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ABSTRACT

This paper presents a review of the dynamics of collisionless, homogeneous gravi-
tating ellipsoids. A combined method for the construction of self-consistent models is
applied, which takes into account both the elements of the kinetic method and those
of the hydrodynamical description. We study both non-stationary models and equilib-
rium figures. An intrinsic characteristic of these models is that they are all, in one way
or another, degenerate in six-dimensional phase space. We classify the models as five-,
four- and three-dimensional phase eltipsoids.
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1 INTRODUCTION

Recent advances in astrophysics and stellar dynamics mean that classical theories of fluid equilibrium figures are now unsatis-
factory. Thus the development of a new theory of equilibrium figures for gravitating collisionless stellar systems is necessary.

A fundamental problem in stellar dynamics is the construction of self-consistent models for gravitating collisionless systems.
In a series of papers, Freeman (1966a,b,c) described some simple stationary models with quadratic potentials. The rotational
axis in these models is coincident with one of the axes of symmetry. Hunter (1974, 1975) gave greater precision to this theory.

Freeman’s ellipsoidal model has a preferred axis (see Section 2). In six-dimensional phase space, this model (hereafter referred
to as SVa) constitutes a five-dimensional phase ellipsoid.

During 1984-92, we constructed five new self-consistent stationary ellipsoidal models with a quadratic potential (Kondratyev
1984, 1992a,b,¢,d). These new models have the following properties. (i) In general, they exhibit an ‘oblique’ rotation, i.e. their
rotational axes do not coincide with any principal axis of their moment of inertia ellipsoids. (i) They all have a phase degeneracy,
and in the general case they constitute five-dimensional (classes SVb,c) or four-dimensional (classes SIVa,b,c) phase ellipsoids.
(iii) The ellipsoids of classes SVb,c have preferred axes, whereas ellipsoids of classes SIVa,b,c do not usually have a preferred
axis, (iv) The motion of an individual star in each of the three directions of rectangular Cartesian coordinates is represented by a
superposition of two harmonic oscillations with incommensurable frequencies; the locus of the star traces the surface of a
particular type of two-arm figure (the centre of symmetry of this two-arm figure coincides either with some point on the
preferred axis (models SVb,c), or with the centre of the ellipsoid (models SIVa,b,c)). (v) The overwhelming majority of stars in
the models SVb,c¢ touch the inside of the system’s elliptical bounding surface, but, in contrast, the overwhelming majority of stars
in the models SIVa,b,c do not touch any part of the bounding surface.

The study of these models has suggested a formulation and a solution of the following problem (Kondratyev 1984, 1989a): do
the laws of classical dynamics permit motion in a homogeneous collisionless stellar system, such that at any time the system is
ellipsoidal and the mean velocity field is a linear function of position? This mathematical problem is a natural generalization of
the famous Dirichlet-Riemann-Chandrasekhar problem for fluid ellipsoids (Chandrasekhar 1969; Kondratyev 1989a).

The steps taken in solving the main problem are contained in Kondratyev & Malkov (1986, 1987a,b) and Kondratyev
{(1989a,b). Our approach starts from the stellar hydrodynamical equations. We introduce a procedure that leads to a system of
differential equations of order 18. This system governs the motion of the collisionless ellipsoid.

It is important to realize that the hydrodynamical description of a stellar system does not determine the sign of the distribution
function, The second of the two methods used in the construction of models, the kinetic method, is, however, sensitive to the sign
of the distribution function. Here we present some principal elements of the combined method, which overcomes this difficulty
and allows the main problem to be solved.



658 B. P. Kondratyev
2 ESSENCE OF THE PROBLEM

The collisionless, homogeneous, self-gravitating ellipsoid with bounding surface

T 2
Xy Xy X
S+ E=1
a, 4, a;

and internal potential
@=I—A,x]~Ax5—A,x3

consists of stars of equal mass [/=@(0)=constant is the central potential]. The coordinate axes Ox,x,X; coincide with the
principal axes of the ellipsoid.! The ellipsoid in the general case admits the following dynamical description (Kondratyev &
Malkov 1986; Kondratyev 1989a,b).

