[W (n1)] € Ce™ml, a>0. )

We now discuss the physical interpretation of H. A two-magnon state for ferromagnets
(or antiferromagnets) may by written in the form

V= ) ¥um)S; S0 3)
ny>ny, [ —ny|=1

(see [11). Here 4 (nq, no) are amplitudes, S,J,’j is the atomic spin creation operator for the atom
located at the lattice position # j, and [0) is the ground state. The state W is the eigenvector of the
Heisenberg Hamiltonian [1]. By means of the Bethe ansatz, it can be proved (see [1]) that the
function ¥ (1, n2) satisfies the discrete Schrédinger equation of the form Hor = Ay, A e R,
Consider now a ferromagnet with periodically arranged impurities. In this case, under some
conditions (see [2]), the Schrédinger equation has the form (Hy + V(n))¥ = Ay, where
V(n) = U(n) + U(ny) for a certain periodic function U. Further, in our approach, we have
the infinity sum in (3). Therefore instead of boundary conditions (see [1]), we introduce
the potential W(n; — ny) describing the interaction between the one-magnon states. So,
we obtain the Hamiltonian of the form (1). Note that within this context, the function
¥ (ny, na) is symmetric and, consequently, the function W(n;) should be even. A notion of
the quasimomentum (the system momentum) may be rigorously introduced by means of the
direct integral decomposition (see section 3).

The spectral properties and the eigenvalues of H with V = 0 were investigated in (3, 4]
for zero-range interactions. In the continuous case, the eigenvalues of the similar Hamiltonian
were studied in (5] also for delta potentials.

The aim of this paper is to investigate the spectrum and the asymptotic behavior of quasi-
levels (i.e., eigenvalues and resonances) of the operator H in the cell. We also obtain the
simple sufficient condition when a quasi-level is an eigenvalue,

We denote by o (A) and o, (A) the spectrum and the essential spectrum of the operator
A, respectively.

2. Periodic operator

Let w; C Z* and let w, be a measurable subset of R™. We denote by >(w;) ® L*(w,) the
Hilbert space of all measurable in k functions ¢(n, k) defined on w; x w, such that

o)=Y | o ke k) dk < oo.

new w2
We apply the direct integral construction (see [6]) to our case. Let us introduce the
following unitary operator:

Up: (@) > PQ) B LHRY), 00> 5 Y expl—ile mTlo(+ Tm). (&)

meZ?

Here Qg = [0, 1,..., T — 1]% is the cell of periods and Qf = [~ /T, 7/ T)? is the cell
in the reciprocal lattice. A vector k is called a quasimomentum. We have

(Uo@)(n + Tm, k) = explitk, m)T1(Uop)(n, k) &)
thus (Upw) (n, k) is a Bloch function.

2
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The direct integral is introduced as

&

f 1(Qo) dk = 12(Qo) ® LA(QE) = (L),

2

It is easy to show that Uy Hy Uy '= {Hy (k) }reqy where the operators Hy (k) = Hy(k) + V (n)

act on 12(£2) similar to the operator Hy (if either (n1 == 1, na) or (11, n2 % 1) does not belong

to £y then we use (5)). Clearly, Hy (k) is the matrix depending analytically with respect to k.
Consider the eigenvectors of the operator Hy(k) of the form

1 2
Yin(n, k) = - exp [i (k+ —’;”’-n)] L mewy

corresponding to the eigenvalues

2 2
Ao (k) = 2 l:cos (k] + ”Tm‘) + cos (kz + ”Tm"’ﬂ .

These vectors form the orthogonal basis in [2(€2). Therefore the Green function (the matrix
of the resolvent Ry(k, ) = [Ho(k) — A)~! of Hy(k)) is given by
1 explitk + 2 /T, n —m)]
Goln —m,k,A) = = , 6
oln —m ) Z 2[cos(ky + 21/ T) + cosCha + 27 42/ T)] — A ©

T
Hehy

where n, m € Qq.

