= КРАТКИЕ СООБЩЕНИЯ =

УДК 517.977.1+517.926

УПРАВЛЕНИЕ СПЕКТРОМ В БИЛИНЕЙНЫХ СИСТЕМАХ

© 2010 г. В. А. Зайцев

Для билинейной стационарной управляемой системы получены необходимые и достаточные условия разрешимости задачи управления спектром в случае, когда коэффициенты имеют специальный вид.

Пусть \mathbb{R}^n — евклидово пространство размерности n, e_1, \ldots, e_n — канонический базис в \mathbb{R}^n , т.е. $e_1=\operatorname{col}(1,0,\ldots,0), \ldots, e_n=\operatorname{col}(0,\ldots,0,1);$ $M_{m,n}$ — пространство вещественных $m\times n$ -матриц; $M_n:=M_{n,n};$ $I=[e_1,\ldots,e_n]\in M_n$ — единичная матрица; * — операция транспонирования вектора или матрицы; если $x\in\mathbb{R}^n$ — вектор-столбец, то $x^*\in\mathbb{R}^{n*}$ — вектор-строка; $J_0:=I;$ J_1 — первый единичный косой ряд, т.е. $J_1:=\sum_{i=1}^{n-1}e_ie_{i+1}^*\in M_n;$ $J_k:=J_1^k,$ $k\in\mathbb{N}$ (т.е. $J_k=0\in M_n$ при $k\geq n$); $\chi(A;\lambda)$ — характеристический многочлен матрицы A; $\operatorname{Sp} A$ — след матрицы A.

Рассмотрим линейную управляемую систему

$$\dot{x} = A(t)x + B(t)u, \quad y = C^*(t)x, \quad (t, x, u, y) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k. \tag{1}$$

Пусть управление в системе (1) строится по принципу линейной неполной обратной связи в виде u=Uy. Тогда система (1) перейдет в однородную систему

$$\dot{x} = (A(t) + B(t)UC^*(t))x. \tag{2}$$

Наряду с системой (2) рассмотрим билинейную управляемую систему

$$\dot{x} = (A(t) + u_1 A_1(t) + u_2 A_2(t) + \dots + u_r A_r(t)) x, \quad u_l \in \mathbb{R}.$$
(3)

Всякую систему вида (2) можно записать в виде (3), если положить r:=mk, в качестве u_l , $l=\overline{1,r}$, взять коэффициенты матрицы U, в качестве матриц $A_l(t)$, $l=\overline{1,r}$, — матрицы $b_i(t)c_j^*(t)\in M_n$, где $b_i(t)$, $i=\overline{1,m}$, — столбцы матрицы B(t) и $c_j(t)$, $j=\overline{1,k}$, — столбцы матрицы C(t):

$$\dot{x} = \left(A(t) + \sum_{i=1}^{m} \sum_{j=1}^{k} u_{ij}(b_i(t)c_j^*(t))\right)x.$$

Системы вида (2) изучались в работах [1–8], системы вида (3) – в [7, 9–11]. В работе [1] введено свойство согласованности для системы (2), в работе [9] – для системы (3). Это свойство исследовалось в работах [1, 4, 5, 7, 9]. Свойство согласованности использовалось для доказательства локальной управляемости показателей Ляпунова системы (2) [2–6], устойчивости показателей Ляпунова системы (2) [3], локальной достижимости и локальной ляпуновской приводимости системы (3) [9–11], локальной управляемости показателей Ляпунова [10] и показателей Изобова системы (3) [11].

В настоящей работе рассматриваются стационарные системы вида (2) и (3)

$$\dot{x} = (A + BUC^*)x, \quad x \in \mathbb{R}^n, \tag{4}$$

$$\dot{x} = (A + u_1 A_1 + \ldots + u_r A_r) x, \quad x \in \mathbb{R}^n.$$
 (5)

В случае стационарных систем асимптотическое поведение системы характеризуется спектром матрицы системы. Нами исследуется задача о глобальном управлении спектром.

