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ATTAINABILITY, CONSISTENCY AND THE ROTATION METHOD
BY V.M. MILLIONSHCHIKOV

V.A. Zaitsev and Ye.L. Tonkov

In the present article we shall investigate the conditions under which a principal possibility exists
to construct a control which creates a "good vicinity" for the trivial solution of the equation

x = vo(t,x) + u1vi(t,x) + --- + urvr(ttx)t ( * , z ) e R 1 + n , (1)

where и = (щ,..., u r ) 6 U, 0 G U. Assume, for example, that it is required to construct a control
u{t) € U such that equation (1) be structurally stable (in the neighborhood of zero). It turns out that the
problem is resolvable if the linear equation

x = A0(t)x + u1A1(t)x + ••• + ur Ar(t)x, (t,x)eR1+n, (2)

where Л,-(£) = dv{(t} 0)/dx, is uniformly locally attainable or uniformly consistent (see below Theo-
rem 1 and Corollary 1). It is shown also that the properties of uniform attainability and consistency
are closely related to the so-called "rotation method" of V.M. Millionshchikov, which was applied in in-
vestigations of Lyapunov exponents' behavior for small perturbations of control parameters of the
equation.

1. Nota t ion and definitions

Let Rn ' be a Euclidean space of dimension n, \x\ = yjx'x the norm in Rn (* is the transposition).
If the contrary is not indicated, Latin characters stand for the column vectors, Greek characters
are used for line vectors (thus, we write £x for the scalar product of the vectors f and x); O"(x) —
{y € Rn : \y_- x\ < e), On

t = O?(Q), S""1 = {x € Rn : |x| = 1}. For an arbitrary set D С R" we
denote by D the closure, by int D the interiority, by 0"{D) an ^-neighborhood, and by f —> c(f, D)
the support function (see [1], Chap. 2, § 12), respectively, of a set D.

We shall identify the space M n j m of linear operators from Rm to Rn with the space of matrices
of the dimension n x m (if n = m, then we write Mn); \A\ = max{|.Az| : |x| = 1} is the norm in
Afn,ra. For Q e Mn > m, write BC(Q) = {H G Mn>m : \H - Q\ < e), Bt = Bt(0) (we omit the indices
m and n in notation Be(Q) if it is clear which space we refer to).

Let us introduce a dynamical system (п, /') (п is a complete metric separable space, / f is the
flux on fi, i. e., a one-parameter group of transformations of п into itself, continuous with respect
to {t,u>) G R x ft). We denote by T(W) the trajectory of the motion t —> /'w, 7+(w) stands for a
positive semi-trajectory, Y(w) means the closure of j(u) in the metric of the space ft. Let us recall
that the set E С п is said to be invariant if fE С E for all t € R, and E is termed minimal if it
is invariant, compact, and 7(w) = E for each w € E. If £7 is minimal, then, for every и £ E, the
equality j{w) = T+(w) takes place. Let us note that each compact invariant set E in fl contains
at least one minimal subset. Further, if 7+(w) is compact, then the omega-limit set L+(u) of the
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point и is nonempty (in addition, L+(u>) is invariant and compact), and for any compact E the
zone of attraction W'(E) = {u> G ft : L+(u) С £} of the set E is defined.

To each pair (A, u>), where A = (Ло, Л ь . . . , Аг) : П -> М „ т , т = п(г + 1), and to a vector
и — (ui, . . . , ur) we put into correspondence the equation

x = A0(fcj)x + щА^/'ш)! + • • • + игАг(Ги)х, xeRn. (3)

We shall assume that with every u>Q £ ft the function t —> |A(/'wo)| is Lebesgue measurable,
t+i

bounded on R, and with any г > 0 and N > 0 one can find 5 > 0 such that the inequality max f ]A( f'uj)
\t\<N J

t

 v '

- K(f'uo)\ds < e holds, when p(co, CJ0) < 8 (p is the metric in Q). Equation (3) will be identified with the
pair (A, u>).

Let an arbitrary set U С КГ be given such that 0 E C/. The set U, consisting of all measurable
functions и : R —>• U, will be called the set of admissible controls. Let us fix the equation (A, u).
Let Xu(t, s, UJ) be the Cauchy function of equation (3) for a fixed control и = u(t, u>). Note that the
function Ш —V Xu(t, s,u) is continuous at every point w0 € ft uniformly with respect to (t, s) on any
compact from R2 and, if the control is stationary with respect to the flux, i.e., u(t,u>) — и(/сш),
then Xu(t + r, s + т, w) = Xu(t, s, fTu).

For any д > 0, we construct the attainability set

X)tf(w) = {X € Mn :X = Xu(d,0,u), u(-)eU)

of equation (3) in the space of matrices Mn from the unitary matrix and the set

Bt(I)X0(4,0,<»)={X 6Mn:X = НХ0(4,0,ы), Н £ Bt(I)},

where / is the unitary matrix.

