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Abst rac t—For a linear nonstationary control system with an observer, we assume that the
coefficients are locally Lebesgue integrable and integrally bounded on R and construct a linear
feedback such that the closed-loop plant-controller system is Lyapunov reducible to the special
triangular form corresponding to an independent shift of the diagonal coefficients in the original
system and in the system of asymptotic estimation of the state by an arbitrary pregiven quantity.
For a periodic system, we prove that the constructed controls and Lyapunov transformation are
periodic. We obtain corollaries on the uniform stabilization and global controllability of the
central and singular exponents of the system.
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Let R™ be the Euclidean space of dimension n with norm |a;| = \fx*x, let * stand for the
operation of transposition; and let Mmn be the space of real m x n matrices with norm

\A\ = тах.\Ах .
N<i

Consider the linear nonstationary control system with an observer,

x = A{t)x + B{t)u, (t,x,u) 6KxK" xRm, (1)

у = C*(t)x, у е Rk. (2)

We assume that the norms of the matrix functions A, B, and С are locally Lebesgue integrable
and integrally bounded [1, p. 252] in the norm for A and in the squared norm for В and C; i.e.,

i+i t+i t+i
f f f

sup / \A(s)\ds < oo, sup / \B(s)\2ds < oo, sup / \C(s)\2ds < oo. (3)
*ек J teu J seR J

t t t

Consider the problem of constructing a stabilizing feedback for system (1), (2). For the station-
ary system (1), (2), this problem can be solved by constructing a system of asymptotic estimation
of the state [2, Th. 7.7]. Here we obtain a similar result for nonstationary systems. On the basis
of system (1), (2) and the output y, we construct the system

£ = A(t)x + V{t){y{t) - C*{t)x) + B(t)u, x € Mn. (4)

Here x(t) is an estimate of the state of system (1), (2). Let the control law и have the form

и = U{t)x. (5)

By substituting the control (5) into system (1), (2), (4), we obtain the closed-loop 2n-dimensional
system

( ) V ^
\V(t)C*(t) A(t)+B(t)U(t)-V(t)C*(t))\x)'
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Let ж — х — х. By using the nonsmgular change or variables = I -~ ' w * i e r e

I £ Mnn is the identity matrix, we reduce system (6) to the form

B(t)U(t) -B(t)U(t)

0 A(t)-V(t)C*(t)

If system (1), (2) is stationary and has the property of total controllability and total observability,
then one can choose constant controls U and V such that the characteristic polynomials x{A + BU)
and x(A ~ VC*) are stable [2, Th. 7.7]. This implies the stabilization of system (7) and hence of
the closed-loop system (6).

In the present paper, we construct a stabilizing control for the nonstationary system (1), (2),
in particular, for a system with periodic coefficients. In systems (7) and (6), the matrices [/(•)
and V(-) play the role of controls. We treat an admissible control as an arbitrary function U(-)
[or V(-)] with values in Mmn (respectively, in Mnk) such that its squared norm is a function locally
Lebesgue integrable and integrally bounded on E; i.e., [/(•) is an admissible control if \U\ G L^fJSi)
and sup teR /t*

+ \U(s)\2 ds < oo.

Let X(t, s) be the Cauchy matrix of the system

x = A(t)x, (8)

that is, the solution of the Cauchy matrix problem X = A(t)X, X(s) — I. One can readily show
(with the use of the Gronwall-Bellman lemma and the Ostrogradsky-Liouville formula) that the
first condition in (3) implies the following property of the Cauchy matrix: for any x > 0, there
exist numbers Cj,c2 > 0 such that the inequalities

\X{t,s)\<d, detX(t,s)>c2>0 (9)

hold for all r G R and for arbitrary t,s € [т,т + я].

Let us construct the Kalman matrix W(t,r) — J X(т, s)B(s)B*(s)X*(r,s) ds of system (1).
The matrix W(t, r ) is symmetric and nonnegative definite for any t > r and satisfies the inequality
W(ti,r) > W(t,r) in the sense of quadratic forms for any tx > t.