We use the notation Ry (L) = (Hy —)~" and Ry (k, A) = [Hy (k) —A])~" for the resolvent
of operators Hy and Hy (k), respectively. Denote by Gy (n, m, 1) and Gy(n,m, &, L) the
Green functions of these operators. From the resolvent identity

Gy(n,m, k, 1) = [1+ Ro(k, V]I Go(n — m, k, A) )
it follows that Gy (n, m, k, A) is analytic in (k, A) in a complex neighborhood of any point
(ko, ko) € B2 x € ¢ C? x C such that A ¢ o (Hy (kg)). (In the case Ag € o[Hy(ko)] we use
the change A > A+ 1/, V 1> V + )/ such that Ao + X' ¢ o [Ho(ko)].)

Note that according to (7) and (6) the Green function Gy (n, m, k, A) can be naturally
extended in n, m to Z2 x Z? and, in addition,

Gv(n+Tu,m k,A) = Gy(n,m — T, k, 1) = explitk, W)T1Gv (n, m, k, A). ®
Lemma 1. If A ¢ o (Hy), then
Gy(n,m, k,A) = Y exp[—i(k, W)TIGy (n+Tu, m, 1) ©)
nez?
and
T 2
Gy(n,m, ) = (——) / Gv(n,m, k, A)dk. 1m
2 Q3

Proof. Using (2) and (8), we getforn € Qp, u € Z
T .
[U5" Ry (e, MUop](n+ Tht) = = /ﬂ * (epr(/c, W]
0

x Y Gv(n,m,k, ”2'1;? >~ expl—itk, v)Tlp(m + Tv)) dk

meSp veZ?

T 2
= [ — Gyin+Tu,m+Tv, k, X\ +Tv)dk
<2n) E E /% vin+Tu,m+Tv k Mpm+Tv)

meSd veZ?

2
= (1.) Z/ Gy(n+ T, m,k, 1) dko(m).
2 meQ o
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Consequently, we have (10). Therefore

27
This proves (9). 0

T\2
Gyin+uT,mk, L) = (—) f explitk, TGy (n, m, k, ) dk,
Q

3. Two-body interaction
Now we pass to the new cell 2 = Z x 2y by means of the unitary operator

@
U132 Z% — Q) Q@ L*(Q*) 12(Q) dk,
Qw

T 172
p(n) — (—) ZeXp(—iKMT)so[n+(M, wT].

2
uez
Here Q* = [~n/T,7/T) and & € Q* is the quasimomentum,
It is easily seen that operators
H{x) = Hy(k) + V(n)+ W(n; —ny)

from the decomposition UHU ™! = {H (k)}ceq+ act on [*(2) analogously to the operator H
taking into account (for Hp(x)) the Bloch property

Un + (T, T), k] = explic Do, k).
‘We use the following notation:
{Hy ()} kear = UHVU ™, {H'()leqe = UHU ™,
Ry, ) = [Hy() =AY, Rc, ) = [H'(k) =]
Denote by G',(n, m, k, 1) the Green function of the operator Ay, ().
The following equality can be proved in the same way as formula (9):

G’V(n, m, K, A) = Zexp(»«—i/c;LT)Gv[n +uT(1,1),m, Al (11

WEZ

Lemma 2. The spectrum of H,, () can be represented as

o[Hy)l= | olHv®). (12)

kytky=x

Proof. Let us choose the cell in the reciprocal lattice for Hy (k) of the form
wy ={-n/T <k <n/T;-n/T <ki+ky <m/T}

We have (see (4))
(Uop)(n, k) = ETE Z exp[—itkimi + komp) Tloln + T (my, ma)]
my,maeZ
= 57—7;— Z CXP["‘i(O’,LL + ICV) T](p[n + T(V, U) + T(/_L, 0)]
JVEZ
)
=\ exp(~iouT)
2 =
T 1/2
" [<“) > exp(—ikvT)pln + T (v, v) + T(k, o>]] ,
2 veZ
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where 0 = ki, 4 = m| ~ my, k = ky + kz, v = my. Thus Uj is unitarily equivalent to the
product of operators U’U, where the unitary operator