Lemma 1. The following inclusions take place

BVl(Xo(*,O,b>)) С Bt(I)Xo(0,O,u,) С ^(Xo^.O.w)), (4)

where vx = 6r/|X0(0,^,w)|, v2 = e|Xo(*,0,w)|.

Proof. Let H = / + G. Then

Bt(I)XQ(4,0, u) = Xo(0,0, u) + B£X0(ti, 0, u),

where 5£X0(i?,0,w) = {X e Mn : X = GXo(i?,0,w), \G\ < e). Therefore inclusions (4) are equiv-
alent to the inclusions BUl С BeX0(-d,Q,w) С BU3. If A G Be, then \AX0(d,Q,u)\ < e\X0(d,Q,u)\ -
v2; whence follows the second inclusion. If \A\ < vu then |ЛХ0(0,1?,о;)| < е, therefore

A = АХ0(0,4,и>)Хо(4,0,ы) € Bt(I)X0(4,0,u>).

Hence we have the first inclusion. •

Definition 1. Equation (3) is said to be

a) locally attainable if •d > 0 and e > 0 can be found such that the following inclusion holds

b) uniformly locally attainable if д > 0 and e > 0 can be found such that for all w0 G T(W) the
following inclusion takes place
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Lemma 2. Equation (3) is locally attainable if and only if д > 0 and e > 0 exist such that a
control (t, H) —> u(t, H) will be found defined on [0, #] X BC(I) and ensuring the equality

Xu(tf,0,w) = HXD(0,O,u>). (5)

Equation (3) is uniformly locally attainable if and only if д > 0 and e > 0 eit'si suc/i that for
any continuous function H : 7(w) -4 BC{I) a control can be found (t,u>0) —>• u(i,a>0), defined on
[0, i?] X 7(w) and ensuring the equality

Хи(0,О,ыо) = Н(ыо)Хо{0,О,ио). (6)

Proof. Let for и = u(t,H) equality (5) be fulfilled. Then, for all H € BC(I), we have
#X0(i9,0,w) 6 Vif(u>). Consequently, equation (3) is locally attainable.

Obviously, the uniform local attainability implies (6). Let for any continuous H(ui0) equality
(6) be fulfilled. If Ho £ BC(I) can be found such that the matrix HoXQ{0, 0,OJO) is not contained
in V#(u)0), then, for the function H(u>o) = #0 &nd any admissible control equality (6) is not
fulfilled. •

Remark 1. The presence of the property of local or uniform attainability makes it possible
for us (by virtue of (5) or (6)) to "rotate slightly" the Cauchy function of equation (3) by
means of an appropriate control (and by the same token to an influence the solutions' behavior).
Not every equation possesses this property, but, obviously, the equation x = A(t)x + U(t)x, where
the matrix A(t) is bounded and the elements of the matrix U(t) are interpreted as controlling
functions (\U(t)\ < e), is uniformly locally attainable. Thus, (6) is fulfilled and this enabled
Millionshchikov (see [2], [3]), and then other investigators (see [4]) to construct the modern theory
of the Lyapunov exponents; and this method of "rotations" was named V.M.Millionshchikov's rotation
method.

Starting from equation (A, u) we construct the matrix differential equation

Z = A0(fu)Z + (u iA^/ 'w) + • • • + urAr(fu))X0(t, 0, w) (7)

with respect to Z € Mn. We denote by £,j(u>) the set of attainability of equation (7) from the
zero in the time д under action of controls и : [0,7?] -> Kr. Thus, G € £,?(w) if and only if
uG : [0, •d] -> R r can be found such that equation (7) with и = uG(t) has a solution Z{t) which
satisfies the conditions Z(0) = 0, .2f($) = G. By virtue of the linearity of equation (7) the set £^(w)
is a linear subspace in Mn.

Definition 2. Equation (A,CJ) is said to be consistent if t? > 0 can be found such that
Mn. It is termed uniformly consistent if д > 0 and /3 > 0 can be found such that for all w0 G ~y(w)
the set £d(w0) coincides with Mn , and the inequality is fulfilled: |uG(t,cj0)| < 0\G\, 0 < t < •& (here
uc(t,(J0) is a control sending the solution of equation (7) for и = u>0 from the zero to the point G
at the moment t = t?).

R e m a r k 2. It immediately follows from the definition that, if the equation (A, u>) is consistent
(uniformly consistent), then for any r € R + ( r € R) the equation (A, f~Tu>) is consistent (uniformly
consistent).