1062 ЗАЙЦЕВ

Определение 1. Будем говорить, что задача управления спектром матрицы $A + u_1 A_1 + \ldots + u_r A_r$ системы (5) разрешима, если для любого многочлена n-й степени $p(\lambda) = \lambda^n + \gamma_1 \lambda^{n-1} + \ldots + \gamma_n$ с вещественными коэффициентами γ_i найдется постоянное управление $u=\operatorname{col}(u_1,\ldots,u_r)\in\mathbb{R}^r$, обеспечивающее для характеристического многочлена χ матрицы коэффициентов системы равенство

$$\chi(A + u_1 A_1 + \dots + u_r A_r; \lambda) = \lambda^n + \gamma_1 \lambda^{n-1} + \dots + \gamma_n.$$
(6)

По-другому эта задача называется также задачей о размещении (назначении) собственных значений [12, с. 159]. В случае C = I задача управления спектром в системе (4) разрешима тогда и только тогда, когда система (1) вполне управляема [13, 14]. В работе [12, с. 179–181] приведен обзор известных достаточных и необходимых условий разрешимости этой задачи для системы (4). В работе [15] получены новые условия разрешимости этой задачи для системы (4), отличные от условий, приведенных в [12], которые являются необходимыми и достаточными. В настоящей работе результаты работы [15], полученные для системы (4), обобщаются на систему (5).

Пусть коэффициенты системы (5) имеют вид: матрица A имеет форму Хессенберга, а в матрицах A_l , $l=\overline{1,r}$, первые p-1 строк и последние n-p столбцов равны нулю, т.е.

$$A = \{a_{ij}\}_{i,j=1}^{n}, \quad a_{i,i+1} \neq 0, \quad i = \overline{1, n-1}; \quad a_{ij} = 0, \quad j > i+1;$$

$$A_{l} = \{a_{ij}^{l}\}_{i,j=1}^{n}, \quad a_{ij}^{l} = 0, \quad i = \overline{1, p-1}, \quad j = \overline{1, n};$$

$$a_{ij}^{l} = 0, \quad i = \overline{1, n}, \quad j = \overline{p+1, n}; \quad l = \overline{1, r}; \quad p \in \{1, \dots, n\}.$$
(7)

Обозначим через $\lambda^n + \alpha_1 \lambda^{n-1} + \ldots + \alpha_n$ характеристический многочлен матрицы A.

По матрице $A = \{a_{ij}\}_{i,j=1}^n$ построим матрицу S так же, как в работе [15]. А именно сначала построим матрицу

$$S_1 = \{s_{ii}^1\}_{i,i=1}^n, \quad s_{1i}^1 := 1, \quad s_{1i}^1 := 0, \quad j = \overline{2,n}; \quad s_{ii}^1 := a_{i-1,i}, \quad i = \overline{2,n}, \quad j = \overline{1,n}.$$

Далее для каждого $l=\overline{2,n}$ по матрице $S_{l-1}=\{s_{ij}^{l-1}\}_{i,j=1}^n$ построим матрицу $S_l=\{s_{ij}^l\}_{i,j=1}^n$ с элементами $s_{11}^l:=1,\ s_{1j}^l:=s_{j1}^l:=0,\ j=\overline{2,n};\ s_{ij}^l:=s_{i-1,j-1}^{l-1},\ i,j=\overline{2,n}.$ Положим $S=S_nS_{n-1}\cdots S_1.$ Все матрицы S_l и S нижние треугольные, невырожденные. Далее построим матрицы $H_i:=SA_iS^{-1},\ i=\overline{1,r},\ u$ $H:=SAS^{-1}.$ Тогда матрицы $H_i,\ i=\overline{1,r},\ u$ меют такой же вид, как и матрицы $A_i,\ i=\overline{1,r},\ \tau$. т.е. первые p-1 строк и последние n-p столбцов матриц H_i , $i=\overline{1,r}$, нулевые. Матрица H имеет следующий вид [15, лемма 3]: $H=J_1+e_n\xi$, где $\xi = (-\alpha_n, \dots, -\alpha_1) \in \mathbb{R}^{n*}$. Имеем

$$\chi(A + u_1 A_1 + \ldots + u_r A_r; \lambda) = \chi(H + u_1 H_1 + \ldots + u_r H_r; \lambda).$$
 (8)

Построим матрицу $G:=\sum_{i=1}^n \alpha_{i-1}J_{i-1}^*$, где $\alpha_0:=1$. Пусть $h_j^i\in\mathbb{R}^n$ — j-й столбец матрицы $H_i,\ i=\overline{1,r}$. По матрицам $H_i=[h_1^i,h_2^i,\dots,h_n^i]$, $i=\overline{1,r},$ построим n imes r-матрицы $P_1=[h_1^1,\ldots,h_1^r],$ $\ldots,$ $P_n=[h_n^1,\ldots,h_n^r].$ Затем построим $n \times r$ -матрицу $Q = J_0 G P_1 + J_1 G P_2 + \ldots + J_{n-1} G P_n$.

