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SOME PRINCIPAL QUESTIONS OF THE THEORY OF EQUILIBRIUM FIGURES

B. P. Kondratyev

© 1999
Department of Mathematics, Udmurt State University, Universitetskaya 1, 426034, I zhevsk, Russia

The objective of this paper is to describe several problems unifying objective of which is fo obtain an improved understanding
of the theory of equilibrium figures. We will consider three basic questions. Ones begin with a demonstration that on the
Jacobi sequence the bifurcatlon point for the pear-shaped equilibrium figures must coincides with the corresponding neutral
point. Our method is original and independent from Cartan method. In the second section we have proved an impossibility
of the quasiprecession for large class of equilibrium figures with (or without) internal flows. At last, the new formula for the
angular velocity §/vxGp of rotating, self-gravitating homogeneous equilibrium figures
Q@ =1+ =V +n) = (6W, - W)/(xGply)

has been derived, where 7 is the normalized total gravitational potential energy, W; is the «internal» potential energy of the
figure.

JESIKI IIPMHIIUTIOBI IMTAHHS TEOPIL PIBHOBAKHUX ®IT'YP, Komgpartses B, TI. — Onucyrothea mesaxi sagaui,
META SKMX — JOCATHYTH KPauloro posyminas Teopii pisnopaxuux ¢iryp. Jlosopmrscs, mo Ha mocainosnocti Hxo6i Touka
Gidbypxawil jis rpymeBumHOl piBHOBaxkHoi (irypu nosuAHa abiraTics 8 BiANOBIAHOIO HelirpanpHol0 TOuxoro. Hawr merox
opurlnansauit | wesanexnuis Bix merony Kaprana. Jloeesena HeMOXAMBicTh kBasinpenech ansg mmpokoro xiacy pisHo-
Baxuux (iryp 3 suyTpimmiMu rtewismu abo Ges mux. Busegena mosa dopMyma gma xyrosol wsMaxocti ofepramms
Q/VrGp i camMorpaBiTylOUMX ODHOPIAHUX piBHOBaNHMX (iryp
Q" =1+ = V(I + )" = (6W; - W)/(aGpl3)
Je 7 — HopManisoeaHa 3aranbHa rpapitamifiHa norenniansua ewepris, W; — «sayTpimng» norennianvHa enepria ¢irypm.

HEKOTOPBIE TIPUHLIUIIMAJIBHBIE BOITPOCBI TEOPMN PABHOBECHBIX OUI'YP, Konpparses 5. I1. —
OmicaHB! HEKOTOPHIE 3a[auM, OOBEAMHAIOIIAS HEMh KOTOPBIX ~~ ROCTHYB JIYUIIEIO MOHMMAHUS TEOPHH PABHOBECHBIX (HIYp.
Joxasano, UTO Ha MOCHCHOBATENBHOCTH Sko0u TOuka OGuyprauyM JUTS IPYMIEBMIHOM paBHOBecHO (MIypsl AOMKHA
COBITAZATh C COOTBETCIBYIOMIEH HEHTpansHOH TOUKOH., Hamr Meron opurHHaieH M HeaaBucuM oT Metofa Kaprama. Joxasaua
HEBO3MOXHOCT: KBASMUIIPELIECCHM U IIMPOKOTO KJIACCA DABHOBECHBIX (MMIYD C BHYTDEMHMMM TEUEHUSMM Wnu 0e3 nux.
Hakouen, seiRcheHa Homas qiopmyna fms yrmopoit ckopoctst /VAGH DpalieHMS CAMOTPABUTHPYIOUIMX ORHOPOAHMIX
paBHOBECHBIX uryp

Q= 1+5 =V + ) - (6W; — W;)] (#Cols)
THE 7 — HOpManu3oBanHas 0611.[8.51 TPABUTALMOHHAA NOTEHIHUAJIbHAA DHCPIHA, “’, — «BHYTPCHHAID NOTEHIMANLHAY DHEPIrHUs
turyper.

1. REMARKS TO THE STABILITY PROBLEM OF JACOBI ELLIPSOIDS

la. Since the works of H. Poincare and A. M. Liapounov [8, 9] it has been known that on the Jacobi
sequence is the critical ellipsoid

az = N a3 = : -—52-2—- £
o 0.432232; @ 0.345069; 7o 0.284030, (1.1)

which becomes neutral relative to third-harmonic mode of oscillation. Liapounov proved that in this first
bifurcation point and beyond the Jacobi ellipsoids become seqular instability. For judgment about the
secular instability (SI) it is necessary to investigate a small variation of energy E for arbitrary deformation
of the figure with further conditions V = const, p = const and the angular moment L = const:

2 ’
08 = & [grds - L~ [ [Zdsas, 1.2

where g(x) is the total gravity on the surface, 7(x) is the thickness of the deforming layer. The first ierm

exXpresses the perturbation of the energy at fixed field of force, the second term gives the effect of
self-gravitation of the layer. Testing with using Lame functions gives

OE > 0 until the critical point (1.1);

1.3
0E <0 beyond the point (1.1). 1.3
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This fact ascertained gives rise to the conclusion about SI for the supercritical Jacobi ellipsoid.