Remark 3. The definitions of consistency and uniform consistency were introduced in
[5] for the system x = (А(ри>) + В{рш)иС*{Рш))х (elements of the matrix U are treated as
controlling functions) in connection with the problems on control over Lyapunov exponents; they
were studied in [6]-[8] (see the bibliography in [8]).
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2. Uniform local attainability

The principal property of uniformly locally attainable equations is contained in Theorem 1 which
we shall formulate below. This theorem ascertains that, for an appropriate choice of an admissible
control, all the solutions of equation (3) behave as solutions of a model equation with discrete
time, which is given beforehand. Thus, there arises a possibility to affect the asymptotic properties
of solutions of equation (3), for example, to control the Lyapunov exponents or other analogous
characteristics, which cause the asymptotic behavior of the solutions. In some applied problems,
this matter is of importance because it enables us to separate motions (by achieving structural
stability) and refine the asymptotic of motions at the expense of translation to the left of the
exponents. But if the model equation is stationary: yk+i = Qyk (see (10) in Theorem 1 below),
then equation (3) is "almost stationary", i.e., it can be reduced by a Lyapunov transformation to
a stationary equation (Corollary 1).

First, the following two simple lemmas will be proven.

Lemma 3. Let E be an invariant compact set in Q. and for each и G E equation (3) be uniformly
locally attainable. Then it is uniformly locally attainable on the set E, i. e., the constants •д > О and
£ > 0, which participate in the definition of the local attainability and are common for all u> G E,
can be found.

Proof. Let i?(u>) and е(ш) be constants which participate in the definition of the uniform lo-
cal attainabiUty of equation (A, a;). It is required to prove that sup#(u>) < oo, where #(u>) =

E

max{i9(a>), £-1(a;)}. If s\ip6(u) = oo, then a converging (by virtue of the compactness of E) se-
E

quence {u>,} can be found such that 0(w,-) —>• oo. The latter means that equation (A,<2), where
Q — lima;,-, is not uniformly locally attainable. •

Lemma 4. Let E be an invariant compact set in Q,, и : R x E —> U be an arbitrary admissible
control. If for a certain т > 0 and all t £ R+ the equality takes place

u(t,u;) = u(t-T,fTv), (8)

thenXu(t + T, s + r,u>) = Xu(t,s,fTu>), (t,s) G R + x R + . If equality (8) is fulfilled for any т G R and
for all t G R, then the control u(t,u) is stationary with respect to the flux /', i. e., u(t,u) = u(f'u)
for a certain function и : E —> U.

Proof. We introduce into consideration the matrix equation

)X+--- + urAr(ftu;)X, X G Mn, (9)

which corresponds to equation (3). In order to prove the first assertion of Lemma it suffices to
substitute a control (satisfying equality (8)) into equation (9) and realize the change of the time
t -4 t + т. Then, by virtue of the definition of u(t, u>), we get the equality u(t + r,u>) = u(t, fTu>),
which is equivalent to (8).

The second assertion follows from (8) with т = t. •

Theorem 1. Let E be an invariant compact set in П. and for each u> G E equation (3) be
uniformly locally attainable. Then i? > 0 and e > 0 exist such that for any function Q : E -¥ Mn,
satisfying with all и G E the inequality \Q(u)Xo(0, i?,o;) - /| < e, a control u : E x £ - > ( / can be
found guaranteeing for the solution xu(t, x0, u) of equation (3) for all и = u(t, w), all x0 G R", and
all к = 0,1,... the equalities xu(tk,x0,u) = Ук(хо,ш). Here tk = kfi, {yk{xQ,w)}f=0 is a solution
of the problem

и)Ук, Уо = хо, к = 0,1, . . . (10)
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Proof. Let •в and e be as in Lemma 3, and Q(OJ) satisfy the condition of Theorem. For each
и G E, we construct a control u°(-,o>) : [0, fi] —> U, denned on the segment [0, #] and such that (see
Lemma 2) for и = u°(t, u) for equation (3) the inequality Xuo(<?, 0, u) = H(w)X0(d, 0, u) is fulfilled,
where H{UJ) = Q(u>)Xo(0, i?,u>). Consequently, for any x0 G R", the equality xuo(d, xQ,u>) = Q{u)xQ

takes place or, by virtue of (10), zuo(i?,z0,w) = yY(xQ,u).
By the same token, for each к = 0 , 1 , . . . , we have constructed the control uk = u°(t, ftku),

defined on [0,i?] and ensuring for solution of equation (A,ftku>) the equality xuk(#, xQ, ftku) =
)()

Let us "expand" the sequence {uk(t)}^L0, t G [0,i?], onto R + , by defining a control и : R + x E
on each semi-interval Ak = [tk,tk+1) by the equality u(t,w) = u°(t - tk,f

tku) with t G A*. Direct
verification gives us that, for each integer m > 0 for r = tm and all t G R+, equality (8) is fulfilled.
Therefore, by virtue of Lemma 4, one has the equalities Xu(tk+1, tk, u>) = Xu(i9,0, ftku).