Теорема 1. Пусть дана система (5) с матрицами (7) и

$$\lambda^n + \gamma_1 \lambda^{n-1} + \ldots + \gamma_n := \chi(A + u_1 A_1 + \ldots + u_r A_r; \lambda).$$

Tогда коэффициенты γ_i характеристического многочлена матрицы $A+u_1A_1+\ldots+u_rA_r$ выражаются через коэффициенты системы (5), (7) следующим образом:

$$\gamma = \alpha - Qu,\tag{9}$$

 $z\partial e \ \gamma = \operatorname{col}(\gamma_1, \ldots, \gamma_n), \ \alpha = \operatorname{col}(\alpha_1, \ldots, \alpha_n).$

Теорема 2. Задача управления спектром для системы (5) с матрицами (7) разрешима тогда и только тогда, когда строки матрицы Q линейно независимы, при этом управление u, приводящее $\chi(A+u_1A_1+\ldots+u_rA_r;\lambda)$ к заданному многочлену $p(\lambda)$ с коэффициентами γ_i , находится из системы (9).

Tеорема 2 очевидно вытекает из теоремы 1. Действительно, если строки матрицы Q линейно независимы, то для любого γ линейная система уравнений (9) относительно u разрешима, и решение u этой системы обеспечивает равенство (6). Если же строки матрицы Q линейно зависимы, то не для всякого γ система (9) разрешима, следовательно, задача управления спектром неразрешима. Остается доказать теорему 1.

Замечание 1. Из теоремы 2 следует, что необходимым условием разрешимости задачи управления спектром в системе (5) является условие $r \ge n$.

Замечание 2. Среди матриц P_i , $i=\overline{1,n}$, последние n-p матриц нулевые, поэтому в качестве Q можно брать матрицу $Q=J_0GP_1+J_1GP_2+\ldots+J_{p-1}GP_p$. Доказательство теоремы 1. Для доказательства нам понадобится лемма 4 [15].

Пусть дана система (5) с матрицами (7) и выполняется равенство (6). Построим по матрицам $A, A_i, i = \overline{1,r}$, матрицы $H, H_i, i = \overline{1,r}$. В силу равенства (8) получаем, что $\chi(H+u_1H_1+\ldots+u_rH_r;\lambda)=\lambda^n+\gamma_1\lambda^{n-1}+\ldots+\gamma_n$. Таким образом, по лемме 4 [15] мы получаем равенства

$$\gamma_{i} = \alpha_{i} - \operatorname{Sp}(u_{1}H_{1} + \dots + u_{r}H_{r})J_{i-1}G =$$

$$= \alpha_{i} - (u_{1}\operatorname{Sp}(H_{1}J_{i-1}G) + \dots + u_{r}\operatorname{Sp}(H_{r}J_{i-1}G)), \quad i = \overline{1, n}.$$
(10)

Равенства (10) можно записать в векторном виде $\gamma = \alpha - Tu$. Здесь $T \in M_{n,r}$,

$$T = \|\operatorname{Sp}(H_i J_{i-1} G)\|, \quad i = \overline{1, n}, \quad j = \overline{1, r}.$$

Остается показать, что T=Q. Введем в рассмотрение отображение vec : $M_n \to \mathbb{R}^{n^2}$, которое "разворачивает" матрицу $F \in M_n$, $F = \{f_{ij}\}, i, j = \overline{1,n}$, по строкам в вектор-столбец

$$\text{vec } F := \text{col}(f_{11}, \dots, f_{1n}, \dots, f_{n1}, \dots, f_{nn}) \in \mathbb{R}^{n^2}.$$

Очевидно, что $\operatorname{Sp}(F_1^*F_2) = (\operatorname{vec} F_1)^*(\operatorname{vec} F_2) = (\operatorname{vec} F_2)^*(\operatorname{vec} F_1)$. Рассмотрим первую строку матрицы T. Тогда для всех $l=\overline{1,r}$ имеем $\operatorname{Sp}(H_lJ_0G)=(\operatorname{vec}(J_0G))^*(\operatorname{vec}(H_l^*))$. Аналогично для второй строки матрицы T выполнено равенство

$$\operatorname{Sp}(H_l J_1 G) = (\operatorname{vec}(J_1 G))^* (\operatorname{vec}(H_l^*)), \quad l = \overline{1, r},$$

и т.д. для i-й строки матрицы T $(i=\overline{1,n})$ имеем равенства

$$Sp(H_l J_{i-1} G) = (vec(J_{i-1} G))^* (vec(H_l^*)), \quad l = \overline{1, r}.$$

Построим матрицы

$$L = \left\| \frac{(\text{vec}(J_0G))^*}{(\text{vec}(J_1G))^*} \right\| \in M_{n,n^2}, \quad N = \left\| \text{vec}(H_1^*), \dots, \text{vec}(H_r^*) \right\| \in M_{n^2,r}.$$

$$\left\| (\text{vec}(J_{n-1}G))^* \right\|$$

Tогда T = LN.