Recall [3] that system (1) is said to be (a) completely controllable (CC) on the interval [to>£o + $]
if the Kalman matrix W(t0 + i9,io) is positive definite; (b) fl-uniformly completely controllable
(i9-UCC) if there exists an a > 0 such that W(t +19, t) > al in the sense of quadratic forms for all
i g E ; (c) uniformly completely controllable (UCC) if there exists a i? > 0 such that system (1) is
tf-UCC.

It follows from the second condition in (3) and the property (9) that if system (1) is i9-UCC,
then there exist a, 5 > 0 (depending on i9) such that the inequality

0 <al< W(t + ti,t) <5I (10)

holds for alH € K.
Next, consider the property of complete observability [4, p. 304] of system (1), (2) with zero

input signal; i.e.,
* = A(t)x, у = C*{t)x (11)

for и = 0. By virtue of the duality principle [4, p. 304], system (11) is •d-uniformly completely
observable (i9-UCO) if and only if the system

x= -A*(t)x + C(t)v, {t,x,v) e l x t " x i l (12)

is i9-UCC, and system (11) is uniformly completely observable (UCO) if and only if system (12) is
UCC.

If system (1) is i9-UCC, then it is iVUCC for any T?I > i5. Therefore, if system (1) is UCC and
system (11) is UCO, then, without loss of generality, one can assume that there exists a common
value i? > 0 such that system (1) is i?-UCC and system (11) is tf-UCO.
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LYAPUNOV REDUCIBILITY AND STABILIZATION OF NONSTATIONARY SYSTEMS 439

Consider the system
x = (A(t)+B(t)U(t))x, (13)

whose matrix is a diagonal block of the matrix of system (7). By Xu(t, s) we denote the Cauchy
matrix of system (13). We say that a X-transformation can be applied to system (1) if there exists
a T > 0 such that, for each A G R, one can indicate an admissible control £/(•) ensuring that the
Cauchy matrix Xu(t, s) of system (13) satisfies the relation

Xv((k + 1)T, kT) = eXTX({k + 1)Г, кТ) (14)

for all к € Z.
This definition was given in [5]. It is related to the definition of a A-transformation of system (8)

(see [1, p. 249]), which adds a perturbation XI to the matrix A(t) of system (8). The Cauchy
matrix Z(t,s) of the perturbed system

z=(A{t) + \I)z (15)

satisfies the relation
(16)

for all £, s G R. It follows from (14) that the Cauchy matrix of system (13) satisfies the relation
Xu(kT,lT) = ex{-k-^TX{kT,lT) for all k,l G Z; this relation is similar to (16) but holds on the
set of points {kT, к G Z} С Ж. It is also known [1, p. 249] that if Aa < • • • < An is the complete
spectrum of Lyapunov exponents of system (8), then Аг + А < • • • < An + A is the complete spectrum
of Lyapunov exponents of system (15).

A transformation x — L(t)z of system (8) is called a Lyapunov transformation [1, p. 247] if
L : R —> Mnn is an absolutely continuous function such that \L(t)\ and IZr 1 ^)! are bounded and
\L(t)\ is integrally bounded on R. System (8) is said to be reducible to the system z = Q(t)z if
there exists a Lyapunov transformation x = L(t)z relating these systems, i.e., if the relation

Q(t) = L-^QAWUt) - L-^QHt)

holds for almost all t € M. The systems with matrices A(t) and Q(t) are said to be asymptotically
equivalent. Obviously, if the matrix A(t) is integrally bounded, then so is the matrix Q(t), and vice
versa. System (8) is said to be reducible if it can be reduced to a system with a constant matrix.

Theorem 1. / / system (1) is UCC, then a X-transformation can be applied to it.