U': LAH(Q x Q%) = LA x Q3)
is defined by

7\ 172 .
U'p)(n, o,1) = (—-—- Y exp(~iouT)pln + T (1, 0), 1.
2 HEL
Hence the operators Hy (k;, k — ki) where k) = o € [-n/T, n/T) form the decomposition
of the operators Hy (k) in the direct integral

&
/ L) dky.
[-n/T.%/T)

Denote by A, (ky, « — k) the nth eigenvalue of Hy (k, « ~ k) counted in the increasing order
with their multiplicities. It follows from the perturbation theory that A, (k;, x — k) depends

continuously on k. From this and [6] (theorem X1II1.85) we get (12). O
Lemma 3. Suppose A € o (H{,). Then
T /T
Gyln,m,k, 0y = — Gvyln,m, (ky, € — k1), A]dky. (13)
2 J_zyr

Proof. Using (11), (10) and the Bloch property of Gy (n, m, k, 1), we have
T7\2
Vnm,eA) = Zexp(—-ucuT)( ) / Gyln+uT (1, 1), m,k Aldk
2

HeZ
>
exp[—ipnT (k — k)]
(271-) T -n/T WEZ
/T T 1/2
X / (——) exp(inT k)Gy (n, m, k, A)dky | dk;
~x/T 2n
T ﬂ/T
= — GV[”: m, (kl,l{'—k]),)\-]dkj- (]
21 Syt

Lemma 4. The function W (n; — ns), as a multiplication operator, is the relatively compact
perturbation of Hy (k).
Proof. The function Gyir, m, (ki, x — k), i] depends analytically on k;, hence its Fourier
coefficients

T /2 pm/

(_—') / exp(_iMTk])GV[n:m: (klsK '—kl)ii] dkl

27 —/T

exponentially decrease as || — oco. Using (13) and (2), we obtain

33 Gy m g, DW (i — 1)

nesl mesd
2
<CY 35> / vIn+ (T, 0), m + (T, 0), (ky, x — k;), 3] dky
ueZ veZ nello meSly
x exp(—a'|u) < €'Y Y exp(—a|u — v]) exp(—a’|ul) < 0o,
UEZ veZ
where a’, a” > 0. Thus W(ny — n2) R}, («, i) is the Hilbert-Schmidt operator, g
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Theorem 1. The following relations
aess[H' ()] = o [Hy ()] = | olHy (k)]
kytka=«k

are valid.

Proof. It follows from lemmas 1, 3 and chapter XII1.4 of [6]. ]

4, Quasi-levels

We will treat the case where Ag = Ay(kjg, & — kjp) is a non-degenerate eigenvalue of
Hy (kyg, € — ki) corresponding to a normalized eigenvector ¥y [n, (kio, & — k1o)]. It can
be assumed that Ay and yry depend analytically on &; in some complex neighborhood of &y
(see [6]). In what follows, we suppose that

OAn (kio, k — ko) 0 9%\ (kio, € — ki)
ok, ' 8k12
Further, we assume that the number of points k| 5 kjo such that Ay (k;, ¥ — k) = A for some
M is finite and at these points

Ok, k — k)
—_——— = £ ),
ak; 7

In particular, the above conditions hold if the boundary point of some band of the spectrum
of Hy (k) is determined by Ay (ky, & — ky).
SCtE = k1 — kip.

#0.

Lemma 5. (see [7]). Let U be a sufficiently small complex neighborhood of y. Then for any
A € U there exist two solutions §; = £;(A), j = 1,2 of the equation

Anthp+& 6 ~kig—8) =24

such that & (\o) = §(ha) and E1(A) 5 &) if A # Ao Moreover, there exists the function
& = u(&) analytically depending on A € U such thar 1/ (0) = —1.

