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1. NOTATION AND DEFINITIONS

Let e i , . . . , e n be the canonical basis in the space Rn [i.e., ег = col(l,0,.. . ,0), . . ., е„ =
col(0,..., 0,1)]; let Mm<n be the space of real mxn matrices; let Mn := Mn>n\ let / = [e b . . . , en] €
Mn be the identity matrix; let * be the operation of transposition of a vector or a matrix; let
Jo := /; let Л be the matrix whose first super diagonal is all ones and whose other entries are zero
(i-e4 J i : = YH=1 eie*+i e Mn)\ let Jk := Ji, к EN (thus, Jk = 0 g Mn for к > п); let x(A'A) be
the characteristic polynomial of a matrix A; and let Sp^4 be the trace of a matrix A.

Consider the linear stationary control system

( x , i i ) G M n x R r a , (1)

у = C*x, у 6 Rfc, (2)

specified by a matrix (A,B, C) g Mnin+m+k. Let the control in system (1), (2) be constructed by
the principle of linear incomplete feedback in the form и = Uy, where U € Мт>к is a constant
matrix. The corresponding closed system has the form

x = (A + BUC*)x, x € Шп. (3)

In the present paper, we consider the spectrum control problem for the matrix A + BUC* of
system (3). This problem can be stated in different ways.

(i) There are given matrices A, B, and С (possibly, complex). For an arbitrary set {/Uj}"-i
of complex numbers, construct a matrix (possibly, complex) control U such that the eigenvalues
\j(A + BUC*) of the matrix A + BUC* coincide with the numbers /ij.

(ii) There are given real matrices A, B, and C. For an arbitrary set {/u;,-}"_1 of complex numbers
closed with respect to complex conjugation, construct a real matrix U such that Xj(A+BUC*) = /J,J,
j = l,...,n.

We assume that A, B, and С are real matrices and solve this problem in the second setting; all
obtained assertions and proofs hold for the first setting as well.

Definition 1. We say that the spectrum control problem for the matrix A + BUC* is solvable
if, for any polynomial p(X) = Xn + 'yi^n~1 H b7« of degree n with real coefficients 7$, there exists
a real matrix U g Mm^ such that the characteristic polynomial x(A + BUC*;X) of the matrix
A + BUC* coincides with p(X).

This problem is also referred to as the eigenvalue placement problem [1, p. 159] or the modal
control problem [2, p. 435]. If С = I, then the spectrum control problem is solvable if and only
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if system (1) is completely controllable [3, p. 320; 4]. This problem with m < n and к < п was
studied by numerous authors. A detailed review of known necessary and sufficient conditions for
the solvability of this problem can be found in [1, Chap. Ill, Sec. 7]. In the present paper, we obtain
new conditions for the solvability of this problem for system (3) with coefficients of the form (4)
(see below), which are necessary and sufficient conditions. These results generalize those in [5, 6].

2. RESULTS

Let the coefficients of system (3) have the following form:

A = {aij}i,j=n а м + 1 ^ 0 , г = 1,... ,n— 1; a y - = 0, j>i + l;

г = 1 , . . . , г г , j = l , . . . , m , 1 = 1 , . . . , к ; ,^

СЦ — 0 , i = p + l , . . . , n , l = l , . . . , k ; p £ { 1 , . . . , n } .

Let Л™ + QJIA""1 H \-an '•— x(A; A). Set a0 := 1. We remove the last row from the matrix A and

denote the resulting matrix by Q € Mn-i>n. Let us construct the matrix Si = . Then Si 6 Mn

Q
is a lower triangular matrix, and det Si ф 0. For each I = 2, . . . , n — 1, on the basis of the matrix
Si-i = {s^1}^--!, we construct the matrix S; = {5^}^.=1 as follows: sl

n := 1, s^ := s1^ \— 0,
j = 2,. . . ,n; s[j = s\z\j_i, i,j = 2,...,n. Then the Si are lower triangular nonsingular matrices
for а1П = 1,... ,n — 1. Let S = Sn-i • • • Sx. Then S is a lower triangular nonsingular matrix as
well. Let us construct the matrix