Proof. We use the idea of proof of a similar theorem in [5]. Let system (1) be i9-UCC Let us fix
an arbitrary A € R. We shall construct an admissible control U : R —> Mmn such that relation (14)
holds for T = 2i9. For an arbitrary к £ Z, on the interval Ak = [kT,(k + 1)T], we construct
a function Ui(t), t S Afc, solving the matrix control problem

B(t)U1(t), (17)
XT (18)

The solution of Eq. (17) with the initial condition Y(kT) = I has the form

Y(t)=X(t,kT)ll+ IX(kT,s)B{s)Ul(s)ds). (19)

\ кт '

The second condition in (18) is satisfied if and only if

(k+l)T

1+ I X{kT)s)B(s)Ul(s)ds = eXTI. (20)
kT
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Suppose that there exist numbers /3j > 0 and /32 > 0 independent of к G Z such that the control
C/i (t), £ G Afc, ensuring the validity of relation (20) satisfies the inequality

(fc+l)T

and the solution У(£) of problem (17), (18) corresponding to this control and given by (19) satisfies
the inequality det Y(£) > /32 for all t G Afc. Then |У~1(£)| is bounded on Afc uniformly with respect
to к G Z. Set U(t) := Uii^Y'1^), £ G Afc. Then |C7| G L2(Afe) and supfceZ ||J7|U2(a,,) < oo
[i.e., U(t), t € K, is an admissible control], and Y(-) satisfies the equation

and the boundary conditions (18). It follows from relation (21) and the first boundary condition
that Y(£) = Xy(t, kT), and the second boundary condition implies relation (14).

By virtue of property (9), there exist numbers /33,/?4 > 0 such that the inequalities

0 </33 <detX(£,A;T) < /?4

hold for all к G Z and for arbitrary £ G Afc. Therefore, the problem under consideration can be
reduced to finding a matrix function Ui(-) satisfying the conditions

\Ui\ G L2(Afc), sup||C/i||La(Afc) < oo
kei

and such that relation (20) holds and the condition

t

det(/+ ГХ(ЩвЩзфЛз)ds) > 7

^ kT '

is satisfied for all t G Д& and for some number 7 > 0 independent of A; G Z and t. Hence we have
the inequality dety(i) > /32.

We seek Ui(t) in the form Ux(t) = B*(t)X*(kT,t)H. Then it follows from (20) that

where W(t,r) is the Kalman matrix. System (1) is 19-UCC; consequently, it is T-UCC. Therefore,
the matrix W((k + 1)T, kT) is invertible, and

Я = (е л т - l)W-l{{k + 1)Г, кТ).

Let us show that the matrix

t

R(t) = 1+ I X(kT, s)B(s)B*(s)X*(kT, s) ds (eAT - 1)\¥~1{(к + 1)Г, кТ)

kT

is invertible for all t € Ak and det R(t) > 7 > 0 for all t G Afc, where 7 is independent of к G Z,
Consider the matrix

Q(i) := i?(i)W((fc + 1)T, fcT) = W((A: + 1)T, fcT) + (eA T - l)W(t, kT).

By virtue of the property (10), 0 < 71 '< det W((k + 1)T, kT) < 72, where 71 and 72 are independent
of к G Z. Therefore, it suffices to show that detQ(t) > 73 > 0 for all t G Afc, where 73 is
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independent of к G Z. We have

t

Q(t) = f X(kT,s)B(s)B*{s)X*{kT,s) ds - f X{kT,s)B{s)B*{s)X*(kT,s)ds

кТ кТ

t

+ eXT f X(kT,s)B{s)B*(s)X*{kT,s)ds

кТ

X(kT, s)B(s)B*(s)X*{kT, s) ds + eXT / X{kT, s)B(s)B*{s)X*(kT, s) ds

t kT

= X(kT,t) f X(t,s)B(s)B*(s)X*(t,s)dsX*(kT,t)
t

t

+ eXT f X(kT,s)B(s)B*(s)X*{kT,s)ds

kT

eXT
= X(kT, t)W((k + 1)T, t)X*{kT, t) + eXTW(t, kT).

The inequality W({k + l)T,t) > W(t + i?,i) > al holds for all t G [kT,kT + •&] by virtue
of the i5-uniform complete controllability. This, together with property (9), implies the existence of
an ai > 0 (independent of k) such that X(kT,t)W{{k + l)T,t)X*{kT,t) > aj. The matrix
eXTW(t, kT) is positive semidefmite; consequently, Q(t) > axl > 0, t G [kT, kT + tf].