(i) It rotates about its centre with angular velocity ().
(ii) The mean internal velocity field, u(x), satisfies the equation

d, a2y ~a, A\ [x:/a
u(x)= _02/13 dz azl] .xZ/az . (1)
ajh, —a34, ds x3/a,

(iii) The ellipsoid has time-dependent volume and semi-axes a,(¢) (i=1, 2, 3).
(iv) The equations of motion of an individual star are

d’x 1 )

EF=V ¢+5(9Xx) +xXQ+2(rxX Q) (2)
The star at x has the random (peculiar) velocity

v'=v—u, (3)

in consequence of which the local velocity dispersion tensor is

o(x, )= 0°(£)(1 = m?), (4)
where
2 2
m* =S+ 242 (0ms1) (s)
a, a4, a,
and 0°(1) is the value of the tensor at the origin.
(v) The ellipsoid is governed by 15 time-dependent differential equations. Nine of these equations are the elements of
c;=0(i,j=1,2,3), where
d201 2, 42 2 2 207,
Cn=?—al(l2+l3+92+§23)+2(a3ﬂ.292+ azl3Q3)+2A,a1— a =0, (6)
1

d 2079
Clz=2d_t(ﬂlls_azga)—dlla+d293+a1}~112+‘129192“2‘13)-192_ :12___07 (7)
2
d . . 207,
C13=2a_t(aagz_“allz)—a392+a112+a11113+a39193—2a21193— a =0, (8)
3

"The ‘preferred axis’ is a technical term that means a line segment interior to the equilibrium homogeneous ellipsoid (fluid or collisionless)
along which the centrifugal force is balanced at all points by gravity. In ellipsoids that rotate with angular velocity Q(0, Q,, Q.), the preferred
axis exists when the condition in equation (70) (see Section 5.1) applies, and it lies in the (x,, x3) plane, with a slope of

24,-9Q%__ @,Q; _Q4,

Q,Q, 24;-QF Q4
{Kondratyev 1989a).

k=
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and similarly for different permutations of the indices (1, 2, 3). There are also six equations for ¢%(¢). In matrix form we have

do®
dr

=0°H+H"0", (9)

where the auxiliary matrix H is

-4 =20, -21,+20,
a, a; a,
H=] -221,+20, & Sa,-20, |, (10)
dy a a;
a a a
—1,-2Q, —2i,+20Q, -2
a a a;

and HT is the matrix H transposed. Thus we have a closed system of differential equations for 15 unknowns, a,{7), Q ,(£), 2,{¢) and
oy (i, j=1,2,3).

(vi) The dynamical model has five integrals of motion: the entire energy, the total angular momentum and three special phase
invariants. The phase invariants exist because, in six-dimensional phase space (X, x,, X3, vy, U;, U5), the model's motion
constitutes an affine transformation of the phase ellipsoid Q(x, v')=1 [see equation (12)]. The third phase invariant,

ol 07, o
13=8a%a§a§ 0(1’2 0;2 0(2’3 9 (11)
ol 0% O3
plays a solid role in the theory. First, ; is not an integral of the whole system of 15 equations, but of only six of them (equation 9),
Further, since the model must occupy the ellipsoidal in phase space volume V'=(3! Jm)WI,, the existence of I, ensures that
Liouville’s theorem is valid.
To complete our equations we need the expression (Kondratyev 198%a,b)

20y, 207, 207 v,
1 207, 205 203 v,

Q(x’v,)=m2+8|0"l 200; 203 203 0’3 . 12
v} vy vy, 0
Inside the model,
mi<Qxl, (13)
and Q=1 is the equation of the mode!’s bounding phase ellipsoid in phase space.
In velocity space, the model occupies the ellipsoidal region
; 1 2 .
0 =WUZ=I apw;sl. (14)
The volume of the ellipsoid (14) is
V’=¥nW(Q—m2>W. (15)

