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Abstract—For a bilinear stationary control system, we obtain necessary and sufficient condi-
tions for the solvability of the spectrum control problem for the case in which the coefficients
have a special form.
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Let Mn be a Euclidean space of dimension n; let e b . . . , e n be a canonical basis in R n

[i.e., ег = col(l, 0 , . . . , 0), . . . , en = col(0, . . . , 0,1)]; let Mm>n be the space of real m x n ma-
trices; let Mn : = Мщп] let / = [ e j , . . . ,en] G Mn be the unit matrix; let * be the operation of
transposition of a vector or a matrix [if x £ M" is a column vector, then x* G Ш.п* is a row vector];
let J o : = /; let J 2 be the first unit superdiagonal [i.e., Л : = YH=I eiel+\ G Mn}\ let Jk :=• Ji, k€N
(i.e., Jk — 0 G Mn for к > n ) ; let x(A; Л) be the characteristic polynomial of a matrix A; and let
Sp A be the trace of a matrix A.

Consider the linear control system

x = A{t)x + B(t)u, y = C*(t)x, (t,x,u,y)€RxRnxRmxRk. (1)

Let the control in system (1) be constructed by the linear incomplete feedback principle in the form
и = Uy. Then system (1) becomes the homogeneous system

B{t)UC*(t))x. (2)

Along with system (2), consider the bilinear control system

щеШ. (3)

Any system of the form (2) can be represented in the form (3) if we set r := mk, take the coefficients
of the matrix U for щ, I = 1,... ,r, and take the matrices bi{t)c*{t) G Mn for the matrices Ai(t),
I = 1,... ,r, where the 6j(t), г — 1,... ,m, are the columns of the matrix B(t) and the Cj(t),
j = 1,.. ., k, are the columns of the matrix C(t),

Systems of the form (2) were studied in [1-8], and systems of the form (3), in [7, 9-11]. The con-
sistency property was introduced in [1] for system (2) and in [9] for system (3). This property was
analyzed in [1, 4, 5, 7, 9]. The consistency property was used in the proof of the local controllability
of Lyapunov exponents of system (2) in [2-6], the stability of Lyapunov exponents of system (2)
in [3], the local attainability and local Lyapunov reducibility of system (3) in [9-11], and the local
controllability of Lyapunov exponents in [10] and Izobov exponents of system (3) in [11].

In the present paper, we consider stationary systems of the form (2) and (3),

x = (A + BUC*)x, x€W\ (4)
± = (A + ulAl-\ + urAr)x, i e 8 " . (5)
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In the case of stationary systems, the asymptotic behavior of a system is characterized by the
spectrum of the system matrix. We consider the problem on the global control of the spectrum.

Definition 1. We say that the spectrum control problem for the matrix A + UiA\ + • • • + urAr

of system (5) is solvable if, for any polynomial p(X) — A™ + 71 A""1 H Ь 7„ of degree n with real
coefficients 7*, there exists a constant control и — co^Uj,.. ., ur) E Mr that ensures the relation

X(A + u1Al + •••+ urAr; A) = An + ^ A " ' 1 + • • • + l n (6)

for the characteristic polynomial x of the coefficient matrix of the system.

This problem is also referred to as the eigenvalue assignment problem [12, p. 159]. For С = I,
the spectrum control problem for system (4) is solvable if and only if system (1) is completely
controllable [13, 14]. A survey of known sufficient and necessary solvability conditions in this
problem for system (4) can be found in [12, pp. 179-181]. New solvability conditions for this
problem for system (4) were obtained in [15]; in contrast to the conditions given in [12], they are
both necessary and sufficient. In the present paper, the results obtained for system (4) in [15]
are generalized to system (5).

Let the coefficients of system (5) have the following form: the matrix A has the Hessenberg
form, and the first p — 1 rows and the last n—p columns in the matrices A(, I — 1,..., r, are zero;
i.e.,

A = {a«}"j=i, aM+i Ф °> « = 1, • • •, n - 1; ay = 0, j > г + 1;

4 = Ю & = 1 > 4 = ° ' * = 1, • • • , ? - ! , 3 = 1,-..,Щ (7)
a{j = 0, i = l , . . . , n , j =p + l,...,n; Z = l , . . . , r ; p € { 1 , . . . , n } .

By An + ajA71"1 + • • • + an we denote the characteristic polynomial of the matrix A.
For the matrix A = { u y } " J = 1 , we construct the matrix S just as in [15]. Namely, we first

construct the matrix

Si = { s i j" j=i> sn : = !> s i ? : = 0 > J = 2> •••>«; Я у : = а 4 _ а л , i = 2,...,n, j = l,...,n.