If t € [kT + tf,{k + 1)T], then W(t,kT) > W(kT + tf.JfcT) > al. Hence it follows that
eXTW(t,kT) > a2l > 0, where a2 = aeXT. The matrix X(kT,t)W{(k + l)T,t)X*{kT,t) is posi-
tive semidefinite; consequently, Q(t) > a2l > 0, t € [кТ + 'д,(к + 1)T]. Therefore, the inequality
Q(t) > ct3/ > 0 holds for all t G Afc, where a 3 = т т { а а , a 2 } is independent of к G Z. Consequently,
det Q(i) > 7з > 0, t G Afc, where 73 is independent of к G Z.

Let us show that the constructed control Ui satisfies the desired conditions. We have

E/i(i) - B*(t)X*{kT,t)W-\{k + l)T,kT)(eXT - 1), t G Дк.

Since system (1) is i9-UCC, it follows that W~l{(k + l)T,kT) is bounded in norm uniformly for
all к G Z. By virtue of property (9), the matrix X*(kT,t), t £ Ak, is bounded in norm uniformly
for all A; G Z. By virtue of the second condition in (3), the function B*(-) also satisfies the second
condition in (3). Therefore, \Uj\ £ L2(Ak) and supfc6Z ||C/i||i2(Afc) < 00. The proof of the theorem
is complete.

Remark 1. If a A-transformation can be applied to system (1), then, for any A G R, there exists
an admissible control U(-) ensuring relation (14) for all к G Z. Then the Cauchy matrix Xu(t,s)
of system (13) and the Cauchy matrix Z(t,s) of system (15) coincide for all t,s € {kT, k G Z}.
This (see [6]) implies the asymptotic equivalence of systems (13) and (15).

Corollary 1. Let system (1) be UCC. Then for each A G M, there exists an admissible control
[/(•) for which system (13) can be reduced to system (15).

Remark 2. Theorem 1 was stated and proved in [5] under the assumption that A(-) is a bounded
continuous function and B(-) is bounded and uniformly continuous; admissible controls were chosen
to be bounded piecewise continuous functions. The proof of Theorem 1 given in [5] can readily be
generalized to the case in which the function A(-) is bounded and piecewise continuous and the
function B(-) is bounded and piecewise uniformly continuous. Here we present a simpler proof
of this theorem under the less restrictive conditions (3); the class of admissible controls is wider
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here. In the case of a matrix £?(•) essentially bounded on R, one can substantially restrict the
set of admissible controls: a control U(-) providing the validity of relation (14) can be chosen to
be measurable and bounded on R. A number of corollaries on the global controllability of central
and singular exponents [1, p. 116] were obtained in [5]; these results supplement Tonkov's earlier-
obtained results [7] on the stabilization of system (13). The proofs of these corollaries were carried
out on the basis of the following fact. The complete spectrum of Lyapunov exponents and central
and singular exponents are Lyapunov invariants. A Lyapunov transformation does not change these
characteristics. Under the passage from system (8) to system (15), these characteristics are shifted
by A. Therefore, if system (1) is UCC, then, by using admissible controls, one can make Lyapunov
invariants of system (13) coinciding with Lyapunov invariants of system (15). In particular, one
can globally control the upper or lower central exponent or the singular exponent of system (13);
one can globally shift the complete spectrum of Lyapunov exponents of system (13) and stabilize
system (13).

Remark 3. In [8] it was assumed that the function A(-) is bounded and piecewise continuous
and the function B(-) is bounded and piecewise uniformly continuous, and it was shown that if
system (1) is UCC, then system (13) can be globally scalarized [8]. From this, corollaries on the
global controllability of central, singular, and exponential exponents and the complete spectrum of
Lyapunov exponents were obtained.

Theorem 2. Let A(-) and B(-) be u-periodic functions, and let system (1) be completely con-
trollable. Then there exists a T > 0 that is a multiple of и and ensures that, for each A € IK, there
exists a T'-periodic admissible control £/(•) such that the Cauchy matrix Xu(t,s) of the T-periodic
system (13) satisfies relation (14) for all к € Z. In addition, there exists a T-periodic Lyapunov
transformation x — L[t)z reducing the T-periodic system (13) to the T-periodic system (15).