Assume that £, (1) > 0if A > Aq. In the following, we often use the parameter £, = &, (L)
instead of A. Respectively, we use the notation G, (n, m, k, &) instead of Gy, (n, m, k, 1), etc.

Let U be a sufficiently small complex neighborhood of zero. Then the functions
£;(A), j = 1,2, generate the analytic covering V over U [8] of two sheets. These functions
form the unique analytic function £ defined on V and £ is the analytic continuation of &, (or
&). Further, sgn(Im &) corresponds to a certain sheet of V.,

The following lemmas 6 and 7 give the different representations of the Green function
Gy (n,m, «, &).

In the following lemma 6, we extend analytically the function G (n, m, k, &) to U \ {0}
in & where U is a neighborhood of zero. We set /W = /JW[sgnW (only for W).

Lemma 6. Let U be a sufficiently small complex neighborhood af zero. Then, for &) € U\ {0},
we have

iYw[n, ko, k — kip))¥nlm, (kio, & — k10)]
£182An (kio, & — k10)/ 0k}

where /TW(n)|g(n, m, k, £1)/ W(m) is the 12(2 x Q)-valued analytic function in &.

6

+g(n,m, k, &),

vin,m k&) =
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For a proof, see the similar result (lemma 2) in [7] for the one-particle periodic (non-
discrete) Schrodinger operator.

Corollary 1. The operator-valued function /[WI|R), (k, £))v'W extends to a complex
neighborhood of zero as a meromorphic function with respect to the parameter ;. Moreover,
this function takes its values in the ser of Hilbert-Schmidt operators (see the proof of
lemma 4).

Remark 1. From the resolvent identity
[+ WIRy (e, ENVWI™ =1~ /IW[R (k, E)VW (14)

and Fredholm theorems [6, 9] we deduce that the operator-valued function /TW[R' (i, &)V W
is meromorphic in &; in aneighborhood of zero and takes its values in the set of Hilbert—Schmidt
operators.

Remark 2. Suppose that V(n) = U(n;) + U(ny). Then we have Ay(k;,k — ki) =
A, (k1) + An, (6 — k1) where Ay, (k1) (A, (k — ko)) are eigenvalues of the one-dimensional
Schrodinger operator Ag(k)) + U (ny) (ho(k — k1) + U (n2), respectively) in the cell [0, T — 1].
Here ho(k)(W)(n) = Yr(n+ D) + ¥ (n — 1).

Weputklj = k10+§j,j =1,2.

Lemma 7. Ler & 5 Q be a sufficiently small complex number. Then the following equality
holds:

iy [n, (ks 6 — ki) Wwim, (ki i~ k)]
BAn ki, & — ky1)/0ky
_ ipy[n, (kig, & — ki)Jywm, (kia, & — ki2)]
Oy (ki2, & — kin)/dky
Here 9 (t) is the Heaviside function and y satisfies the bound.:
[y(n.m,k, 8] < Cexp(—ainy —mil), a>0

vin,m k&)= Hny —my)

v(my ~n)+yn,m, e ).

The proof of the analogous result (for the periodic continuous Schrodinger operator) is
given in [10].

We say that the pole of the operator-valued function /TW|R’ (i, & )+/W with respect to &
(and also the corresponding value A = Ay (kio + &1, & — kig — £1)) is the quasi-level of H' ().

By virtue of (14) and analytic Fredholm theorem {9], a sufficiently small & # Ois a
quasi-level if and only if there exists a nontrivial solution of the equation

0 = —/|WIRy (¢, &)V Wo (15)
in ().
Thus a quasi-level is an eigenvalue or a resonance.
Let & # 0 be a quasi-level. The number
dim ker[1 +/JW[R), (k, §)VW)
is called the multiplicity of &,
Let & > 0 be a (small) parameter. Now we introduce the operator H. (k) = Hy(x) +eW
where Hj(x) is taken from the decomposition U HU™' = {Hy(K)}ees.