Let xu{t, x0,oj) be a solution of the equation (A,u>), which corresponds to the control u(t,u).
Let us show that the sequence {^иС**) 2 ^^)}^! is a solution of problem (10). Indeed,

zu(tk+i,xOyuj) = Xu(tk+1,0,u>)xQ = Xu(tk+1,tk,u>)Xu(tk,0,u))xo.

With regard for the equality Xu(tk+1,tk,u) — Xu(i9,0,/f*u>) we further have

xu(tk+i,x0,u) = Xu($,0,fku>)xu(tk,xo,u)) = Q(ftkcj)xu(tk,xo,tj). О

Corollary 1. Let a set 7(w) be compact and equation (3) be uniformly locally attainable.
Then i? > 0 and e > 0 exist such that for any real matrix Л € Mn, which satisfies the inequality
|ехр(#Л)ЛТ0(0,1?,а;) - / | < e, a control t -> u{t,u) 6 U can be found under which equation (3) is
reducible by a Lyaptmov transformation to the equation у — Ay with a constant matrix A.

The control t —)• u(t,u) possesses the following property: If и is a periodic point (i.e., T > 0
can be found such that / t + T u ; = /'o>), then for a certain integer rn > 1 the control is periodic with
the period equaling mT: u(t + mT,oj) = u(t,oj).

Proof. Let Q(u) = ехр(т9Л), then the matrix Q satisfies the conditions of Theorem 1. By the
matrix Q we construct the control t —> u(t,u>) (as it has been done in the proof of Theorem 1) and
the matrix Ф(0 = Xu(t, 0, u) exp(-fA). By virtue of the well-known theorem of N.P. Yerugin (see [9],
§ 19, p. 119), it suffices to show that the matrix <P(t) is a Lyapunov's matrix.

The function t —> 4>(t) is continuous and bounded on R + . Indeed, from (10) for all x0 G Rn

we have the equality xu(tk,xQ,u) = ехр(^Л)г 0- Therefore Xu(tk,0,u>) = ехр(^Л). By virtue
of the compactness of 7(w), boundedness of A(/'w), and control u(t,u>), on K+ a constant a can
be found such that \Xu(t,s, fTu>)\ < a for all (t,s) £ Ak x Ak, all к = 0 , 1 , . . . , and all r € R+ .
Let t e Afc. Then $(t) = Xu(t,tk,u)Xu(tk,0,u>)<sq>{-tA) = Xu(t,tk,w)ex-p(tk - t)A. Therefore
relation \ Ф(г) J < с holds for all ( £ E + ) moreover, с does not depend on k, In a similar way one can prove
the boundedness of Ф~'(0-

The boundedness of the derivative Ф(<) follows from the equality

= (A0{fu) + u1{t,aJ)A1(fu) + • • • + ur{t,u)Ar{fu))<I>{t) -

and the boundedness of Ф(1).
Let us prove the second assertion of Corollary 1. Note that, first, it follows directly from the

definition of the uniform local attainability and condition 0 £ U that if this property takes place
for some •& and s, then it takes place for all #x > $• Therefore, an integer m > 1 can be found
such that equation (3) is uniformly locally attainable for •d = mT. By virtue of (8) we have
u(t + mT, u) = u(t, fmTu>) = u(t, w). П

3. Uniform consistency and attainability

In this section we shall prove that, in the non-critical case (0 G int U), the uniform consistency
is the uniform local attainability with respect to the first approximation.

By virtue of Lemma 2, the local attainability of equation (3) is equivalent to the resolvability
of equation (9) with condition (5), and the uniform local attainability — with condition (6). Let
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us make in (9) the change Y(t,u>) = Xu(t, 0,w) — Xo(t,O,u>). Then this equation with respect to Y
can be written in the form

Y = Aa(fu)Y + (u.A^fu;) + ••• + urAr(fu))Y +

)o(t,0,u), YeMn, (11)

and condition (5) is divided into two conditions: Y(0,u) = 0, Y(d,u) = GX0(i?, 0,o>), where
G = H — I. We denote by Dd(w) the set of attainability for the time т? > О of equation (11)
from the point Y = 0 under action of the controls и € U (note that 0 (E Ц> (и) С М„). Then the
inclusion 0 € intD^(w) with a certain i9 > 0 is equivalent to the local attainability of equation (3),
while the inclusion Bc С D^(u0), obeyed for some д > 0, e > 0 and all u0 G f(<*>), is equivalent to
the uniform local attainability.

Theorem 2. Let 0 € int U and equation (3) be consistent (uniformly consistent). Then it is
locally attainable (uniformly locally attainable).