Proof. If the ^-periodic system (1) is completely controllable, then it is completely controllable
on any interval of length nu. (However, one cannot claim [2, formula (2.26)] that it is completely
controllable on any interval of length equal to the period [7].) Set i9 = nuj. Then system (1)
is ^-periodic and i?-UCC. We set T = 2$ and construct a control Ui(t) just as in Theorem 2.
For arbitrary к € Z and t € [0,T], we have

X(t + kT,kT) = X(t,0), W{t + kT,kT) -W{t,Q).

Therefore, the control U\(t) is T-periodic. Let the function Yk(t), t € A*,, be given by relation (19).
Then Yk+1(t + T) = Yk(t) for arbitrary к € Z and t 6 Afc.

Indeed, let t E Ak, then t + T 6 A/c+i- We have

(
t+T ч

1+ f X{{k + 1)T, s)B{s)U1 (s) ds ) = \s = r + Г|

(k+l)T '

Х(кТ + Т,т + Т)В(т + T)UI(T + T)dr\

= X(t,kT)ll+ ! Х{ЬТ,т)В{т)и^т)вЛ =Yk{t)
^ feT '

Consequently, the control U(t) defined by the relation U(t) = UiitfY^it) for t G [kT, {к + 1)Г) is
also Т-periodic. Therefore, system (13) is T-periodic, and relation (14) holds. The transformation
x — L(t)z, where L(t) = Xu(t,0)Z(0,t), is a Lyapunov transformation. It reduces system (13) to
system (15). The relation Хц(Т,0) = Z(T,0) holds by virtue of (14), and since systems (13) and
(15) are T-periodic, we have Xv(t + T,T) = Xv{t,0) and Z(t + T,T) = Z(t,0) for all t € M. Then

L(t + T) = Xu(t + T, 0)Z(0, t + T)=Xu{t + T,T)Xu(T, 0)Z{0, T)Z(T,t + T)
- Xu(t + T,T)Z(T,t + T) = Xu{t,0)Z{0,t) = L(t)
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for any f G K . Therefore, the Lyapunov transformation is T-periodic. The proof of the theorem is
complete.

Any T-periodic system can be reduced by a real T-periodic Lyapunov transformation (Tx = 2T)
to a system with a constant matrix. In this case, under the assumptions of Theorem 2, one can
globally shift the spectrum of Lyapunov exponents of system (13). Therefore, Theorem 2 implies
the following assertion.

Corollary 2. Let A(-) and B(-) be ui-periodic functions, and let system (1) be completely con-
trollable. Then there exists а Тг > 0 (equal to 4nu) such that, for any x > 0, one can indicate a
Ti-periodic admissible control U(-) and a Tx-periodic Lyapunov transformation x = L\(t)w reducing
the Ti-periodic system (13) to the system w = Qw with a constant matrix such that Rec^ < — к < 0
for all eigenvalues g4 of the matrix Q.

Remark 4. If the coefficients of system (1) are w-periodic bounded piecewise continuous func-
tions, then we have the following assertion [9] stronger than Theorem 2: the condition of complete
controllability of system (1) is a necessary and sufficient condition for the global Lyapunov re-
ducibility of system (13), that is, reducibility to an arbitrary system z — Q(t)z with bounded
piecewise continuous matrix rather than only a system of the form (15).

Now consider the system
x = (A(t)-V(t)C*(t))x. (22)

By Xv(t,s) we denote the Cauchy matrix of system (22) with an admissible control V(-), and by
X(t, s) we denote the Cauchy matrix of the system x — A(t)x [it coincides with X(t, s)}. By virtue
of the duality principle, one can state an assertion similar to Theorem 1.

Corollary 3. Let system (11) be UCO. Then there exists a T > 0 such that, for each ц € R,
one can indicate an admissible control V : M —> Mnk providing the relation

Xv((k + 1)T, kT) = e»TX((k + 1)T, kT) (23)

for the Cauchy matrix Xv{t, s) of system (22) for all k £ Z.