1b. In 1924 Cartan [4] showed that the point (1.1) is also a point of beginning of dynamical instability
(DI) of the Jacobi ellipsoids. As to DI for the supercritical ellipsoids that the one follows from general laws
of mechanics: if a single frequency for pear-shaped mode of oscillation reaches to zero, then the dynamical
stability is changing by DI. The critical mode in this case is only one as far as interchange by places of
obtuse edge and pointedness simply means for the pear a change of sign of the amplitude. It is characteristic
that for the Maclaurin spheroids, conversely, asymmetric perturbations appear by pairs: v is proportional
to cosk® or sinkf.

Further, the gyroscopic forces nothing changes in the case with one unstable mode (for the pear-shaped
figures), although can change the result for conjugate birth of there (for the Maclaurin spheroids).

1c. More recently the group of investigators [6] advocated that these SI and DI points cannot coincide
on the Jacobi sequence. These authors belief even that the Jacobi ellipsoids suffer neither a secular nor a
dynamical instability from third-harmonic perturbations (ibid, p. 506). See below the point 1d.

But the exponents of this point of view are not entirely consistent, We represent new analytical
arguments in behalf of coincidence of the points 51 and DI on the Jacobi sequence.

Consider a fluid gravitating mass rotating with constant angular velocity Q around the fixed x;-axis.
Small oscillations with the frequency o about the equilibrium state are governed by 3 well-known linearized
equations , '

, o o, 0P . 0P
iou, =5§? + 2Qu,, zou2==§)—c;- - 2Qu;, iou; =§—x—3-, (1.4
where

¢=5[¢~%+9§(x}‘+x%)}

Here, p is the density, ¢(X) is the potential, p(x) is the pressure, u(X) are the components of the velocity
field. From (1.4) we find

1 , 0P 0P
|10 g+ 20 6x2> ’
1 . 0P od
“ m(“’ oy 2 axlj ! €3
_1 0P
3700 9x;
Then the equation of continuity divu = 0 gives us
o*®
24 = 4O? ) 1.6
0" Ad = 4Q Frd (1.6)
But Laplacian @ can be obtain straight from (1.4) also
AD =2Q¢, 1.7
_ 0wy 0wy
Thus, the hydrodynamical equations yield
j D =20 =32 00 (1.8)
h ‘—U_"- _6?3' . *
2
In particular, for o = 0 (this is the neutral point) we have %§ = ( and, consequently,
3
_ 1 @ S 1 30
) % 2 T T 1.9
In this case the equation of continuity gives
%‘;ﬁ.=o, Lo =yt %) (1.10)
3
Further, the boundary condition for the triaxial ellipsoid with semiaxes g
x X X
—E;,ul+éu2+—a—§u3=0 (1.11)

at ¢ = 0, with regard to the formulas (1.9), yields
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500 _x a0 % o (1.12)
_‘_l,%_a_jc_z_ .&g.a-)—c-l-+292§U3

This boundary condition must be fulfilled both on upper (x3 > 0) and lower (x; < 0) part.of surface of
the ellipsoid. Therefore in (1.12) it is required to equate to zero separately both the even (with respect to

X3)
x 30 _% 00

Zox, Ex (1.13)
and the add side
205 1,=0. (1.14)
From the equations (1.13) and (1.14) we find, that in the neutral point must be
u3=0, <I>=<I>(§iz+%%- (1.15)

But far not any disturbing layer can be satisfied to the last condition in (1.15). For example, let the
Jacobi cllipsoid is perturbing by the third-harmonic perturbations

7:/l=aﬂxf + a;xlxg + a2x1x§ + bxl. (1.16)
Then, as it is well known from the potential theory, the variation
6([7 =A0x:f + A‘xlxi + Azxzxg + Bx‘ (1.17)
Wt .
is ,tﬁc”polynom of third order too. Besides, in virtue of
' 2
ap - on ] (1.18)

where

we easily find and the variation

Jq):Zox? + lell}z + sz[a§ (1 b %2%‘ - "'ax_zg') + Exl. (1-19)
1 2

The point is that the variation ® from (1.19) cannot be represented in the desired form (1.15).

Thus, there is not purely the neutral point on the Jacobi sequence. But there is on the sequence only
the bifurcation point for the pear-shaped figures under consideration with the necessary and sufficient
condition

o =0, (1.20)

As far as the bifurcation point is, by definition, the neutral point too, we conclude that the bifurcation
point on the Jacobi sequence for the pear-shaped equilibrium figures must coincides with the neutral point
(L1). Q. E. D.