Proof. Equation (7) serves in the capacity of a linear approximation (in the neighborhood of
the point и = 0, Y — 0) for equation (11), while the consistency property formulated in terms of
equation (7) is equivalent to the property of complete attainability of equation (7) (i.e., the set of
attainability £,#(ui) of equation (7) coincides with the space Mn). Let us take advantage of theorem
3 in [10]. To this end we "unroll into a vector" the matrices Y and Z in equations (11) and (7), in
theorem 3 in [10] we change the time t —t д — t and replace the words "local controllability, in the
small" with the words "local attainability in the small" (the local attainability in the small means local
attainability of the "unrolled equation" (11), complemented by the following property: For any £ > 0,
5 > 0 can be found such that, if JG| < 6, then the solution Y(t, u), which translates the point
Y(fl,u) = G under an appropriate control, satisfies for all t £ [0,$] the inequality |y(i,cj)| < e).
By virtue of the condition 0 € int U and theorem 3 cited in [10] the first assertion has been proved.

After similar arguments, the second assertion of Theorem will follow from theorem 1 in [11]
(in that paper, the minimality of the set y(u) was required, but this assumption is superfluous: it
suffices to assume that 7(0;) is compact). •

4. Cons i s t ency c r i t e r i a

In this section the results of [5], [8] on the consistency of the equation

x = (A(fcv) + B(fu)UC'(ftuj))x] x £ Г , (12)

where U is an (m x &)-matrix of controlling parameters, are transferred to equation (3). For every
h 3i Pis 6 {1,.. ., n}, we introduce the notation

r-0 r

7,-,>.(0.<") = / ^2e'iJ° Ш.

where ek £ Rn is the fc-th column of the unitary matrix, Ai(t, u) = X0(0, i, и)А1(ри>)Х0^, 0, и), I —
l , . . . , r . Further, we construct (n x n)-matrices r,j(i9,u>) = {7ij>»(tf>w)}p,»=i> hj = l , . . . , n > a n d
an (n2 X ra2)-matrix Г(т9,и;) = {r, J(i?,o;)}"_1, which in what follows will be called the consistency
matrix (of equation (3) on [0,1?]).

Lemma 5. The consistency matrix possesses the following properties:

b) A(i?,u>) > 0, (A is the least eigenvalue of the matrix Г);
c) A(T?1,W) > A(0,w) for i?! > 0.
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Proof. Assertion a) follows from the equality j i j p , = ">_,,•,,,. bet us prove assertion b). It suffices
to show that, for any h - со1(Лш . . . , hXn,..., hnU ..., hnn), the inequality h'Th > 0 is valid. We
have

'Th= £ hiphj.yijp. = f j ^ E hiphi,e-iAl{t,u})cPc:A'l{t,ij)ejdt =
ij,p,s=l Jo 1=1 i,j,p,>=\

= f E ( Ё ыР<ч^)^ ( E V ^ ; ( ^ K ) dt =
J° 1=1 v i,P=i ' v j,.=i J

= Г Е f E A.-peAt.o;)̂ ) Л > 0. (13)
^ ;=i ч .,P=i y

Assertion c) follows from inequality (13). •

We define the functions u\p : [0, i9] X п -»• R and the vector functions u,p via the equalities

ujp(t lw) = e,M,(t Iw)e f ) i , p = l , . . . , n , / = l , . . . , r , (14)

uip(t,u>) = col(utp(t,u>),...,ur

ip{t,u)), i,p=l,...,n. (15)

Lemma 6. The set of vector functions (15) is linearly independent on [0,1?] г/ and on/i/ if
)O

Proof. Let functions (15) be linearly independent on [0, г?], but A(i?,u>) = 0. Then a nonzero
vector Л exists such that T(ti,u)h = 0. Consequently, h'T(ti,u')h = 0 and by virtue of (13) for all
/ = 1,..., r the following equalities are fulfilled

hipe'Al(t,u)ep = O, t£[Oj]. (16)
I,P=I

This is equivalent to the equality £ hipuip(t,u) = 0, t £ [0,1?], which contradicts the linear
i,P=i

independence of functions (15).

Now let us prove the sufficiency of the lemma's conditions. If functions (15) are linearly inde-

pendent, then a nonzero vector h £ Kn can be found such that J2 hipUip{t,u>) = 0, t £ [0, i9].
i,P=i

Consequently, for all t £ [0,i?] and / = l , . . . , r , equality (16) is fulfilled. Therefore, by virtue of
(13), we have h'T(ti,u)h = 0, i.e., A(i?,w) = 0. D

Remark 4 . The matrix T(tf,u>) represents the Gram matrix for the set of vector functions
{«,,,(-,a>)},?p=1 on the segment [0, i?j.

