
ЮР PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 185007 (5pp) doi:10.1088/0953-8984/21/18/185007

Fano resonances in low-energy electron
transmission through crystalline films
G V Wolf and Yu P Chuburin

Physical-Technical Institute, Ural Branch of Russian Academy of Sciences, Kirov Street 132,
Izhevsk 426001, Russia

E-mail: wolf@otf.fti.udmurtia.su

Received 17 December 2008
Published 11 March 2009
Online at stacks.iop.org/JPhysCM/21/185007

Abstract
It is shown that in crystalline films with a definite lattice symmetry there exist one-dimensional
bands of bound electron states above the boundary of the continuous spectrum. The intensity of
electron reflection near the state of complete transmission of low-energy electrons is found to
have the form of a Fano resonance. We obtain the relationship between the Fano function
parameters and physical characteristics of the system. The conditions for the electron
transparency to arise near the bound state bands in the continuum are determined.

1. Introduction

Recently, considerable attention has been paid to physical
situations in which bound electron states are embedded in a
continuum. [1], Interference of these localized and propagating
states results in the appearance of Fano resonances [2]. The
Fano function gives the most general shape of the resonance
line which involves the Breit-Wigner resonance [3] as a special
case [1,4].

Growing interest in Fano resonances in the physics of low-
dimensional systems is due to the fact that they may provide
important information on the system geometry and potential,
and the effect of spatial confinement on the characteristics
of excited states both below and above the vacuum level.
Fano interference phenomena may potentially be used for the
design of new types of quantum electronic devices such as
Fano transistors [5] and Fano filters for polarized electrons [6].
There is an attractive idea to use Fano phenomena for lasing
without inversion [7].

Present-day nanotechnologies make it possible to obtain
various solid-state systems with the abovementioned properties
(Aharonov-Bohm rings, two-dimensional electronic waveg-
uides, .nanotubes etc). Generation of such systems is often
rather difficult. On the other hand, it is not rare for the bound
electron states to arise above the vacuum level. They occur
in many planar bounded crystals with a definite lattice sym-
metry [8]. Exposure to factors lowering the system symmetry
(deformations, external fields etc) leads to transformation of
these bands of localized states into resonances, and hence to
changes in electron scattering.

In the present paper we analyze the role of the energy
bands of bound states above the vacuum level in the
transmission of low-energy electrons through a crystalline film.

In section 2, within the multiscattering approach, we show
that near the energy of the complete electron transmission the
reflection coefficient at the crystalline film is described by a
Fano function. In section 3 we find the conditions for electron
transparency, and we also derive the dependence of the energy
of complete electron transmission on the parameters of energy
bands of bound states and resonances. Section 4 contains the
concluding remarks.

2. Fano resonances in films of symmetric crystals

Energy bands of bound electron states may exist in films with a
definite lattice symmetry above the boundary of the continuous
spectrum E = k2, where E is the energy and к is a reduced
two-dimensional quasi-momentum (atomic units with energy
in Ry are used).

The electron bound states and resonances of the film
satisfy the homogeneous Lippmann-Schwinger equation;

Е) = - (1)

where £2 is the film unit cell infinite in z, and V(r) is an
effective single-particle potential which is assumed to be zero
far away from the film surface when \z\ > ZQ [9]. The potential
V(r) is invariant under transformations of the film symmetry
group.
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The Green function of free electrons of the crystalline film
has the form:

G<0 )(r, r'; E) =
1

2л S

+ 00-

-dk

- (k u - u ' , \z - z'\)}

-2\SjE - (k +

(2)

Here S is the cross-section of the unit cell Q by the crystal
surface and u(u') is the surface-parallel component of the
vector r(r')- The summation is taken over the vectors of the
reciprocal lattice of the film. Separating out the term with
KM = 0 in equation (2), we can rewrite equation (1) for
z < —го in the form:

k2 - E z'} V(r /)*k(r /, £)dr'

(3)

It is seen from equation (3) that, in the general case, at
E > k2 the first term is a nondecreasing function of г, and the
state Фк(г, Е) is no longer a discrete spectrum state bound in
z. If, however,

L r', £)dr' = (4)

then Фк(г, Е) remains a function quadratically integrable in
Q, even above the boundary of the continuous spectrum. So,
the states bound in z can exist above the continuous spectrum
boundary E = k2. Such a situation occurs in films of cubic
crystals. Let us consider, for example, a (001) fee film, In this
case the Brillouin zone is a square of side In/A, where A is
the plane-lattice constant (figure 1).

Consider next a state with a wavevector к д lying in the
A direction of the two-dimensional Brillouin zone (кд =
(&д,0, 0), |£ д | < я/A). According to the Wigner
theorem [10], the eigenfunctions Фк(г), being solutions of
equation (1), must be transformed according to the irreducible
representations of the group of wavevector k. For the case
under consideration the representations of this group, which
is isomorphic to the group C2 u [11], are presented in table 1.

Consider the function Ф^(г) transforming in accordance

with the representation Д3. The integral in equation (4) can be

written for E > к д as:

(5)± i sin (JE - k\ г)] V(г) Ф^3 to dr-
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Figure I. The two-dimensional Brillouin zone for fee (001) crystal
film.