п

G :=
4 = 1

Theorem 1. Let system (3) with matrices of the form (4) be given, and let

Then the coefficients ji of the characteristic polynomial of the matrix A + BUG* can be expressed
via the coefficients of system (3), (4) as follows:

7 i = a 1 - S p ( S 5 J 7 C ' S - 1 J i _ 1 G ) , i = l,...,n. (5)

Theorem 2. The spectrum control problem for system (3) with matrices of the form (4) is
solvable if and only if the matrices

C*S~lJuGSB, C*S-lJxGSB, . . . , C*S-lJn_xGSB (6)

are linearly independent.

Proof of Theorem 2. We prove Theorem 2 as a corollary of Theorem 1 and explicitly write
out a control reducing the characteristic polynomial to a given form. Let

be a given polynomial with real coefficients 7;. The problem is to construct U such that
x(A + BUC*;X) =p(A), i.e., such that relations (5) hold:

1i = on - Sp(SBUC*S-1Ji_1G) =сц-

It is a system of n linear equations for the mk unknown entries upg, p = 1,... ,m, q — 1,. . . , k,
of the matrix U. We introduce the mapping vec : Mk>m —> Rkm, which "expands" the matrix
Я = {fhj}, i = 1,.. ., k, j — 1,. . . , m, by rows into the column vector

v e c # : = со1(/гш . . . , hlm, ...,hku..., hkm).
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Obviously, for any matrices HUH2 £ Mk<m, one has Sp(#*# 2 ) = (vecffi)*(vec#2)- Then the
system of linear equations (5) can be rewritten in the vector form

a-P*v = 7. (7)

Here

P = [vec^S^JaGSB,.. .,\&cC*S-lJn^GSB\ G Мкт>п, a = c o l ( a b . ..,an)e R n ,

7 = col(7 1 ; . . . , 7„) G R", v = vec U* G R fcm.

If the matrices (6) are linearly independent, then r a n k P = n. Then P*P is nonsingular, so
that system (7) is solvable for any 7 and, in particular, has the solution v = P(P*P)~1(a — 7).
Therefore, the spectrum control problem is solvable, and the corresponding control has the form
U = (•vec~1v)*. If the matrices (6) are linearly dependent, then r a n k P < n and system (7) is
unsolvable whenever 7 = a - (3, where /3 $• ImP*; consequently, the spectrum control problem
is unsolvable. The proof of the theorem is complete.

Remark 1. It follows from Theorem 2 that a necessary condition for the solvability of the
spectrum control problem for system (3) with matrices (4) is that mk > n. If the matrices (6)
are linearly independent and mk — n, then the control U ensuring that x(A + BUC*\ A) = p(X) is
unique; if the matrices (6) are linearly independent and mk > n, then such a control is nonunique.

If only I < n of the matrices (6) are linearly independent, then the spectrum control problem
is unsolvable. Nevertheless, the spectrum can be partly controlled; namely, one can ensure that
x(A + BUC*\ A) = p(X) for any 7 = (71,. . . , 7„) in the /-dimensional linear manifold a — ImP*
inK n .

Corollary 1. If the matrices (6) are linearly independent, then system (3), (4) is stabilizable in
the class of constant matrix controls U; i.e., for any x > 0, there exists a constant matrix U such
that the eigenvalues Â  of the matrix A + BUC* satisfy the conditions ReA^ < — x < 0, i = 1,... ,n.

Remark 2. Theorems 1 and 2 hold for system (3) with coefficients of the form (4). Such
systems do not exhaust all possibly systems of the form (3). Nevertheless, the class of such systems
is sufficiently large; in particular, it contains the following important class of systems. Consider
a plant described by a linear ordinary differential equation of order n with constant coefficients in
which a linear combination of m signals and their derivatives of order < n — p is supplied to the
input and к distinct linear combinations of the plant state z and its derivatives of order < p — 1 are
measured (see [6]). Let us construct a linear incomplete feedback control. By using the standard
substitution z — Xi, z — X2, • • •, z^n~1^ = xn, we pass from an equation of order n to a system of
differential equations. Then the coefficients of the resulting system of equations have exactly the
form (4). The corresponding result, Theorem 2 for an ordinary differential equation, was obtained
in [6].