Theorem 3 . The following assertions are equivalent:

a) equation (3) is consistent;
b) i? > 0 can be found with which the matrix T(ti,u) is positive definite (A(i?, u>) > 0);
c) the set of vector-functions {uip(-, u)}?p=v which are defined via equalities (14), (15), is

linearly independent on [0,1?] for a certain i? > 0.

Proof. Conditions b) and c) are equivalent by virtue of Lemma 6. Let us show that b) implies a).
Let A(i?,w) > 0 with a certain i? > 0. For any G £ Mn, it is required to find a control и =
co\(uu...,ur) : [0,i?] -*• R r , under which equation (7) has a solution satisfying the conditions
Z(0) = 0, Z{$) = G. Thus, the problem of construction of u(-) can be reduced to the problem on
resolvability of the equation

, ( , ) , ( ) Q ( , ) , (17)
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where Q(J?,W) = X o(0, •d,u)G. A solution и = c o l ^ , . . . , ur) of equation (17) will be sought in the
n

form u(t) = J2 hj,Uj,(t), where Uj3(t) are defined via equalities (14), (15). By substituting u(t)

into (17) and multiplying (17) by ej from the left and by ep from the Tight, we get the following
system of n 2 algebraic equations

n

E fijpshj, = qiP, i,p=l,...,n, (18)

with respect to hjs. Here g,p = e,*Q(tf,cj)ep. Since А(т9,а>) > 0, system (18) is resolvable: Л =
T~1q, where Л = со1(/гш . . .,hln,.. .,hnl,.. .,hnn), q = col(g n , . . . , qln,..., qnl,..., qnn). Therefore
equation (3) is consistent. Note that for the solution u(t) of equation (17) the following estimate
exists

Further, the boundedness of A^puj) and X0(t, s, u>)for (t, s) G [0, i?]x[0, fl] implies the boundedness
on [0,i?] of the functions Uj,(t). Therefore, a constant /? (independent of G, but depending on #)
can be found such that \u(t)\ < f3\G\, 0 < t < -0.

Let us prove that a) implies c). We choose "9 > 0 from the definition of consistency. It suf-
fices to show that, if equation (17) is resolvable with respect to u(t) for any Q, then the set of
vector functions (15) is linearly independent on [0, &]. Assume the contrary, let a nonzero vec-

n

tor h = col(/in,. ' . ., hin,.. .,hnl,.. .,hnn) exist such that £ niP
uiP(t,u) = 0, ( G [0, #]'. Then

>,P=i

£2 hipe*Ai(t,Lj)ep = 0 for all / = 1 , . . . , г and t G [0, •&]. For the matrix Я = {hip}?p=l, a function

и = col(2 b . . . , u r ) : [0, i?] —> Rr exists such that

/ X o(0, t,w)(u1(t)Al(fw) + • • • + ur(t)Ar(fu>))X0(t, 0, u>) dt = H.
Jo

Therefore, for all i, p = 1, . . . , n,

/ e*Xo(0, t, w)(u1(t)A1(/ tw) + • • • + ur(t)Ar(fu))Xo(t, 0, w)ep Л = hip.
Jo

B y m u l t i p l y i n g e a c h of t h e s e e q u a l i t i e s b y / i i p a n d s u m m i n g o v e r i,p = 1 , . . . , тг, w e g e t

Ё Ч > = Ё К f e'Xo{0,t,u){u1{t)A1{fu) + --- + ur{t)Ar(ftL;))Xo(t,0,u)epdt =
i,P=i i,P=i J °

which contradicts the condition h ф 0. •

Remark 5. Let a triple (A0(u),B(u),C(w)) be given, where В = (bu...,bm), 6,- £ R", С =
( с ! , . . . , ^ ) , c_j G R". Put r = mk and construct the matrices A\ = bic{, A2 = bicj, . . . , Afc =
6ic£, Afc+1 = 62cJ, . . . , A2k = b2c*k,..., Ar_k+1 = bmcl,..., Ar - bmc'k. Then the definition of
consistency for the equation x = А0{ри>)х + щА^ри)! + \- игАг(/*и>)х with the matrices At

thus constructed coincides with the definition of consistency introduced in [5] for equation (12).

T h e o r e m 4. Let a set j{u>) be compact. Then the equation (A, a>) is uniformly consistent if
and only if д > 0 and e > 0 can be found such that for all co0 G т(^) the least eigenvalue A(i?,w0)
of consistency matrix r(i?,w0) satisfies the inequality A(i9,u>0) > e.
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Proof. Let the equation (A,u>) be uniformly consistent. Since the set 7(0») is compact and the
function ujQ —У A(T?,W0) is continuous, u>\ G 7~(w) exists such that A(#,Wi) = min{A(i?,u;0) : u>0 G
7(0»)}. If A(i?,cjj) = 0, then the equation (A, wj) is not consistent, which contradicts Definition 2.