Proof. Let system (11) be i9-UCO. Then system (12) is tf-UCC. We set T = 2-d and fix an
arbitrary \i 6 Ш. By P(t,s) we denote the Cauchy matrix of the system x = — A*(t)x, and
by Py (t, s) we denote the Cauchy matrix of the system

x = (-A*(t) + C{t)V*{t))x. (24)

Then P(t,s) = X*(s,t) and PV'(t,s) = X^(s,t) for all t,s € R. By Theorem 2, there exists an
admissible control V* : R —> Mkn ensuring that the Cauchy matrix Pv. (t, s) of system (24) satisfies
the relation Pv. ((fc+l)T, kT) = e-^TP((A;+l)T, kT) for all k € Z; consequently, X^(kT, (k+l)T) =
е~^тХ*(кТ, (к + 1)T). By transposing the last relation and by taking the inverse matrices on the
left- and right-hand sides, we obtain relation (23). The proof of the corollary is complete.

Corollary 4. Let A(-) and C(-) be ш-periodic functions, and let system (11) be completely ob-
servable. Then there exists a T (equal to 2пш) such that, for each \i € R, there exists a T-periodic

admissible control V(-) providing the relation (23) for all к € Z for the Cauchy matrix Xv(t,s)
of the T-periodic system (22). In this case, there exists a T-periodic Lyapunov transformation
x = L(t)z reducing the T-periodic system (22) to the T-periodic system ~z — (A(t) +

The proof of Corollary 4 is similar to that of Theorem 2.
Let us proceed to the study of system (7). By Хуу(4, s) we denote the Cauchy matrix of

system (7), where U(-) and V(-) are admissible controls. Let us introduce the system

0 A(t) + d ) \ J
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Here A,/i £ R are some numbers and S(t) is some matrix function with integrally bounded norm.
By Z(i, s) we denote the Cauchy matrix of system (25).

Theorem 3. Let system (1) be UCC, and let system (11) be UCO. Then there exists a T > 0
such that, for arbitrary A, fi 6 Ш, one can indicate controls U(t) and V(t) and a piecewise continuous
bounded matrix S(t), tGM, such that the Cauchy matrix ~Ku,v(t, s) of system (7) with these controls
satisfies the relation

XUtV((k + 1)T, kT) = Z((fc + 1)T, kT) (26)

for all keZ.

Proof. Let system (1) be tf-UCC, and let system (11) be tf-UCO. We set T = 2i? and fix
numbers А,/л € R. By using Theorems 2 and 4, we construct controls U(t) and V(t), t € K, such
that relations (14) and (23) hold for all к € Z. We construct the Cauchy matrix of system (7) with
these £/(t) and V(i):

0 Xv{t,s)

We write out the Cauchy matrix of system (25):

(eX(t,s) JeX(t,T)S(T)X(r,s)edr\
s) — I s . (28)

0 e^ )

Obviously, the diagonal blocks of the matrices (27) and (28) satisfy relation (26) by virtue of (14)
and (23). We write out relation (26) for the right upper blocks of the matrices (27) and (28).
By taking into account (14) and by performing simple manipulations, we obtain

) )
Г Xu{kT,T){-B{T)U{T))Xv(T,kT)dT = f еХ{кТ-^Х(кТ,т)3(т)Х(т,кТ)е^т-кТ) dr.

kT kT

We denote the left-hand side of the last relation by Hk,

Kk(r) :=е^кт-^Х(кТ,т), Nk(r) := Х(т,кТ)е^~кт\ т ё Д ,

The last relation can be represented in the form

(fc+l)T

Hk= J Kk(r)S(T)Nk(r)dr. (29)
kT

The matrices Хи(кТ,т), Ху(т,кТ), Кк(т), and Nk(r), т £ Ak, are bounded in norm uniformly
for all к £ Z; the matrix B{T)U(T) is integrally bounded on R. Therefore, there exist numbers
Qi)Q2 > 0 (independent of k) such that the inequalities |fffc| < gi, |.Kfc(t)| < gx, \Nk(t)\ < дг,
det Кk(t) > Qi > 0, and det Nk(t) > g2 > 0 hold for all к 6 Z and for arbitrary t € Afc. We define
a matrix Sk(t) on the interval t 6 [kT, (k + 1)T) by the relation

Sk(t)=T-1Kk-\t)HkNk-
l(t)>

and let S(t) — Sk(t) for t € [kT, (k + 1)T). Then the matrix S(t) is bounded on R, is piecewise
continuous, and satisfies relation (29). The proof of the theorem is complete.
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Corollary 5. Let system (1) be UCC, and let system (11) be UCO. Then for arbitrary X,/J, G R,
there exist admissible controls [/(•) and V(-) such that system (7) [and system (6)] with these controls
can be reduced to system (25) with some piecewise continuous bounded matrix S(t).