3. PROOF OF THEOREM 1

Let Q' G Mn_i be the matrix obtained from Si by removing the last row and the last column.
We introduce the matrix Аг := 1

Lemma 1. The matrix Аг has the form A\ =

contains numbers such that x(A; A) = x(Au A).

0 I Q' ; here 0 G R" , and the last row

In this lemma, we claim the following. If we multiply the matrix A by Si on the left and by S1

 г

on the right, then the rectangular "support block" Q G МП_1 ) П of the matrix A is shifted right and
down along the diagonal; the last row and the last column of the matrix Q are lost, and the first
column (of height n— 1) consisting of zeros and the first row e\ (of length n) are added; the last row
of the matrix A changes so as to ensure that the characteristic polynomial is preserved. Lemma 1 is
well stated, since the last row of the matrix Ai can be uniquely reconstructed from its characteristic
polynomial. This is a consequence of the following auxiliary assertion.
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Lemma 2. Let P = Q and R = Q

•Ф
be matrices such that the characteristic polynomials

of these matrices coincide, x(-P; A) = x(J?; A). Then the last rows of these matrices coincide.

Proof. Let £ = ( p b . . . ,pn) G Mn* and ^ = ( r b . . . , r n ) G Rn*. Consider the matrix XI - P .
By A,, i — 1 , . . . ,n, we denote the principal diagonal minors of this matrix, Ai = A — а ц , A2 =
(A - an)(A — a22) — 0-120,21, • • •, An = det(A/ — P). Note that, for all i = 1,. . . , n, the degree of the
polynomial A* is equal exactly to г, and the leading coefficient of A* is equal to unity. We expand
det(A/ — P) with respect to the last row; then we obtain

) = ( A - p n ) A n _ x - ( - p n - i ) ( - a n _ i , n ) A n - 2 + ( - P n - 2 ) ( - a n _ i i 7 l ) ( - a 7 l _ 2 , n - i ) A n - 3 + •••

+ ( - l ) T l - 2 ( - p 2 ) ( - a n _ 1 , n ) • • • (-a23)AL + (-l)n-\-Pl)(-an^n) • • • ( - a 1 2 )

— (A — P n ) A n _ 1 - p n _ i a n _ i i n A n _ 2 — Pn-

- ргОп-i.n • • • «23A1 - Pi«„_!,„ • • • a i 2 .

x(R; A) = (A - г„)А„_1 - r n _i0 n _i i n A n _ 2 - rTl_2an_ : i inan_2,n-:i.An_3
— г 2 а , г _ 1 ] П • • •

Likewise,

The characteristic polynomials of the matrices coincide. Let us subtract the first polynomial from
the second one; then we obtain

{pn - r n )A n _ 1 + (pn-i - rn_!)an_i ) nAn_2 H

+ (рг - r 2 )a n _i, n • • • a 2 3Ai + (pi - г 1)а„_ 1 ] П • • • a 1 2 = 0.

The left-hand side is a polynomial of degree < n — 1 in A, the right-hand side is zero, and con-
sequently, all coefficients of A*"1, i = 1,... ,n, are zero. Since the coefficient of A™"1 is zero, and
of the polynomials A i , . . . , A n_! only the polynomial A n -i has degree n — 1, i.e., contains the
monomial A""1, it follows that the coefficient of A n -i is zero; consequently, p n = rn. We proceed
in a similar way. Since akik+i ф 0 and all polynomials Ai have distinct degrees, we have pi = ri for
all г = 1,..., п. The proof of the lemma is complete.

Proof of Lemma 1. Since S\ =

Q
/ € Mn_i. Therefore,

that
- l _

= || 0

. Since Si =

Q'

| e Mn_i,n, о е

Q' I o

in-l

, it follows

* *
The proof of the lemma is complete.