Let A(i?,u;o) > £ for some •& > 0, £ > 0 and all u0 G 7(0»). Then, for each w0 G 7"(w), the
equation (A,u>0) is consistent (Theorem 3). Therefore equation (7) has a solution Z(-) which

n
satisfies the conditions Z(0) = 0, Z(-9) = G, as uG(£,u>0) = £ Л,ри,-,((,а10), where u,p(£,w0)

i,P=i

are defined by equalities (14), (15), while /i,p is to be obtained via equations (18). Since the
estimate |Л| < |r~1(i?,w0)| |g(^,wo)| takes place and |Г~1(т?,ш0)| < £~: for all u0 G y(w), we have
|Л| < £~1|g(t?,w0)|' Further, a constant 77 can be found such that \uip(t,u0)\ < 77 for all (t,u>0) G
[0,1?] X 7(w) and all i,p = 1 , . . . , n (this follows from the boundedness of A on 7(0;) and invariance
of T"(W) with respect to / ' ) . Therefore /3 > 0 can be found such that |uG(t,w0)| < /?|G(u>0)|,

[O,0]X7(w). П

T h e o r e m 5. Lef^{u) be minimal. Then the equation (A,u>) is uniformly consistent if and only
if it is consistent.

The proof is based on arguments in paper [5].

E x a m p l e 1. The system of equations

X1 = u(an(t)x1 + a12{t)x2), x2 = u(a 2 1(t)xj + a 2 2 ( t ) i 2 ) , \u\ < 1,

with coefficients almost periodic in the Bohr sense is uniformly consistent (and, therefore, is uni-
formly locally attainable) if the functions a{j(t) are linearly independent on R (then, by virtue of
almost periodicity they will be linearly independent on [г, т + Щ for a certain д > 0 and all r ) . To
prove this fact it suffices to construct by the matrix A(t) = {uij(t)} the closure (in the topology
of uniform convergence on the straight line) of the set of shifts 7i(A) of the matrix A(t) and give
on 7i(A) a dynamical system of shifts (see [12], Chap. VI, §5). Since H(A) is minimal, by using
assertion c) of Theorem 3 and Theorem 5 we get what is desired.

Let us introduce into consideration the mapping vec : Mn -» Rn , which "unrolls" the matrix
H = {h{j}"j=1 along the lines into a column vector vec H = col(/i n , . . . , / i l n , . . . , / i n l , . . . , hnn). One
can easily verify that, for any C,L,A,M G M n , from С — LA it follows that vecC = (L®/ n )vec A
and the equality С = AM implies vec С = (/„ ® M") vec A (<g> is the Kronecker (direct) product of
matrices, see [13], p. 235). By using equation (A,u>), we construct so-called "large equation" (see
[6])

z = F(fu)z + G(fu)v, z G Rn\ v G Rr, (19)

where F(u) = A0(u) ® I - I <g> АЦи) G Mn*, G(u) = (vecA^w),.. ., vec Аг(ш)) G М „ э х г . We
denote by Z0(t,s, u) the Cauchy function of the equation z = F{pu)z. We shall identify equation
(19) with the triple (F, G,u).

Let us recall that equation (F, G, u) is said to be completely controllable (see [14], Chap. 6, § 20)
if with a certain 1? > 0 the controllability matrix

W{-0,u)= f Zo(0,t,a;)G(/ tcj)G r*(/ ta;)Z*(0,t,w)dt (20)
./0

is definitely positive; it is said to be uniformly completely controllable (see [15]) is 1? > 0 can be
found such that W(tf,w0) is definitely positive uniformly with respect to u0 G 7(w).

T h e o r e m 6. The equation (A, u>) is consistent (uniformly consistent) if and only if the equation
(F,G,u) is completely controllable (uniformly completely controllable).
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Proof. Let r(i?,w) be the consistency matrix of the equation (A,u>). Since Ai(t,u) =
Х0(0,г,и})А,(/'и>)Х0(1,0,и>), we have that vecAt(t,u) = (Xo(0,t,u) <g> X;(t,0,iv))vecj4|(/'w).

Therefore Г(#,о;) = / J2 vecA((£,w) • (vecA/(£,cj))*<ft. Further one can easily verify that
о J=I

Zo(0,t,w)=Jfo(0,t,w)®^(t f0,w). Consequently, Zo(Ott,u)G(ftu)=(yecA1(t,u),...,vecAr(t,u)).
Therefore W(0,u) = f £ vecA,(t,u>) • (vecA,(t,u)ydt. Thus, r(0,w) = W(0,w). П

о (=i

5. Consistency of stationary equation

Consider equation (3) with a constant matrix A(u>) = A and the equation (F, G, со) = (F, G)
corresponding to it. For each v = 1, ..., r, we introduce the matrices LJ - A,, Lk" = A^k_' - Lk_"A0, к
= 1, ..., n2 - 1.