1d. It is important to stress (in spite of [6]) that the conclusion about instability of the supercritical
Jacobi ellipsoids not at all depends from stability or instability of the pear-shaped figures. Really, a stability
of the Jacobi ellipsoids is investigating by the linear theory, but the analysis of stability of the pear-shaped
equilibrium figures is essentially the non-linear one by parameter of deformation.

2. ON IMPOSSIBILITY OF QUASIPRECESSION OF BOTH LIQUID AND COLLISIONLESS EQUILIBRIUM FIGURES
WITH (OR WITHOUT) INTERNAL FLOWS

2a. Recent advances in astrophysics and stellar dynamics mean that several basic questions about rotation
of nonrigid bodies remain to be answered. Here we shall discuss possible conditions of stationary rotation
for wide class of equilibrium figures,

Consider an isolated configuration (rigid body, mass of fluid or collisionless stellar system).

Definition 1: Quasiprecession is the dynamical regime of nonstationary rotation Q@ = Q(¢) of the system
around fixed point or fixed axis (the latter in ipdividual cases for nonrigid bodies). The vector Q is
determined as the angular velocity of own cobrdinate system of the configuration.

For example, in state of the quasiprecession is a rigid body rotating around fixed point. In general case
this rotation is governed by 3 Euler equations. Here the vector Q changes both own length and direction.
In particular, the axially symmetric rigid body has the regular precession state, when both the total angular
velocity €(f) and the spin angular velocity w, preserve own length and do rotary with the same Q, on

—18—
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circular cones around angular moment L.

2b. A. Poincare, P. Appel [3] and V. A. Antonov [1] previously presented convincing evidence that
any gravitating rotating liquid mass in relative equilibrium state (i. e. without internal velocity field in the
own coordinate system) can has only uniform stationary rotation around fixed axis. In other words, the
figure of relative equilibrium cannot be in this quasiprecession state and has

£ a-o. @.1)

2c. We greatly extended the class of nonprecessing configurations. Let the coordinate axes Ox;x;x;

coincide with the principal axes of the body, which in general case admits the following dynamical

description. It has the density distribution p(x), the gravitational internal potential p(x) and the mean
internal velocity field u(x).

Presence of the internal flows introduces considerable novelty elements in the theory. Really, classical
one-parametric Maclaurin spheroids and Jacobi ellipsoids are only special case in family of two-parametric
Rieman ellipsoids [5]. Fluid Rieman ellipsoids, just as their collisionless partners [7], exhibit, in general,
an «oblique» rotation, i. €. their rotational axes do not coincide with any principal axis of their moment of
inertia ellipsoids. The equilibrium figures with «oblique» rotation have not equatorial symmetry plane (it is
call to mind that the existence of such plane for fluid equilibrium figures without internal flows is postulated
by known Liechtenstein’s theorem). It is important tp underline as far as the directions of the vectors Q
and L for any such equilibrium figures are coincidé'since we cannot classify the equilibrium figures with
«oblique» rotation as quasiprecessing configurations.

Besides, the local stress tensor

Pi(X) =p(X)ay(x). 2.2)
For stellar systems the local velocity dispersion tensor o; has six independent components. In special

case of classical fluid with hydrostatic pressure the internal stresses are isotropic and the ones are described
by the spherical tensor

p(x) 0 0
px)=} 0 p(x) 0. (2.3
0 p(x)
So that all these characteristics do not depend from f. Thus, we assume that the configuration under
consideration really is an equilibrium figure with stationary internal dynamical structure.
It is required to prove that such equilibrium figure cannot be in quasiprecession state and for it the
condition (2.1) is fulfilled.
Proof by contradiction.

Assuming the contrary, the equations of motions for this configuration in the rotating coordinate axes
are [8]

(uVyu =~ é— div(poy) + grad[p + 0.5(Qxx)* 1+ (xXRQ) + 2uxQ), Q2.4
Applying to the equation (2.4) the operator rot, in virtue of the identities
rot(Qxx) =3Q — (QV)x,

rot(ux Q) = (QV)u - Qdivu, 2.5
rot grad =0,
as a result we obtain the equation
P(x) = Q+ (QV)u—-Qdivu (2.6)
(where in the incompressible case divu = 0). Here by the vector function of coordinate y(x) we denote
Y(x) =—;— rot [(uV)u + % div(pog)] . Q.7