Table 1. Irreducible representations of (he group of vector кд. Ё is
the identical transformation, Сг is the rotation through the angle ж
about the [100] axis and & is the reflection in the plane z = 0.

А (С2„)

A,
До

Аз
Д4

E

1
1
1
1

Сг

1
™ |

1
-1

a

1
- 1

1

< T C 2

1
1

-1
-1

It. is easily seen that the functions

and

exp(-ik^u) sin(jE -

transform according to the representations Дь and A2,
respectively. The above integral is equal to zero as a
consequence of the well-known selection rule for matrix
elements of the operators of scalar quantities. This suggests
that the states of said symmetry may exist in the continuous
spectrum. The same is true for the states transforming
according to the representation Д4. Similarly, one can
demonstrate that for E > k2 bands of bound states may exist
along the Ё direction (kg = (fcj, Afj, 0), \k%\ < л/A) of the
Brillouin zone of the (001) fee film.

The wavefunction of a scattered electron satisfies the
equation:

Фк(г, Е) = exp[i(k, kz)x] ••L
(6)

where kz — +s/E - k2. In the case of scattered electrons
of low energies lying below the threshold of appearance of a
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nonspecular beam, in the asymptotic region z —*• — oo

Фк(г, E) = exp(iku) [exp(ikzz) + a~(k, ]
(7)

where a_(k, E) is the amplitude of mirror reflection. In view
of (6) and (2) we get:

Й_ (k, E) = - i - f e-
i ( k '" f c- ) r V (г) Фк (г, Е) dr.

^1о«г Ja
(8)

On the other hand,

Фк(г, E) = е ! ( к Л ) г - f Gk(r, r'; E) V(r')
Ja

' dr' (9)

where Gk(r, r'; E) is the one-electron Green function
corresponding to the Hamiltonian H = - Д + V(r) of the
film.

The bands of bound electron states Е„(к) situated above
the continuous spectrum boundary form no surfaces in к space.
When the vector к deviates from the direction along which is
realized a state with wavefunction exponentially decreasing for
|г| —>• oo, this state transforms to a quasi-stationary state with
a finite lifetime. Thus, if along particular directions of the two-
dimensional Brillouin zone there exist bands of bound states
E,,(k), lying above the continuous spectrum boundary, there
exists a surface of resonances E^(k) 'stretched' over these
bands:

- 1Гя(к), (Г(к) > О). (10)

= £„(кд), (Г(кд) = 0). (11)

In the neighborhood of a resonance

Gk(r, r'; E) =
i

EiR)(k) - E
+ Gk(r, r'; E) (12)

where Ф,,к^(г) is the wavefunction of a resonance state of
'energy' Ej;s)(k). The function Gk(r, r'; E) analytically
depends on к and E. In what follows we omit the subscript
n.

Since the film considered is symmetric with respect to the
reflection in the plane z = 0, the wavefunctions of resonance
and stationary states, being solutions of the homogeneous
Lippraann-Schwinger equation, will be either even or odd with
respect to z for any k:

= (-1)' (13)

where j = 1 for states of the odd type and 7 = 2 for those of
the even type. In view of equations (8), (9) and (12), we get

where

(14)

aiO )(k, cos(2*zz)V(r)dr

I I e- i ( k l "^ ) r V(r)G k (r,r ' ; E
m Jn

>)1' drdr'

(15)

is the background scattering amplitude analytical [4, 11] in к
and E, and

WU)(k, E)= j e- i ( k-*' ) rV(r)*^ ) i ;(r) dr. (16)
Ja

Complete transmission occurs for electrons of energy Ex such
that a....(k, E|) = 0, and hence defined by the simultaneous
equations

(17)

us,

(19)

2Skz Г (к)

where

2Я-Г(к) е2(к, Е) + 1

e(k, E) =
Г(к)

is the dimensionless energy parameter used in the Fano reso-
nance theory. If equations (17) and (18) are solvable simultane-
ously, then, under the assumption that the background scatter-
ing is constant over the width of the resonance [4], and hence
for E close to Et, we obtain

28ЦЁ7) Г(к)

x c t )
e(k, E) + i

where, according to (17) and (18), the phase of the background
scattering amplitude is

tan<5(k, E() =e(k, E,). (21)

The reflection coefficient R(k, E) = |a_(k, E)\2 can be
written as

R(k, E) = R0(k,
. [e(k,

(22)

where

and

£2(k, £') + 1 '

q = -tan<5(k, £), (23)

Ло(к, Ex) =
1

4S2r2(k)(£, - k2) ql(K Et)
(24)

Expression (22) coincides with the Fano function
providing the most general description of the resonance line
shape [4]. Figure 2 presents the dependence of the reflection
coefficient on the energy position of the scattered electron
with respect to the transparency energy, described by the
dimensionless variable et = (E — £,)/ Г, and on the spacing
between the energies of the complete electron transmission and
the resonance, given by the parameter s(Et) = № - £(Л ))/ Г.
One can see rapid flattening of the reflection zero dip at Fano
antiresonance as the distance of the resonance energy from
the electron transparency energy increases. For small Г this
picture does not actually depend on the resonance width.
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R/Ro according to (28) we get
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Figure 2. The reflection coefficient.