The important question here is about the dimensionality of the phase ellipsoid (12) or of the velocity ellipsoid (14). Until now
we have believed and have proved that the condition of phase degeneracy

1,=0 (16)

is valid only for equilibrium figures. From this it follows that all the stationary models have only two parameters. The
dimensionality of the non-stationary models was unknown. Direct analysis enables us to resolve this question: equation (16)
must hold even in the general case of a non-stationary collisionless ellipsoid.



660 B. P. Kondratyev
3 ON THE NECESSITY OF PHASE DEGENERATION

The integral equation for the distribution function f]Q] for our models is

p@(l—m2)=JHf[Q]clv'ldv;dv;, (17)
s

where p = constant is the model density and ©{...) is the Heaviside function. After the substitution

! ! ! ! d V’
dv', dvs dvy=dV (Q)=EédQ=4\/§n\/l o°|JQ-m*dQ, (18)
equation (17) reduces to the Volterra integral equation of the first kind:
e(1-m' :
PO ) )=J fo=m’ flo1do. (19)
4nf2l|a”| I

Equation (19) has the kernel @ — m?, which is equal to zero at the lower limit Q) =m?2. Hence to find a solution of this equation
it is necessary to obtain the derivative with respect to m?> We have

———p——é(l—m2)=—J _f[_Q]_dQ’ (20)
2124 6°| v Jo-m®

where &(...)is the delta function. Substitution of $=1—m? and J=1 — Q gives the Abel integral equation

P S):JSM (21)
27042J]0°| 0 Js—J

with the solution

 J—E— N (22)
22 2{[o°]
From (22} we have
- PO ~3/2
=——"t _(1-0) <0, (23)
252J[ 0]

Thus in the general case the distribution function (23) is negative and unphysical. Physical models must be degenerate in
phase space.

4 PHASE DEGENERATION AND ITS CONSEQUENCES

The only loophole in the above reasoning lies in the factor Q — m” in the integrand of (19). We close this loophole by requiring
that

o) () ()
Oy Oz O3

of ., o o 0 |
lo°|=l0%, 0% o0%]|=0,
0 0 o (24)
O13 03 O3
such that, for instance,
0 (]
Oi2_02_ 0y
e e b (25)
Oi5 O3 O3
Let
o o
_ |91 O3
,u=a22“' o o '_}éO- (26)
13 Uz
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Then by means of the identities
Hoyy ~ aty= 03307,
Koy = a3y = o |0, (27)
01303~ Ha 3= 093] 0°),

we transform expression (12) into

1] ]2 o 12 o 12 o I !

_ 2 U 1, OV T Og3ls a3v) + o0y —207530,0;

Q=m*+—= v+ + .
2|0° 2 2u

Here ais the cofactor of ¢f in the matrix o°.

4.1 A five-dimensional non-stationary model

By virtue of the condition in (24), we should demand in equation (28) that

! !
1, QUi T auv;

vyt 0, (29)
U

so that, since a,, = 0 from (25), we have the additional relation
08305~ 03,03 =0. (30)
Then from (28), we obtain for Q

o 12 o 12 o I 1
03305 + o035 —201;0,0;

Q(x,v')=m*+
2u

(31)

Thus @ depends on only two variables, ¢ and v}, The plane section (30) of the ellipsoid (14) is an ellipse. Its area, when
projected on to the v’ Ov; plane, is

S=2afu(Q~m?). (32)

Now

dv', dv! =9§dQ=2nfdQ (33)
] 3 a0 M

and equation (19) reduces to

0@ (1—m?) J !
——=| flQldQ, (34)
231:\/; mzf

where Qis given by (31). Equation (34) has the positive solution

flQ1=—2—s(1- Q)=0, (35)

