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Gravitational Potential of Material Wide Ring, Filled by
Rosette Orbit

В. Р. Kondratyev, E. S. Mukhametshina, and N. G. Trubitsina

Abstract. We consider the broad material ring or disk, which is a result
of two-dimensional averaging of mass of moving body by rosette orbit. Such
disk may be also consists of the identical elliptic orbits uniformly portioned on
azimuth angle. The surface density and space Newtonian potential of the disk
are obtained.

Even Gauss (see, e.g., Subbotin 1968) used the method of averaging of
mass of moving body along its orbit to study of secular perturbations in celestial
mechanics. As a result of this averaging, he obtained a one-dimensional material
elliptical ring; the linear density of the disk is inversely proportional to velocity
of the moving body in given point of the orbit.

Here we consider a broad material ring or disk, which has been obtained as a
result of two-dimensional averaging of mass of moving body by rosette orbit. Such
disk may be consists of the set of identical elliptic orbits uniformly distributed
on azimuth angle.

Let come from the energy integral of the two body problem. If the central
mass M is very big, the energy integral in the Keplerian problem is equal

v2 = GM (- - - ) . (1)
\r a/

The velocity squared of the second body has two components v2 = v2 + v2,
moreover the azimuth velocity component is found from the law of conservation
of the angular moment

rve = к^/о(1-е2) = VGM^/a{l-e2). (2)

Then, we find the radial velocity component

_ * V ( r n -r)(r- rp) f r a = o ( l + e ) , ,,v

Vr _ _ , | r p = a ( 1 _ e ) ^ (3)

In the narrow ring at (r, r + dr) testing body has the response time

v dv
dt ~ const x — = = = = = . (4)

V (ra -r){r~ rp)

We shall get surface density function of the ring, if divide dt on 2тгг dr

() C

(5)
- rp)
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Gravitational Potential of Wide Ring 327

The total mass of the ring is equal

Mring - 2wC / = = тг2С (re + r p ) . (6)
J V (ra - r) (r - rp)

The relation allows us to find the constant C.
By definition, the potential of ring with the surface density (5) is expressed

by the double integral on its area

Га 2тг

, - ~ Г r> dr' f dff
ip (r, xs) = GC / , / , (7)

J V(r* - r') ir' - rv) J Vr'2 + r2 + x2-2r'x —n { '

The internal integral here is equal

7Г7Г

•J

О
(8)

where if(...) is the complete elliptic integral of first kind. Now,

r o тг/2

, d" (9)

{ \J(r' + rf + x%- 4r'r sin2

 7

7 .. %, J,
I V ( r a " r) ( r ~ r'p) { \J(r' + rf + x%- 4r'r sin2

 7

Since the algebraic equation

r'2 + 2r'r cos 27 + r2 + x\ = 0 (10)

has the complex roots

r' = — r cos 27 ± г л/г2 sin2 27+ Ж3, (11)

it is possible to express (9) by the double integral

V/2 Га , ,

f P r' dr

/(га - г') (г' - rp) (r' - A- iB) (r' — A + i
U '"р

Неге

, B- \Jr2 sm2 2-y + x\. (13)

By substitution

2 в cos6>i ra-rp

tan - = r— ; -, (14)
2 cose2r'-rp

 K J
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where

tanf?! = ^ ~ — , t a n 0 2 = 7p~ , t a n 0 j < tan<92, вг < 0 2, (15)
В В

the internal integral in (12) can be reduced to the form

I=

\/\-кЧт2в в

7Г

with

With r' (в) from (21) the integral (16) reduces to the form

7Г/2

\/l-fc2sin20 2

' тг/2 rr/2

_ v „„„- j . COS 0 2 I /" Й0 Га-Гр , 2 .
i — — < ZO —, — ~ — Я — J. I X

Besides, from (14) we find r' as a function from variable в

, , „ , , „ , ч cos di cos Bi 1
r (0) = b - 2 (ra - ГгЛ о -, (18)

W У p ; ( c o s ^ c o s ^ ) 2 a + c o s ^

with
COS 0 1 + C O S 02 , , Га COS 01 - Tv COS 02 -, „.

/> ^^ . ^ „. ^* Л Q — [ T Q j

COS 01 - COS 02 ' COS 01 — COS 02

As far as

a2 - 1 = ?-x , (20)
(cos01-cos0 2 ) 2

we have instead of (18)

(21)

cos0)\/l-A; 2 sm 2 0 / (a - cos 0) \Л - к2 sin2 0

У \/l - A:2 sir

c o s 0 2 ; 2 b

v * й2 sin2 0

7Г/2 4

(ra - rp) (a2 - 1) a / — M _a _ 2 = I .

(22)
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It is possible to express this / through both the complete elliptic integrals of

first К (к) and third П ( ̂ , — ^ — , k ) kind
W V 2 a 2 - 1 /

A/COS 0 I cos 02

В

Thus, the ring potential (12) takes the form

-(r a -r p )an| . (23)

4GM
т/2

A/COS 0 I cos 02

where a and 6 from (19). There is the useful relation between a and b

26
a + v =

Га-Гр

Га + Гр
V = ^ > 1.

Та Тп

(24)

(25)

With account of (25) it is possible to exclude the value 2b from (24) and then

7Г/2

AGM [ Усо107со102 = (a \K (t} - III + vK (k)\ dr/. (26)

The expression (26) is equal to (24), but it more suitable for clearing up of some
limiting cases.

Because of the relations (14) in general case the angles 9\ and 02 depend

on 7, this is valid for the function k = k (7) also.
But if the sampling point is on the symmetry axis Охз, then r = 0 and

(27)

A = 0, B = xa, tan 0i = — ,

In this case the integrand function in (26) does not depend from 7 at all, and
we have

if (x3) =
2GM

тп>
(а \К (tj -tt\+vK (t)} . (28)

In particular, under large Ж3, the asymptotic is:

(29)
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then, the member in the square brackets in (28) vanishes and we have the desired
r e s u l t гм

(30)
3-3

The attraction force of the disk on symmetry axis has a maximum at the
value хз/га-
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