The matrix Аг in Lemma 1 has the form of the matrix A in (4). (All entries lying above
the superdiagonal are zero, and the superdiagonal consists of nonzero entries.) In the matrix Аг,
we remove the last row and add the first row e*. Then we obtain the matrix S2- We construct
the matrix A2 = S2A1S21 = S2S1AS11 S^1 and use Lemma 1. As a result, the "support block"
is again shifted right and down along the diagonal, the characteristic polynomial is preserved,

0 I 0'
the matrix A2 has the form A2 = ; here 0 € Ж""1, and the matrix Q[ G Mn_x is

obtained from the matrix S2 by removing the last row and the last column. By using Lemma 1

0 I I
n — 1 times, we obtain the matrix An_i — 5 n _ ! • • • SiASx

 l • • • Snli =

DIFFERENTIAL EQUATIONS Vol. 45 No. 9 2009
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1352 ZAITSEV

I G Mn-i\ moreover, x(An_i; A) = x{M^)- Consequently, the last row of the matrix i n _ i contains
the coefficients щ of the characteristic polynomial of the matrix A, and the matrix An_x is the
companion matrix for the polynomial x{A\ ^)- We set A = SAS~l, where S = 3n_i • • • Si, and
<p = (—an, — a n _i , . . . , — cxi) G Rn*. Then the following assertion holds.

Lemma 3. The matrix A has the form

A = Л + е„<л

Now let us construct the matrices S := SB and C* — C*^" 1 . We have

X(A + BUC*; A) = x(S(A + BUCKS'1; X) = *(Л + BUC*; A).

Further, we use the following lemma, whose proof will be given below.

Lemma 4. Let A have the form (8), let D G Mn, and let

(8)

(9)

D =
0

F

0

0
F G M n _ p + i i P ;

here p e { l , . . . , n } . Let X(A + D; A) = A" + 71 A""1 + • • • + 7 n . T/ien
aZZ г = 1,... ,n.

(10)

) for

Since S is a lower triangular matrix, it follows that the matrices В and С have the same form
as В and C; i.e., the first p - 1 rows of the matrix В and the last n — p rows of the matrix С are
zero. This implies that the matrix BUC* has the form (10) of the matrix D, that is, the block form

0 0

F 0
follows from Lemma 4 that if

where the right upper corner entry of the matrix F lies on the main diagonal. Then it

~ + BUC*;X) = Xn + 71A™-1 -\ + 7 n , then the relations

= оц-

hold for alH = 1,... ,n. By virtue of relation (9), relations (5) are true, which completes the proof
of Theorem 1. It remains to prove Lemma 4.

4. PROOF OF LEMMA 4

Let us prove preliminarily an auxiliary assertion.

Lemma 5. Let

_ 0 I 0
HuH2eMn: H 0

0

Ho =
H

be two given matrices, where H =

pG { l , . . . , n - 1}. Then

Sp(F 1 J s G) =

iJsG) =

hpp

hn-1,1

G Mn
P)P,

= (hni,...,hnp) G

/or s = n - p,

(11)

(12)

г=р

DIFFERENTIAL EQUATIONS Vol. 45 No. 9 2009
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i.e.,

! J0G) = S p ( # 2 J 0 G ) , ...,

aJn-pG) = S p ( # 2 J n _ p G ) + (aohnp + cta V - i l P H 1- an-phpp),

Sp(#iJn-.p+xG) = S p ( # 2 J n _ P + 1 G ) + (aohniP-i + onhn-iiP-i H + «П

Sp(#a Jn-iG) = S p ( # 2 J n _ ! G ) + (ao/ini + ai/in-i.i + • • • + се„_Р/гр1).