Zm/;
or, with (30) and (31),

o 12 o 12 o ! !
2 O3y +07,05 —20,30,0;
2u

[g]=—~ a( |- % 3)6(1—
f 2nﬁ¢- v v m

The important question here is which model is described by the distribution function (36)? Notice that at

4#0, Q%0  (i=1,2,3) (37)
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the differential equations (9), by virtue of the condition in (25), give us additional conditions

Q o [\

OO Oy3 (38)
o o o

G2 0 0Oy

However, these conditions are incompatible with condition (26). We therefore require that
Q,=1,=0 (i=1,2,3), (39)

that is, the model cannot rotate and there is no internal streaming motion. The equations of motion (6)~(9) then become

da, 2K,

— = 24,0+,

ds? 1 a?

d*a

dtf= - 24,4y, (40)

d*a 2K
d_tza= —2A3a3+_a‘§§,
3

09, =07, =0%;=0%;=0, (41)
where the integrals of motion are
Ki=ohal,  K,=o%al (42)

The model has the distribution function

7] ”

0 I 2 Uy Us
=——03(v )6(1—171 ‘“—T—‘—u—). (43)

d 2mV05, 05 : 201, 203

In velocity space the model occupies an elliptical disc, and in phase space it occupies a five-dimensional ellipsoid. The
overwhelming majority of stars in this model touch its surface, and the inequality (13) has a formal meaning only.

We come to the conclusion that there are no physical models that occupy six-dimensional phase ellipsoids. This reveals a
defect in the equations for non-linear oscillations of a non-rotating collisionless ellipsoid, which were presented previously by
other authors (Polyachenko & Friedman 1976, p. 205).

4.2 Doubly degenerate non-stationary models
We now set
u=0, (44)

This condition, together with (25), is equivalent to condition (38). Then formula (31), written as

00 0’0 2 U/Z
2 33 ! 13 ¢ 3
=m +—=1v,~ vyt 45
Q 2,“ 1 (53 3 203)37 ( )
reduces to
”
2, Vs
=mit— 46
Q=m'+ (46)

and gives a further relation
03301 — 09;v5=0. (47)

Thus in this case we have two additional relations, (30) and (47), which together impose further degeneracy on the models.
Namely, the models now occupy four-dimensional phase ellipsoids, and in velocity space they fill only one-dimensional lines or
needles. It should be noticed that this degeneracy implies the existence, at a given point x, of linear relations between the
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components of stellar velocity vectors. Contact with the surface is possible only for stars that lie at the endpoints of the velocity
needles (Kondratyev 1992a).
The length of the projection of the velocity needle on to the v'-axis is

£=2020%J0-m". (48)

Then, instead of equation (17), we have

p@(—m2)=J‘ 9 4 (49)
m ""JQ—mZ ,

with solution

flor= J;_o(l—Q)’”ZZO, (50)

where Qis given by (46). This solution is physical and may be more explicitly written as

o[ ot= s -2
flg=—=2 = =t

T 20’23 Jl_mz_(vg2/20§3)

(51)

The form of the distribution function (51) is consistent with the fact that the overwhelming majority of stars in this model do not
touch the model’s elliptical bounding surface. The inequality (13) now has a physical meaning.

In order that equations (6) to (9), together with the relations (25) and (38), form a closed system, we demand that the ellipsoid
rotate about one of its principal axes. For instance, let

AI=AZ=QI=QZ=O’ Q3=Q, lgzl. (52)
We then require

of;=0{3=0%=0, 09, =0%,=0, (53)
which will give us

d*a, 212

d_tz_alu + Q%) +2a,AQ+2A,a,=0,

d’a, 2402

F—az(}t +QN)+2a,AQ+2A,a,=0,

d’a 2K

F23+2Aga3—a—§3=0, (54)

d )
2 d—t(all—aZQ)—all+a29=O,

Zad—t(algwazl)—als‘z +a,A=0.