Proof. We construct controls U(t) and V(t) and a matrix S(t), t £ I , in accordance with
Theorem 3. Then the Cauchy matrices of systems (7) and (25) coincide on the set {kT, к € Z}.
This implies their asymptotic equivalence.

Corollary 6. Let A(-), B(-), and C(-) be ui-periodic functions, let system (1) be completely
controllable, and let system (11) be completely observable. Then for arbitrary A,/i G R, there exist
T = 2nu)-periodic admissible controls U{t) and V(t) and a T-periodic piecewise continuous bounded
matrix S(t), t £ Ш, such that the Cauchy matrix "X.utv{t, s) of system (7) with these controls satisfies
relation (26) for all к 6 Z. In addition, there exists a T-periodic Lyapunov transformation reducing
the T-periodic system (7) to the T-periodic system (25).

Proof. System (1) is tf-UCO, and system (11) is tf-UCO for •& = nu. Set Г = 2-в. For arbitrary
X, fj, € Ш, we construct U(t), V(t), and S(t), t G K., in accordance with Theorem 3. The functions
U(t) and V(t) are T-periodic by Theorem 2 and Corollary 4. Therefore, systems (13) and (22) are
Г-periodic. Consequently, Xu(t,0) = Xv(t + kT, kT) and Xv(t,0) = Xv(t + kT,kT) for arbitrary
{ £ l and к G Z. Hence it follows that Я/. = # f c + 1 for an arbitrary A; G Z. One can readily
verify the relations Kkit) = Kk+1(t + Г) and JVfc(i) = Nk+l{t + T),t € Ak. Hence it follows that
S(t) is a periodic function. Therefore, system (25) is T-periodic [as well as system (7)], and the
relations XUtV(t + T,T) = Xy ,v( t ,0) and Z(t + T,T) = Z(t,O) hold. Then from (26) one can
readily find (for example, just as in Theorem 2) that the Lyapunov matrix L(t) = X^y (£, 0)Z(0, t)
is T-periodic.

Remark 5. Consider the system

. - . 1 I . V T I 1 r-v I * '

The central exponents of system (25) and system (30) coincide. Indeed, let x = T(£)£ be a Perron
transformation [1, p. 263] reducing the system x = A(t)x to the triangular system £ = R{t)£, with
matrix R = T~lAT - T~lt. Then the transformation

\z) \ 0 T(t))\()

is a Perron transformation reducing system (25) to the triangular system

\ 0

with integrally bounded coefficient matrix and system (30) to the triangular system

(32)

A Perron transformation is a Lyapunov transformation; consequently, it preserves the exponents.
Therefore, the central exponents of systems (25) and (31) and systems (30) and (32) coincide.
By [1, p. 120], the central exponents of a triangular system and its diagonal approximation system
coincide. Consequently, these exponents coincide for systems (31) and (32), since the diagonals
of these systems coincide. Therefore, these exponents are the same for systems (25) and (30).
A similar assertion is true for singular exponents.

These considerations, together with Theorem 3, imply corollaries on the global controllability
of central and singular exponents. Their behavior is specified by diagonal blocks, and by using an
appropriate shift of A (and /л), one can move them arbitrarily. Let us formulate some corollaries.
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Corollary 7. Let system (1) be UCC, and let system (11) be UCO. Then system (7) has the
property of global controllability of the upper central exponent; i.e., for any a E Ш, there exist
admissible controls U and V such that the upper central exponent ilu,v of system (7) satisfies the
relation £lu,v — a-

Proof. Let П(Л) be the upper central exponent of the system x — A{t)x. Then the upper
central exponent of the system

(x\ = (A(t) 0 \ (x\

{it) \ 0 A(t))\x)

is also equal to п(А). For any a, we take Л = ц = a - D,(A) and construct controls U and V for
these Л and \x in accordance with Theorem 3. Then £lu,v f°r system (7) coincides with the upper
central exponent of the system

A(t)+\l)\x)'

which is equal to a..
Similar assertions can be stated for the lower central singular exponent ш, the upper singular

exponent п°, and the lower singular exponent OJO. Next, system (7) is said to be uniformly stabi-
lizable [7] if for any a > 0 there exist admissible controls U and V such that the upper singular
exponent fijv of system (7) satisfies the inequality П*цу < —a. The following assertion is obvious.