Further, for each I — 2 , . . . , n and for the matrix 5;_i = {s'j1}™^-!, we construct the matrix
Si = {*«}"j=i w i t h entries sl

u := 1, s ' y := 4 i := 0, j = 2 , . . . ,n, and sl

4 := alr\j_1} i, j = 2 , . . . ,n.
Set S — SnSn-i • • • Si. All matrices Si and S are lower triangular and nonsingular. Next, we
construct the matrices Щ : = SAtS~l, i = 1, . . . ,r, and H : = SAS~l. Then the matrices Щ,
i — 1 , . . . , r, have the same form as A^ г = 1 , . . . , r; i.e., the first p—1 rows and the last n—p columns
of the matrices Я,, г = 1 , . . . , r , are zero. The matrix Я has the following form [15, Lemma 3]:
Я = Jx + en£, where f = ( - a n , . . . , - a i ) e Mn*. We have

X(A + uiAj + •••+ v,rAr; A) = X(H + щНг + ••• + urHr; A). (8)

Let us construct the matrix G : = X X i a t - i^ t*-n where a0 := 1.

Let Щ G Mn be the j t h column of the matrix Hi, i = l , . . . , r . For the matrices Я* =
[h[, h{}..., /ijj, г = 1 , . . . , r, we construct the n x r matrices Pi = [h\,..., /i[], . . . , Pn = [h\,..., /1^].
Then we construct the nxr matr ix Q = JQGPX + J i G P 2 H + J n _ i G P n .

T h e o r e m 1. Lei system (5) mi/i i/ie matrices (7) be given, and let

A" + 7 l A " " 1 + • • • + 7 n : = X(A + щА, + •••+ urAr;A).

Then coefficients j t of the characteristic polynomial of the matrix A + щАх + • • • + urAr can be
expressed via the coefficients of system (5), (7) as follows:

7 = a — Qu, (9)

where 7 = col(7i,..., 7„) and a = col(ai, . . . , an).
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Theorem 2. The spectrum control problem for system (5) with the matrices (7) is solvable if
and only if the rows of the matrix Q are linearly independent; in addition, the control и bringing
X(A + UiAi + • • • + urAr;X) to a given polynomial p(X) with coefficients 7* can be found from
system (9).

Theorem 2 obviously follows from Theorem 1. Indeed, if the rows of the matrix Q are linearly
independent, then for any 7 the linear system (9) is solvable for u, and the solution и of this system
ensures relation (6). If the rows of the matrix Q are linearly dependent, then system (9) is not
necessarily solvable for any 7; consequently, the spectrum control problem is unsolvable. It remains
to prove Theorem 1.

Remark 1. It follows from Theorem 2 that the condition r > n is a necessary solvability
condition in the spectrum control problem for system (5).

Remark 2. Of the matrices Pj, г = 1,.. ., n, the last n — p matrices are zero; therefore, for Q
one can take the matrix Q = JQGPI + J\GP2 + • • • + JP-\GPP.

Proof of Theorem 1. To prove the desired assertion, we need Lemma 4 in [15].
Let system (5) be a given system with the matrices (7), and let relation (6) hold. For the

matrices A and A*, i = 1,. . . , r, we construct matrices H and Ht, i = 1,..., r. By virtue of (8), we
Ш ) 1 []obtain хШ + щНг + •

we obtain the relations

)
+ urHr; Л) = An + 71 A"""1 + • • • + 7„. Therefore, by Lemma 4 in [15],

-\ h urHr) Ji_x

(10)

Relations (10) can be represented in the vector form 7 = 0; — Tu. Here Г G МЩГ and

T = \\SV(HjJi_lG)l i = l , . . . , n , j = l , . . . , r .

It remains to show that T = Q, We introduce the mapping vec : Mn —» Rn , which "expands"
the matrix F 6 Mn, F = {/y}, i, j = 1, . . . , n, by rows in the column vector

v e c F := c o l ( / n , . . . , / i n , . . . . / n l ) . . . , / „ „ ) G M"\

Obviously, Sp(.F*.F2) = : (vec JPi)*(vecF2) = (vecF2)*(vec.Fi). Consider the first row of the ma-
trix T. Then for all J = 1,. . . ,r, we have Sp(tfjJ0G) = (vec(J0G))*(vec(Ff)). For the second row
of the matrix Г, we have the relation

and so on; for the ith row of the matrix T (i — 1, . . . , n), we have

Let us construct the matrices

L =

(vec(J0G))+

(vec(JiG))*
еМ„,П2, N = уес(Щ),.. .,vec(H*r) 6 Mn»,r

Then T = LN.
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Consider the matrices JjG. We have

1—
1

Oil

« 2

0

1—
1

Oil

0

0

1

.. 0

.. 0

.. 0

an_i

a2

Oin-1

0

0

. . . 1

. . . 0

. . . 0
0 0 ... 0

We expand these matrices by rows in column vectors, transpose them into rows, and form the
matrix L. Then one can note that the resulting matrix has the block form

L = I [J0G], [JiG],..., [Jn-iG] I e M n , n ».

Now consider the matrix N. We have

vec(#*) =

h\

h\
" ' , . . . , vec(tfr*) =

hr

2

К

N =

Pi

Consequently, T = LN = JQGP1 + JXGP2 + • • • + Jn~iGPn = Q. The proof of Theorem 1 is
complete.
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