Theorem 2. Suppose that
Wy =Y W —m)lywin, (o, k — kio)]i® # 0. (16)

nef
Then we have the following.
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(a) For all sufficiently small ¢ > Q there exists a unique quasi-level A = Ay (kyy, € ~ kyy) of
H'(x) of the multiplicity one.

(b) The following formula holds:

e2W2

~ +0(e).
Pl v — gy o+ 0 {an

A=A

{(c) In addition to that, if
8% Ay (kio, k — ko) /3K] - Wy < 0,

then the quasi-level is the eigenvalue.

Proof. Using lemma 6, we rewrite (15) in the form

iE(pN[n, (kIO, K — klO)] / —
—5182)&1\1(100, Kk — kig)/9k? ,,,}e:g @ylm, ko, € ~ kio)lp(m) + e AE)e(n), (18)

where gy = +/TWIYw, @y = Wy, and A(&;) is the operator with the matrix —/JW[gv/W.
Set f = {1 — eA(&)]e for a sufficiently small . Then, by (18), f = Coy where C = const.
Hence equation (15) has a nontrivial solution for & 3 0 if and only if there exists a solution
of the algebraic equation

ie{[1 — sAED] 0w, iy}
§=——, L (19)
82An (K10, & — k10) /0K
It follows from lemma 6 that the operator-valued function A(&,) is analytic in a neighborhood
of zero. By virtue of the Rouche theorem, there exists a unique solution (quasi-level) &; of
(19). Using (19) and the expansion of [1 ~ gA(£)]17" in the Taylor series, we obtain the

following formula:

— £ _ _ ; )
= Gan o & — Fng) [ 3K (‘4; W (s = m)lwln, o, ¢ = io)]) ) +0(e)

. SWN

" 102y (kio, & — ki0) /9K
By (20) and (16), we have & s 0. Further, from the equality ¢ = C(1 — eA(E)) oy it
follows that the quasi-level multiplicity is equal to unity.

Now we prove the last statement of the theorem. Suppose that ¢ 5 O belongs to 12(Q)
and satisfies (15). Then the function

¥ = —eRy (¢, §)VWp = —eR} (k, 5)WY 1)
satisfies the equation H/(x)y = Ay where A = Ay(kio + &1,k — kg — &1). (Obviously,
@ = /TWI¥). Therefore it will suffice to prove that { € /2(2). By lemma 7, we have

ieyyln, (ke — k1)l
Y(n) = —:
i0An (ki1, & — k11)/ 0k

X Z Yalm, ki, & — kn)lv Wimy — ma)p(m)

meQN{m,<n,}
ieyn(n, (kiz, & ~ ki)]
10y (kia, & = ki2)/ 0k
x> gnm, Gz = ki)Y Womy — ma)p(m)

meSin{m; 2n}

—& Y y(n,m, E)YWin —mye(m). (22)

mefd

o(n) =

+0(@h). (20)




1. Phys. A: Math, Theor. 41 (2008) 435205 L Y Baranova and Y P Chuburin

Suppose 117 2= 0. Using lemma 7, the Cauchy inequality and (2), we obtain

2
Y v m, E)YWm, — my)p(m)

me2

SCY Iy, m gD IW(m; ~mp)| < C1 Y exp(=20lny —my| ~ almy])

me2 meZ

=C, (): exp(—2a(my —ny) —amy}+ Y exp(—20(m — my) — am;]

My 2n) 0m) <n
exp[— (2o +a)n;)
—exp[—(20 +a)]

exp[— (20 +a)]
—exp[—(20 + a)]) ’
(23)

+ Y expl~20(ny — my) + amy] = Ci(expom) 1
my<0

1 +exp[(2o — a)n,]
1 —exp(20 —a)

+exp(—2ony) +exp(-2cm1)1

This expression decreases exponentially as n; — oco. Evidently, the analogous result is true
for n S 0.
We note that from the equality