Theorem 7. The equation A ts consistent if and only if among matrices Lk, к — 0, . . . , n 2 — 1,
v = 1,..., г, <Леге ezisi n 2 linearly independent.

Proof. The equation A is consistent if and only if the equation (F, G) is completely controllable,
which is equivalent to the equality rank[G, FG,..., F" ~lG) = n2. By applying to the column
vectors of matrix G the mapping vec"1, we obtain г matrices Z-J,..., Lr

0. We proceed in the same
way with the matrices FkG,k = 1,..., n2 — 1. Then at each step we shall get г matrices L\,..., L\.
Therefore the equality rank[G, FG,..., Fn ~1G] = n2 takes place if and only if the linear hull of
the matrices Lv

k, к = 0, . . . , n 2 — 1, v = 1, . . . , r, coincides with Mn. •

Corollary 2. Assume that Ao commutes with the matrices Ai,...,/4 r . Then the equation A
is consistent if and only if the linear hull of the matrices Ai:..., Ar coincides with Mn.

Corollary 3. Let the matrices Ao, ...,Ar be quasi-triangular, i.e., Av — {B^}'j=1, B"{ 6 M n i ,

E Щ = n, Bfj = 0 for i > j . Then the equation A = (Ao> • • -, Ar) is not consistent.

Proof. For all v = l , . . . , r , к = 0, ...,n2 — 1, the matrices L£ have the same form as the
matrices Av; therefore, their linear hull does not coincide with Mn. •

Example 2. Let us show that the equation A = (A0,Ai) is not consistent. It suffices to
construct a matrix Wo € М„, which satisfies the equalities (vec Wo ̂ -F* 6 = 0 for all к = 0 , . . . , n 2 - l ,
where F = AQ ® I — /<g> A*Q, b = vecAi. One can easily verify the following (vecW0)*Fkb =
b'(vecWfc), к = 0,. . . , n 2 - 1, where Wk = Л5ИЪ_1 - Wk.xAl. If SpAx = 0, then with Wo = I
the following relation is fulfilled Wk = 0, к = 1, . . . , n 2 - 1 and 6*(veciy0) = 0. If Sp Aj ^ 0 and

Ao ф /i/, then we put Wo = AJ ^—T~^^^' ^ n * ^ s c a s e > ^ e е 1 и а и ^ е 5 b*(vecWk) = 0 also hold
op Ai

for all к = 0, . . . , n 2 — 1. If Ao = fil, then F = 0 and we have no consistency.

Corollary 4. If Sp Au = 0 for all v = 1,..., r, then the equation A is not consistent.

Proof. We put WQ = I. Then we have (vec W0)*[G, FG,..., Fn*~lG] = 0.
Example 3. Let the degree of the minimal polynomial of the matrix Ao be equal to m (m > 2).

Then the equation A = (A o , . . . , A r), where r < m — 1, is not consistent. To prove this, it suffices
to construct a matrix Wo G Mn, which satisfies the equalities b*(vecWk) = 0 for all и = 1,.. ., r,
& = 0, . . . , n 2 — 1, where Ь„ = vecA,,, Wk = A*QWk_i - Wk_iA*Q. We shall seek Wa in the form

m - l

Ил

0 = YJ ^'(AQ)' (the matrices (AJ)% 5 = 0, . . . , m - 1, are linearly independent). Then we have
»=o

Wk = 0 for all к = l , . . . , n 2 - 1. Further, the equalities 6*(vecW0) = 0 are equivalent to the
m - l

following ones E »̂ Sp(A^Ag) = 0, /̂  = l , . . . , r , which form a system in г equations with m
5=0

unknowns A o,. . ., Am_i. Since г < m, a nontrivial solution of this system exists, which proves the
absence of the consistency.
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Corollary 5. If all eigenvalues of the matrix AQ differ from each other, then the equation
A = (Ao, • • • i ̂ r), where г < n — 1, is not consistent.

Thus, if the minimal polynomial of the matrix Ao coincides with the characteristic one, then
the presence of r controlling parameters, r < n, is not sufficient for consistency. Let us show
that the quantity of n parameters of the control is sufficient, i. e., matrices A\,..., An can be found
such that the equation A = (Ao, Ai,..., An) will be consistent. Let A" -f ax A""1 -f • • • -f an be the
characteristic polynomial of the matrix Ao. Then the matrix AQ in a certain basis has the form

А> =
О

О

\-otn

1

О
О
1

о \
о

1
-аг/

We construct the matrices
Then

= ene\,...,An = е„е* and, by the equation A, the equation (F,G).

r?

0

0

G =

/0\
0

0о о
- a n _ i l —an_2I • • •

Obviously, rank[G, FG,..., Fn~1G] = n2. Therefore the equation A is consistent.
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