(13)

Proof. We represent the matrix Я1 as the sum Hi — H1 + H", where

H' =

0

H

0

0

0

0

Н" =

0

0

0

0

0

Then Sp(#! JSG) = Sp(# 'J e G) + S p ( # " J e G ) . First, we find S p ( # " J e G ) . Note that Jfa = ek+i for
к + i < n and J^e^ — 0 6 K" for /c + « > n; in addition, Sp(eie^) = J^-, where 5^ is the Kronecker
delta. The matrix H" can be represented in the form H" = ^ = a hnjenej. We have

= Sp(GH"Js) = Sp
fc=0

If s < n - p — 1, then j + s < n — 1, since j < p. Therefore, Sp(ene^+S) = 0 for any j < p;
consequently, щ = 0. If s £ {n — p,..., n — 1}, then j + s coincides with n for j = n — s, and
Sp(ene*+J = 0 for the remaining j e { 1 , . . . ,p}\{n - s}. Therefore, кх — hn>n^sa0. Thus, we have

Sp(H"JsG) = 0 for all s — 0,... ,n — p — 1, (14)
S p ( # " J S G ) = hnin-sa0 for all s = n - p,... ,n - 1. (15)

Now consider the matrices H2 and H'. The matrix H1 can be represented in the form

n—1 p

where Рц — е^ and

i=p j = l

«—1 p

= 2 / îi
г=р j = l

Let us clarify how different Sp(Py-JSG) and Sp(P i+liJ-+1 J,G) are for various values of s. We have

Je-G) = Sp(GP«Je) = Sp J a f c J * e i e * J , = Sp
\k=0

If s G {0,. . . , i - j — 1}, then j + s<i<k + i; consequently, >c2 = 0. If s 6 {i — j , . . . , n — j } , then
0<s~i + j<n — i<n— 1. Then the relation k + i = j + s is t rue for /c = s — i + j ; therefore,
x 2 = as-i+j. If 5 G {n — j f+ 1 , . . . ,7г— 1}, then j + s > щ consequently, e^J s = 0, whence we obtain
x 2 = 0. Further,

n - l

= Sp
\k=0 fc=0

DIFFERENTIAL EQUATIONS Vol. 45 No. 9 2009
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If s € {0, . . . ,i — j — 1}, then j + s + 1 < i + 1 < к + г + l\ consequently, *c3 = 0. If s e
{i — j , . . . ,n - j - 1}, then 0 < s — i + j < n — г — l < n — 1. In this case, the relation
k + i + l — j + s + 1 holds for A; = s — г + j ; therefore, x 3 = a s _i + j . If s e {n — j , . . . , n - 1}, then
j + s + 1 > n; consequently, e*j+1 J3 — 0, whence we obtain MZ = 0. Thus, we have

S p ( i V e G ) = Sp(P i + 1 J - + 1 J eG) = 0, s e {0,... ,г - j - 1},

S p ( P y J , G ) = S p ( P i + 1 J + 1 J e G ) = a,_ i + i , s e { i - j , . . . , n - j - l } ,

S p ( P l i J e G ) = a n _ i , Sp(P i + l j - + 1 J e G) = 0, s = n - j , l j

Sp(P y J e G) = S p ( P i + l i i + 1 J e G) = 0, se{n-j + l,...,n-l}.

Therefore, Sp(Pi:)-JSG) and Sp(P i + i i : / + i JSG) are different only for s = n — j .
Let s € { 0 , . . . , n — p — 1}. Then 5 < n - p — 1 < гг — j - 1 for all j e {1,... ,p}. By virtue of

the first two rows in (16), we have

]T J2 hij Sp(Py JeG) = E E ^ Sp(Pi+w+i JeG);
г=р j=l г=р j = l

consequently, Sp(H'JsG) = S-p(H2JsG), and, by (14), we obtain (11).
Now let s € {n - p , . . . , n — 1}. The value s = ra — j gets in this interval as j runs from 1 to p.

By (16), we have

P v

tf JeG) -

П - 1 P 7 1 - 1 P 7 1 - 1

JsG) = E E / г

г=р ; = 1 г=р j = l

П 1 P

ЕЕ^-

Hence it follows that Sp(H'JsG) = S-p(H2JsG) + Y^lZv hi,n-a0tn-i- By adding the last relation to
formula (15), we obtain (12). The proof of Lemma 5 is complete.