Un(r, k) == ) Gyln—m, k Ay(R)IV () (m, ) (24)

mes2y
and (6) it follows that
[ (n, k)| < exp({Im &y [{ny] + {Tm &y {[n) (25)

for k belonging to some complex neighborhood of ky € Q§.
Letn) 2 0 and let |&| £ 6 < a/2 where q is taken from (2), From (25) and (2) we get

> Unlm, iy = RV Wm) — mo)p(m)

meQN{m, 2n}
> 72 exp[(26 — a')n1)
<c| Y 28 —d =l ol =1,2
= lem expl a4 )ml]:l ¢ 1 —exp(26 ~a) J
' (26)

By virtne of (22), (23), and (26) we obtain
_ leywIn, (ki e — k)]
VO = G — kan/ak]

x Y nlm, iy, € = kinly/ W (my — ma)e(m) +ne(n) @7)

meQ
for ny 2 0 where n, € [2(Q N {ny > 0}). Similarly,
_deyin, (kia, & — k1))
10Ay (kia, & — k12)/8ky

x Y Unim, (kiz, € — ki) ly/ W (my — ma)p(m) +1-(n) (28)

meQd

Yn) =

forn, € 0and - € 2(Q N {n; < 0)).
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Using (6), we rewrite (24) as

Unln, ik — ki) = —~51: exp ({l(k1, & — k1), )

o Z Z expli@mu/ T, n)lexp[—i((ki, k — k1) + 27 /T, m)]
= w4 2[cos(k; +2mu /T) +cos(kc — k1 + 2 s/ TH] — An(ky, & — ky)

xV(m)¥nim, ki, k — k1)),

Therefore, |/nv] decreases exponentially (increases exponentially) as n; -» o0 or
ny — —oo in the case Imnik; > 0 (in the case Imn k; < 0, respectively), Now the
last statement of the theorem is the consequence of (20), (27), (28), lemma 5 and the equalities
Imk1j=Im§1j,j=1,2. 0

Remark 3. Under the conditions of theorem 2, the eigenfunction 1 (n) of the operator H'(x)
satisfies the estimate

[¥(m)| < Ce™M, a>0
forn € Z.

Remark 4, In the case V = 0,

/ _ explik(n —m)/2] [ ( A )j]ln—ml
Gyn,mye, X)) = — ’
vimm o) VA2 Z16cos(k/2) 8 4cos(k/2)

where g(w) = w — ~/w? — 1. (This function is inverse of w = %(z +1/z).) The formula (17)
can be rewritten as

3= & (4coste/2) + —70_\ 4 0
- 8cos(k/2) ’
where Wy = E,”Ez W(n;). (Here &4 cos(x/2) are the boundary points of the spectrum of
Hj(x).)

Remark 5, Suppose that
82w (kio, k — kip)/8k? - Wy > 0.
Then Im &, < 0 and & is the resonance. In addition, if

> U, (g € = ki)Y W (my ~ mpdp(m) # 0, j=1,2,

meQ
then the solution 1 (n) of (21) (the metastable state) increases exponentially as [n]| — oo (see
the proof of theorem 2).

5. Concluding remarks

Let H/(«) be the Hamiltonian of the pairs of the interacting one-magnon states in a
ferromagnet with periodically placed impurities; here « is a lattice guasimomentum and &
is a coupling constant for the magnon-magnon interaction. Let us consider the periodic
discrete Schrodinger operator Hy (k) (the Hamiltonian without the interaction) where k is a
periodic quasimomentum. Let A, (k) be an eigenvalue of Hy (k) such that (kip, & — k10)
is a non-degenerate stationary point of A,,(k) with respect to k;. Then for any sufficiently
small & there exist the unique quasi-levels (the eigenvalue or the resonance) of H(«) in some
neighborhood of Ag = A, (ki0, ¥ — k10). We obtain the asymptotic formula for this quasi-levels
as ¢ —> 0. We also find the simple condition when a quasi-level is an eigenvalue,
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