From the equation (2.6) we have
Q-9 (@—2— ¥ Q_u_s) ¥ 92%4- Q-’:aul =¥, (x),

6x2 x5 axl 5};
- au2 — Q—lﬁ« Q.lfé- + auz =
$2, + 915'55; Q, (axl + 3x3) Qaéxs Wy(x), 2.8)
- oug Oy _ o (9 | Op) _
B+ Qi+ g~ 2 (ax1 + )
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This is a closed system of 3 linear time-dependent equations with gonstar.lt- coefficients for 3' nnknown
Qi (D), Q(1), Q(?). The system (2.8) is solved by standard mefhc.)d. It ls_suffment here to restrict oneself
to following qualitative interesting features. In case a charactesl;lstlc t?quatlon of the system (2.8) have'real
roots only s5; then the most rapidly increasing are Que’ or Qute™ (S is the constz;nztsyectorz. H;s Ye sqbstltl}te
these solutions in (2.4), then verify, that in the right side appear the terms as e or Q3™ Tt is gasﬂy
now to see that the left side (2.4) is time-independent one at all, and for' compensating of t}.1e mentioned
terms we must require © = 0. The some conclusion about stationary rotation we get as well in other case

when the characteristic equation of the system (2.8) has two complex roots. Q. E. D.

3. A NEW FORMULA FOR ANGULAR YELOCITY OF ROTATING,
SELF-GRAVITATING, LIQUID OR GASEOUS EQUILIBRIUM FIGURES

Consider a gravitating body with the volume V and density distribution p(x), which has the potential

P(x). . .
Definition 2. The internal and external gravitational (potential) energy of the body is respectively
. 2
Wi"' 8nG {(grad(p) dV’ (31)
. 2iy=Ll_ &,
Wem—gag, | (adeydV =gz §p5ds (3.2)
€

where n is the external unit normal to the surface S of this body.
The total potential energy is

- S 2= L
W=W+ W= o { (gradp)’dV =~ - { ppdV. (3.3)
For example, for a homogeneous sphere with radius R and mass M we find
__ 1 Mc _ 1 MG
(O Wem=37R @
where
W 2
7 =1, e 6W=W,=- 320 (3.5)
Let now consider a rotating homogeneous liquid equilibrium figure. From the hydrodynamical equation
1 ,
grad f;— = grad ((p + EQ"(x% + xﬁ)) (3.6)
it follows that
2
(gradp)? = | grad g + QY% — 2% grad g (3.7)
(r = xi; + x)iy). After integrating (3.7) by the volume V we obtain with regard to (3.1)
2 4
- = p &
8nGW, ‘f/ (grad p) dv + 5 I, - 2@ | rgradng, (3.8)

where I; is the moment of inertia of the body about x;-axis. Since the pressure on the free surface S of
the equilibrium figure must be zero

. P,=0, 3.9
then, as easily to see,
2 2
dB| gy = [BA(R) gy =40Gp - 29
£ (gra p) dv {’p A(p) dv 5 1, 3.10)
where we denote the interior energy
n=lf, pdV. (3.11)
Next integrating by parts the third integral in (3.8) and again taking account of (3.9), we find
2
20 [ rgradlay - -4, (3.12)
v P P

Thus, the equation (3.8) can be written in the form

—20—
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2 4
—8GW, = (3?— + 4nG) o+ %’—3. (3.13)

On the other hand, from the virial equations of the second order [7] we have

=311 = 2T, + W, = Q*, + W, 3.1

Inserting I1 from (3.14) into (3.13), after simple transformations we obtain the biquadratic equation
for the normalized value Q* = Q*/ 2nGp)

Q- 20%1 + 1) +
where we denote 5 = W,/ (2nGpl;). Its roots are

6W[ - Wf

—-—;[—@—)1—3—-;0, (3.19

QL=1+nxV({I + 9 - (6W, - W)/ (nGpl,). (3.16)
It is easily to verify on the example of the nonrotating sphere with Q = 0 and W,, W, from (3.4), (3.5),
that in (3.16) we must choose the sign «»,

Thus, we have derived new expression for the angular velocity in terms of W, and W, rather than the

separate components of the potential energy tensor Wy and of the moment inertia tensor I; [5]. We test
the validity of the formula

Qr=1+y-V(1 +75) — (6W, — W)/ (=GColy) 3.17
on the classical Maclaurin spheroids and Jacobi ellipsoids.

4, CONCLUSIONS

The first section includes those subsection in which we argue against with the paper [6]. The touched upon
questions are too much meaning for the all theory of equilibrium figures and we once more turn our
attention to this classical problem.

In the second seclions we prove an impossibility of free precession for liquid and collisionless
equilibrium figures. These results can help correcily interpret some observational date in dynamics of
rotating cosmic bodies.

The formula for angular velocity can be useful in computational search of new exotic nonellipsoidal
equilibrium figure, which can fork from the classical Maclaurin spheroids and Jacobi ellipsoids. Besides, the
formula would be necessary too for clearing up of some general characteristics of rotating equilibrium mass.
The question is about existence proof of new extremum for angular velocity

92
2nGp

which is considerably lower than well-known Crudeli limit. In connection with this certain hint is given in

[21

=< 0.225, 4.1
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