Let us proceed with the proof of Lemma 4. Consider the index к of the row in which the right
upper corner entry of the left lower block F of the matrix D is located. Let us make the proof by
induction on к changing from n to 1. The basis of induction is the following: let к = n. Then

= ( d n b . . . , dnn) € Rn*; consequently,

X(A + D; X)=Xn + («i - dnn)X
n-1

Hence we have 7* = щ — dn>n-i+1. Further,

(7 1 - 1 П

(( ) )
\j = l \fc=0 / / \i=l

n

= / j dnj0n,j+i-l = "n,n-i+l

for all г = 1,... ,n.
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The proof of the basis is complete. The inductive assumption is the following: let the assertion
of the lemma hold for any к € {p + 1 , . . . , n}. Let us show that it holds for к = p as well. Consider
the matrix D in (10). By the inductive assumption, p < n. We introduce the following notation:

L =
dт>\

G M n_P i P, a = (dnl,..., dnp) E

Then D =

0

L

a

0

0

0

We represent D in the form D = D' + D", where

D' = D" =

0

0

0

0

0

Let D := J?D =
0 0

L 0
€ Mn and D := DJX =

0
Mn . Further, we set

К :=
0

<P
€ Mn, where (p = ( - « „ , . . . , - a x ) G Mn*. Then Л = Л + if. The matrix Л +

is a matrix of the form (4). For the matrix A + D, we construct the matrix Г by analogy with
the construction of the matrix Sx for A\ namely, from A + D, we remove the last row and add

„ 0
the first row e\. Then T = I + D = , /p G Mp, In-P G Mn-P. Hence it follows that

T l = I - D. We multiply the matrix T х by the matrix (A + D) on the right and the matrix T
on the left. We have

(A + D)T~l = (A + D){I-D) =A + D-AD-DD.

The first p rows of the matrix D are zero, and the last n — p columns of the matrix D are zero;

therefore, DD = 0. Further, AD = (Jx + K)D = JXD + KD, but JXD = D'\ consequently,

~~ - D - D' - KD = D" - KD. Therefore, ( I + D)T~l = A + D" - KD = A + Kx, where

0

С
G Mn and С = >ф- tpD E Rn*. Next, we have

T(A + D)T~l = (I + D)(A + Kx) = A + Kx + DA + DKX.

Since p < n, it follows that the last column of the matrix D is zero; and since the first n — 1 rows
of the matrix Kx are zero, we have DKX = 0. Further,

DA = D(JX ^ DJX + DK.

We have DJX = D and DiC = 0, since the first n—1 rows of the matrix К are zero. Consequently,
=А + Кг+3. Set A ~ A + Kx. Then

=A + D,

DIFFERENTIAL EQUATIONS Vol. 45 No. 9 2009
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Further, A — Jx + К + Kx\ i.e., the matrix A has the same form as the matrix A and differs
from it only by the last row. Let ф = (—S n , . . . , —Si) £ Rn* be the last row of the matrix A.
Then ф — <f + С = </̂ + V" - ¥>•£>• By multiplying both sides of the last relation by - 1 , we obtain
—ф = -ip — ф + ipD. We rewrite this relation in terms of coordinates starting from the last
coordinate. We obtain

dnp — a.xdn-iiV - • • • — an_pdpp = an-v+i — / , an-idiP, . . . ,
(17)

Let

The matrices 4̂ + D and A + D are similar; therefore,

By the inductive assumption, the assertion of Lemma 4 holds for the matrix A + D since the right

upper corner entry of the left lower block || 0 L \\ of the matrix D lies on the diagonal in the
(p + l)st row. Consequently,

7 i = a i - S p ( 5 j 0 G ) , . . . , 7 n = an - Sp(DJn^G). (18)

The matrix D has the form of the matrix Hi\ and D has the form of the matrix H2 in Lemma 5.
Therefore, by (13), we have the relations

.. ., (19)

(aodnl + a x 4-i,i + • • • + an-Pdpl).

By substituting (17) and (19) into (18), we obtain

7i = 5i - Sp(5j0G) = a, -

7n-p+i = ®n-p+i ~ Sp(DJn-pG) = f awp+i - ^ a n - i d j P j - I Sp(DJn_pG) -

Г=Р / \ t=P /

The proof of Lemma 4 is complete.
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