Now, the function (51)is

3(v')d(v;
flg=—t Sl (55)
12035 V1-m?~(v7/203%)
Therefore the model rotates about the x;-axes, and it is ‘cold’ in the (x,, x,) plane. This model occupies a four-dimensional
phase ellipsoid.
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For the model with a, =a,, the angular velocity in the inertial coordinate system is Q;, = 2 — 4. This model is described by the
same distribution function, (55), and the equations

d’a, P
dtzl "'Z;_q +2A4,a,=0,
1
2
o B 2,020, (56)
3

where [ =2Q;, a}=a constant.
In particular, with Q;, =0 (/= 0) we have the special case of a non-rotating spheroid.

4.3 Models without velocity dispersion

In the particular case
05 =0, (57)
we have Q =m? and
flQ1=pd(v})8(v3) 6(vs). (58)

This is the case of a collisionless ellipsoid with no velocity dispersion. We can obtain its equations of motion from expressions (6)
to (8). Equation (9) and both additional conditions (25) and (38) are fulfilled identically. In six-dimensional phase space this
model occupies simply the three-dimensional material ellipsoid.

5 THE EQUILIBRIUM FIGURES

Let us consider stationary models. The total angular momentum vector / of a stationary ellipsoid must coincide with both the
vector Q and the rotational axis, i.e.

[Ix Q)=0. (59)

Besides this, @ and A should both lie in one of the symmetry planes or coincide with one of the principal axes of the ellipsoid.
For example, let

Q,=1,=0. (60)
Then, from (7) and (8), it follows that
0%, =073 =0, (61)

and the condition of phase degeneracy (25) now gives

T= @y =0%,0%;— 0% =0. (62)

The system of equations (6) to (9) reduces to

2 0
—~a; (A3 + A5+ Q+ Q) +2(a34,Q, + 4,4,Q,) + 24, a, =201 )
a;

2 o
—ay(A2+ Q) +2a,4,Q,+ 24,0, = ;’“ ,
2

2 (]
—a3(A3+ Q%) +2a,4,Q,+ 24,0, = Zaa’
3

2 0
Ayhphyt a392,Q,-20,4,Q;= 223 , (63)

3
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2 a
0,9,Q+ G330 — 20, 4,0, = Z” ,

2

(—g—zlz+293 00, + (ﬂxs—zga) 0%+
1

a;

"“'a—l‘/lz'}‘zgz) 0(2’3'_“0,
a;

(-ﬂaz—mz a;’l+(—9—‘xz+292)a§3+(%,13—293) 03,=0.
. 2

as
This means that, in (62) and (63), we have eight equations for the 10 variables

a4, 4;
a—’ a_ s Ags Agy €29, Q35 0F1, 0%, 0%, 0%, (64)
1 a4

Therefore in the general case all equilibrium ellipsoids with velocity dispersion have two parameters.

There are now two cases: (i) when there is only one additional relation (30) and o9, # 0; (ii) when both (30) and (47) hold, and
(47) reduces to v1=0, ie. 09,=0. In the first case we have models SVa,b,c and in the second case models SIVa,b,c (see
Section 1),

5.1 The model SVa

This is Freeman's ellipsoid. We have the conditions

Ay =Q,=0; Ay=41, Q,=9Q; 03;=0%,=0, (65)
f[Q]=—p—5(Ulz)5(1“m2"‘vj"— s ) (66)
T420%5,0%5; 207, 203

In this case we have from (62) and (63)
Q*=24,,  i=2 g—‘ 24,20,
2

2
o}, =a} [Al +A4, (3_4 a_]z)}’ 0%;=A;a]. (67)

a;

The preferred axis coincides with the x,~axis and a, = a,. The model has parameters g, /a, and a, /a,.