Corollary 8. Let system (1) be UCC, and let system (11) be UCO. Then system (7) is uniformly
stabilizable.

In conclusion, we state assertions that follow from Popova's result (mentioned in Remark 3) on
the global scalarization and from the above-obtained results. Suppose that the function A(-) is
bounded and piecewise continuous and that B(-) and C(-) are bounded and piecewise uniformly
continuous.

Corollary 9. Let system (1) be UCC, and let system (11) be UCO. Then for arbitrary bounded
piecewise continuous functions p, q : R —> R, there exist piecewise continuous bounded controls U(-)
and V(-) and a matrix S(-) such that system (7) with these controls is asymptotically equivalent to
the system

(33)

Proof. Take arbitrary bounded piecewise continuous functions p, q : E —> K, and for arbitrary
t,s еШ set

t t
f f

ip(t, s) = exp / р(т) dr, V(*is) = e x P /

By Theorem 1 in [8], we construct a control £/(•) such that

Хи{Ы, (к - 1)т9) = F f c + 1 Q f c F f c -V(^. (k - I)i9), к € Z.

(For the definition of Fk and Qk, see [8].) By multiplying these matrices, for each к € Z, we obtain
the relation XV{M, 0) = Ffc+i2VFfV(fa?, 0). Here Tk := QkQk~i • • • Qi (in Theorem 1 in [8], this
matrix is denoted by Qk). Next, we construct the matrix L(t) := Xu(t,Q)<p(0,t). It was proved in
Theorem 1 in [8] that L(t) is a Lyapunov matrix.
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Further, since system (11) is UCO, it follows that system (12) is UCC. By using Theorem 1
in [8], we construct a control V*(-) such that the Cauchy matrix Pv-(t,s) of system (24) satisfies
the relations __

Pv.(kti, (к - 1)0) = F f c + j Q ^ - V 1 ^ . {к - I)i9), к e Z.

(The definition of the matrices Fk and Qk follows from the proof of Theorem 1 in [8].) By multiplying

these matrices, for all к € Z, we obtain the relations Ру(Ы,0) = Fk+lTkF{~1ip~~l(k'd,Q); here

Tk •= QkQk-i • • • Qi- We transpose the last relation and take the inverse matrices for the left- and

right-hand sides. Further, since Py (£,s) = Xv(s,t) for all i , s e R , we have

Set L(t) := Xv(t,0)ip(0,t). In this case, L(t) is a Lyapunov matrix (which can be proved in
a similar way). Let L(t) = diag{L(t),L(t)}. Then the Lyapunov transformation x = L(i)z, where
x = col (ж, a?) and z = col(z, I), reduces system (7) to system (33). The matrix S(t) can be found
from a relation of the form (29), where T = -в, Кк{т) = (р(Ы,т)1, and Nk(r) = ф(т,Ы)1. It is
piecewise continuous and bounded, since L(i) is a Lyapunov transformation and [/(•) and V(-)
are piecewise continuous and bounded. The proof of the corollary is complete,

It follows from Corollary 9 that Corollaries 1-4 in [8] can be restated for system (7). One can also
readily generalize Theorem 3 on the global controllability of the complete spectrum of Lyapunov
exponents in [8] to the case of system (7).

Corollary 10. Let A(-) be bounded and piecewise continuous, and let £(•) and C(-) be bounded
and piecewise uniformly continuous. Let system (1) be UCC, and let system (11) be UCO. Then
for arbitrary numbers Ai < • • • < A2n, there exist piecewise continuous bounded controls U(-) and
V(-) such that the complete spectrum of Lyapunov exponents of system (7) with these controls is
the set Ai , . . . , A2n.
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