Рассмотрим матрицы J_iG . Имеем

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 46 № 7 2010

1064 ЗАЙЦЕВ

Развернем эти матрицы по строкам в вектор-столбцы, транспонируем их в строки и составим из них матрицу L. Тогда можно заметить, что эта матрица будет иметь блочный вид:

$$L = ||[J_0G], [J_1G], \dots, [J_{n-1}G]|| \in M_{n,n^2}.$$

Рассмотрим теперь матрицу N. Имеем

$$\operatorname{vec}(H_1^*) = \left\| \begin{matrix} h_1^1 \\ h_2^1 \\ \vdots \\ h_n^1 \end{matrix} \right\| \in \mathbb{R}^{n^2}, \quad \dots, \quad \operatorname{vec}(H_r^*) = \left\| \begin{matrix} h_1^r \\ h_2^r \\ \vdots \\ h_n^r \end{matrix} \right\| \in \mathbb{R}^{n^2} \quad \Longrightarrow \quad N = \left\| \begin{matrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{matrix} \right\| \in M_{n^2,r}.$$

Следовательно, $T=LN=J_0GP_1+J_1GP_2+\ldots+J_{n-1}GP_n=Q$. Теорема 1 доказана. Работа поддержана Российским фондом фундаментальных исследований (проект 06-01-00258).

СПИСОК ЛИТЕРАТУРЫ

- 1. Попова С.Н., Тонков Е.Л. Управление показателями Ляпунова согласованных систем. I // Дифференц. уравнения. 1994. Т. 30. № 10. С. 1687–1696.
- 2. Попова С.Н., Тонков Е.Л. Управление показателями Ляпунова согласованных систем. И // Дифференц. уравнения. 1994. Т. 30. № 11. С. 1949–1957.
- 3. Попова С.Н., Тонков Е.Л. Управление показателями Ляпунова согласованных систем. III // Дифференц. уравнения. 1995. Т. 31. № 2. С. 228–238.
- 4. Попова С.Н., Тонков Е.Л. К вопросу о равномерной согласованности линейных систем // Дифференц. уравнения. 1995. Т. 31. № 4. С. 723–724.
- 5. *Попова С.Н.*, *Тонков Е.Л.* Согласованные системы и управление показателями Ляпунова // Дифференц. уравнения. 1997. Т. 33. № 2. С. 226–235.
- 6. *Макаров Е.К.*, *Попова С.Н*. О локальной управляемости характеристических показателей Ляпунова с некратными показателями // Дифференц. уравнения. 1997. Т. 33. № 4. С. 495–499.
- 7. Зайцев В.А. Согласованность и управление показателями Ляпунова // Изв. Ин-та математики и информатики УдГУ. Ижевск, 1999. Вып. 2 (17). С. 3–40.
- 8. *Попова С.Н.* К свойству локальной достижимости линейных управляемых систем // Дифференц. уравнения. 2003. Т. 39. № 1. С. 50–56.
- 9. Зайцев В.А., Тонков Е.Л. Достижимость, согласованность и метод поворотов В.М. Миллионщикова // Изв. вузов. Математика. 1999. № 2 (441). С. 45–56.
- 10. Tonkov E.L. Uniform attainability and Lyapunov reducibility of bilinear control system // Proceedings of the Steklov Institute of Mathematics. Suppl. 1. 2000. P. S228–S253.
- 11. Тонков Е.Л. Ляпуновская приводимость линейной системы, стабилизация и управление показателями Изобова // Тр. Ин-та математики НАН Беларуси. Минск, 2000. Т. 4. С. 146–155.
- 12. Леонов Г.А., Шумафов М.М. Методы стабилизации линейных управляемых систем. СПб., 2005.
- 13. Попов В.М. Гиперустойчивость автоматических систем. М., 1970.
- 14. Wonham W.M. On pole assignment in multi-unput controllable linear systems // IEEE Trans. on Automat. Control. 1967. V. AC-12. № 6. P. 660–665.
- 15. Зайцев В.А. Управление спектром в линейных системах с неполной обратной связью // Дифференц. уравнения. 2009. Т. 45. № 9. С. 1320—1328.

Удмуртский государственный университет, г. Ижевск

Поступила в редакцию 28.03.2008 г.