5.2 The models SVb,c

These have an oblique rotation and distribution function

o 17 7
0 1 O3 ; 2_ Uy Vs
Q]=—————6(v ——;,—v)é(l-—m e | (68)
1l T ,20‘?1023 2 O33 ’ 207 2073

Equations (62) and (63} provide complete information on the models. Nevertheless, by using relation (30) and equations (1) to
(3), it is possible to obtain the auxiliary relations

Eg_:j= Q,Q; _24,- Q§= 2Q,—(ay/ar) A,

0 - . (69)
0% 24,97 Q9 (82/a1) A3 —2Q5
In particular, from (69) we have the condition for the existence of a preferred axis:
2 2 .
S R R (70)

245 24,
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The models have two parameters, a, /a, and 5 =Q32/2A,, and in the {(a,/a,, a;/a;) plane are situated on the curve that has the
implicit equation

2 2

az_a:;
Ay—Ay=nGo 52270 (71
SR P s P Pt )

From (62), (63) and (69) it follows that

A a ag*ag
=—+=2—|1- s
P Q, a3[ ’7( 4af

(72)
Ay a ai—al
== 1+(1- .
7 Q; 2”2[1 S 77)( 4“%
In addition, we have
a2-a?\?
oy =(A3a§ —Azag) (52""_3) (n=nXn—n)n~-n5)=0,
a,0;3
2 2\2
o a—a
022=A2( 220 3) (1=nn—n.Xn—9)>0,
1
(73)
2 212
a;—a
033=A3( 22 3) n(n=mn)n—n)=0,
a4
a2-a2)?
o 2
023=JA2A3( P 3) (1= n((n—n)n—n,)=0,
1
where 7, and 7, are solutions of the equation
4a*+ai~ad 2a,a, \°
2__ 12 22 3 + 2]22 =O (74)
a;—a; a;—4a;

and #; is given by

1 A;—A
173=a§_a§ {4a§~a§—3a§a§ (m)} (75)

The model SVb exists for 7, <y =<1, and the model SVc for n;<n<17,.

At n=9, and 5= 17,, we have two conjugate one-parameter ellipsoids with no velocity dispersion, which are collisionless
analogues of the pressureless Riemann fluid ellipsoid. The model with =1 is a special case of Freeman’s ellipsoid. Finally, the
model with 7 =5, has o}, =0, and it is a special case of the model SIVc. Fig. 1 shows the domains of existence of the models.

5.3 The models SIVa,b,c

When o, =0, the equilibrium figures have needle-shaped velocity ellipsoids. There is now the additional first integral of motion
of a star:

a a
ul=——ll3x2~—-l-/12x3, (76)
a; as
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Figure 1. Domains of existence (shaded) of the models SVb,c on the (a, /a,, 1} plane. Here, four one-parameter sequences are shown: ! is a
special case of Freeman’s ellipsoids; IT and III are the conjugate ellipsoids with no velocity dispersion (they are analogues of Riemann’s
pressureless ellipsoids), and IV is a special case of the model SIVe.

which leads to

0'_(3)3= Q2Q5~2(a,/a,) A3, +(a5/a5) Aady
0% 2A2"Q§+2(a1/az)1393"/‘{§

(77)
L 2A5—Q7+2(a)/a3) 2,9, — 4;
Q,Q3+(a/a3) A As—2(a,/as)A,Q2;
[cf. (69)]. In the general case these models have no preferred axis.
The distribution function we obtain from (51} may be written as (see also Kondratyev 1992b)
0wy — (053] a%5) v
flOol= o 6(1)’1) [v;—(0%/053) vl ) (78)

m420%; J1-m*=(v3/20%;)

Here, we shall not fully describe the models because of their awkwardness, but merely point out some interesting features.
The models have two parameters, a,/a; and a,/a,. We find, for example, that