3. Electron transmission near the bound states in the
continuous spectrum

3.1. The solvability condition for transparency equations

Let us separate out the real and imaginary parts in the second
term on the right of equation (15):

= f f
JQ Jn/n Jn

x Gk(r, r'; E) V(r ')e- i ( i a ; ) r ' drdr'. (25)

The simultaneous system of (17) and (18), the solvability
of which is the condition for the existence of electron
transmission, can be written in the form:

ao + ibo= / cos(2kzz)V (r) dr

(26)

Let us estimate the ratio UQ/ЬО. Consider the resonance for kzd
of the order of unity, where d is the half-thickness of the film.
Away from the resonance, for small kz (kzd «; 1.) the singular
terai in expression (12) may be neglected. So

';E')- (27)

(28)

On the other hand, for small kz, according to (2),

miWf- -'. Г\ «x „ik(u-u')

Gk(r, г'; Е)ъ-— \с-ы ^ 1,
2iSL[ (V)-ikJd]'

where

(V) = — - / V(r)dr
2dS Ju

(30)

(31)

is the mean inner potential of the film. In view of (27) the
condition for the existence of electron transparency (26) can
be written as

(32)

(33)

d(V)

For small k.
bo

до
К

d(V)
« 1 .

Then, using the assumption that the background scattering
depends only weakly on energy, we obtain the transparency
condition near the resonance:

f
Jn

cos{2kzz)V{r)ur

(34)

This equation can be approximately solved with respect to E if

3.2. Transparency energy

According to (11) resonances with small Г(к) satisfying (35)
arise when the surface-parallel component of the momentum
of an incident electron lies near the direction along which a
band of bound states is realized above the boundary of the
continuous spectrum. By (34), in this case the energy of
transmission is

(36)

and condition (35) gives

/ cos(2fc,z) V(v) dr — on(k, E)
Ja

^(k, E)\2

T(kj
• (37)

In particular, near the direction Д of the 2D Brillouin zone
of the film of cubic crystals, к = (k^,ky) where ky is
close to zero. Since the dispersion law of the resonance
Е(Л'Чк) is invariant under symmetry transformations of the

Using the relation [9] between the Green functions Gk(r, r'; E) film considered, in the Д direction d£{R)(kK)/dky = 0 and
дГ(к^)/дку — 0. By virtue of condition (4), the expansion of

, £ t)|2 in powers of ky begins with the quadratic term

L , r"; £)V(t")Gk(r", r'; E) dr" (29) д, Е) k2

y+Q(k2

y), (38)
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where

W(i) ( к л ,Е)= f e" 1 V * ^ 1 V (r) U^)J (r) dr (39)

and Щ1 (г) = ехр(-1кдИ)Ф^ ' W i s t h e P e r i o d i c

part of the Bloch function of a bound state with energy
£ ( к д ) . Therefore the ratio \Wu\k, Et)\2/T(k) appearing in
condition (37) remains finite at any ky as small as desired. In
the approximation quadratic in ky the transmission energy is

Et =
дку

iy+]\WU)(k-A,E)\2

- k|z)V(r)dr - а о (к д > Е)
к). (40)

In the case of smallness of the expression in square brackets
the electron transparency is attained at a scattered electron
energy close to the energy of a bound state with quasi-
momentum corresponding to the surface-parallel component of
the scattered electron momentum.

4. Conclusion

We have shown that for crystalline films the line shape of
electron reflection near the electron transparency point has the
form of a Fano resonance. This result is in agreement with
the conclusion drawn by some authors that the Fano function
gives the most general, description of the resonance line shape,
provided that the background scattering is constant over the
width of the resonance [1,4]. The analysis performed in this
work allowed us to relate the parameters of this function to
physical quantities that characterize both the scattered electron
(E, k) and the film material entering, through the scattering
potential, in the matrix element Wu)(k, E). We have found
the conditions for electron transparency. It is shown that they
can be fulfilled for electron scattering with a surface-parallel
component of the momentum, close to the 2D Brillouin zone
direction along which electron confinement is realized above
the vacuum level. An expression for the energy of complete
electron transmission is obtained by means of the fact that
the dispersion law of resonances generated by these bound

states is invariant under symmetry transformations of the film
considered. In the case of electron scattering with tangential
momentum k, corresponding to the quasi-momentum of an
embedded bound state, this energy is close to the bound state
energy £(k). The results obtained may be applied to ultrathin
quantum-dimensional films required for the modern nano and
picotechnology. As the film thickness increases, provided
that the band of bound energy states is not a surface-state
band, the size-quantized bands approach each other, forming
in the limit projected energy bands of the bulk crystal. In
this case the results obtained in this paper describe the known
effect of a drastic change in electron transmission at the bulk
band boundary [12, 13]. At present, this is successfully
used in experimentally determining the band structure of
photoemission final states [14].
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