9§=(min)z{—Al(n—Z)(m—n)+Az(n—2)[m—(n-2)(1 =2m)l+ As(m=2)[(n-2)1-2n)—n]},
(79)
Q§=(min)2 {A|(m=2m—n)+A,(n=2)[(m~2)1=2m)~m]+As(m—2)n—(m~-2)(1-2n)]},
and
0 0 0
, N L
o =5 0 1 T, (80)
L (L)
° 1 (?)
Here
_a and n=2 s (81)

(%) Qz a 93.
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Moreover, from equation {59) it follows that

1 —211=g; (82)
1-2m a3’

Also,

T,=Q4(n—-2) and T,=Q,(m—2) (83)

To find 1 or m, we solve the cubic equation
Cand+Cyon2+Cn+Cy=0, (84)

where C,{i=0, 1, 2, 3) are composite functions from a, /a, and a,/a, (Kondratyev 1992b). This equation has three real-valued
roots that give us the models SIVa,b,c (see Figs 2 and 3).

-

0= €20= 22p o:ZU

Qa=0,

Oa3 =033 =0

(&)
n
[+3]
E
[e)]

ay/a

Figure 2. Domains of existence (shaded) of the models SIVa,b on the (a,/a,, a;/a,) plane. Geometric loci on the line segment AN (the ray NL)
represent oblate (prolate) spheroids and BK represents disc-shaped ellipsoids with velocity dispersion. The point A corresponds to a;/a, (or
asfa;}=0.372 03, On the curve AB the discriminant ( of the cubic equation (84) is zero, and both models converge to one. The curve KS with
implicit equation (71) represents models SVb,c {and the conjugate ellipsoids with no velocity dispersion), A spherical state of the model is
marked by point N,

L

v

w

.

| 2 3 4
ap/a,

Figure 3. Domains of existence (shaded) of the model SIVc on the (a,/a,, a;/a,) plane. Geometric loci on three bounds of the domain
represent oblate (line segments NR, NP) or prolate (NL) spheroids and lines RW and PW represent disc-shaped ellipsoids, Domains with cross-
hatching are occupied by models with 09;<0. On the curve CM with equation (a3/a})+3(a3/a})=3, the component 03, =0, and above this
curve 6%; > 0. Models on the curve CM have m =(a, /a;)(1,/Q,)=2 and 0§, =0.
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6 CONCLUSIONS

The study of collisionless models with a quadratic potential was initiated by Freeman and extended by Hunter, Bisnovatyi-
Kogan, Antonov, Friedman and Polyachenko among others. However, no coherent theory emerged from these studies.

The present theory results from the discovery of ellipsoids with oblique rotation. These models were first constructed by the
kinetic method. A second, alternative line of approach is afforded by the stellar hydrodynamical method. In support of this
method was the finding that all third moments from distribution functions for models with a linear mean velocity field as in
equation (1) vanish. The hierarchy of stellar hydrodynarnical equations is naturally decomposed by this fact, and as a result we
have closed system of those equations of first, second and third orders. Both methods are useful and complement each other.

The argument in favour of this theory is that it is associated with Dirichlet's problem for fluid ellipsoids. This problem
encompasses both the non-linear vibration of ellipsoids and the complete study of equilibrium figures.

This paper summarizes our investigations during 1984-1992. A unified classification by phase-space structure and a
complete scheme of ellipsoidal self-consistent models, including the non-stationary ones, have been developed. We classify all
models as five-, four- and three-dimensional phase ellipsoids, and come to the conclusion that there are no physical models
occupying six-dimensional ellipsoids. The equations of vibration for all non-stationary models have been obtained. The
existence of six classes of equilibrium figures has been proved. These models admit an asymptotic limit transition to disc-shaped
ellipsoids (Kondratyev 1992d).

This theory is of some help in the study of non-linear oscillations of galaxies and overcomes limitations of the scalar or tensor
virial theorem. The equilibrium figures constitute unique self-consistent models for galaxies with internal streams and
precession. These models permit the study of the shapes of elliptical orbits and gas~dust ring stability in precessing galaxies.
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