= SHORT COMMUNICATIONS =

Control of Spectrum in Bilinear Systems

V. A. Zaitsev

Udmurt State University, Izhevsk, Russia Received March 28, 2008

Abstract—For a bilinear stationary control system, we obtain necessary and sufficient conditions for the solvability of the spectrum control problem for the case in which the coefficients have a special form.

DOI: 10.1134/S0012266110070153

Let \mathbb{R}^n be a Euclidean space of dimension n; let e_1, \ldots, e_n be a canonical basis in \mathbb{R}^n [i.e., $e_1 = \operatorname{col}(1, 0, \ldots, 0), \ldots, e_n = \operatorname{col}(0, \ldots, 0, 1)$]; let $M_{m,n}$ be the space of real $m \times n$ matrices; let $M_n := M_{n,n}$; let $I = [e_1, \ldots, e_n] \in M_n$ be the unit matrix; let * be the operation of transposition of a vector or a matrix [if $x \in \mathbb{R}^n$ is a column vector, then $x^* \in \mathbb{R}^{n^*}$ is a row vector]; let $J_0 := I$; let J_1 be the first unit superdiagonal [i.e., $J_1 := \sum_{i=1}^{n-1} e_i e_{i+1}^* \in M_n$]; let $J_k := J_1^k, k \in \mathbb{N}$ (i.e., $J_k = 0 \in M_n$ for $k \ge n$); let $\chi(A; \lambda)$ be the characteristic polynomial of a matrix A; and let Sp A be the trace of a matrix A.

Consider the linear control system

$$\dot{x} = A(t)x + B(t)u, \qquad y = C^*(t)x, \qquad (t, x, u, y) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^k.$$
(1)

Let the control in system (1) be constructed by the linear incomplete feedback principle in the form u = Uy. Then system (1) becomes the homogeneous system

$$\dot{x} = (A(t) + B(t)UC^{*}(t))x.$$
 (2)

Along with system (2), consider the bilinear control system

$$\dot{x} = (A(t) + u_1 A_1(t) + u_2 A_2(t) + \dots + u_r A_r(t)) x, \qquad u_l \in \mathbb{R}.$$
(3)

Any system of the form (2) can be represented in the form (3) if we set r := mk, take the coefficients of the matrix U for u_l , l = 1, ..., r, and take the matrices $b_i(t)c_j^*(t) \in M_n$ for the matrices $A_l(t)$, l = 1, ..., r, where the $b_i(t)$, i = 1, ..., m, are the columns of the matrix B(t) and the $c_j(t)$, j = 1, ..., k, are the columns of the matrix C(t),

$$\dot{x} = \left(A(t) + \sum_{i=1}^{m} \sum_{j=1}^{k} u_{ij}(b_i(t)c_j^*(t))\right) x.$$

Systems of the form (2) were studied in [1-8], and systems of the form (3), in [7, 9-11]. The consistency property was introduced in [1] for system (2) and in [9] for system (3). This property was analyzed in [1, 4, 5, 7, 9]. The consistency property was used in the proof of the local controllability of Lyapunov exponents of system (2) in [2-6], the stability of Lyapunov exponents of system (2) in [3], the local attainability and local Lyapunov reducibility of system (3) in [9-11], and the local controllability of Lyapunov exponents in [10] and Izobov exponents of system (3) in [11].

In the present paper, we consider stationary systems of the form (2) and (3),

$$\dot{x} = (A + BUC^*)x, \qquad x \in \mathbb{R}^n, \tag{4}$$

$$\dot{x} = (A + u_1 A_1 + \dots + u_r A_r) x, \qquad x \in \mathbb{R}^n.$$
(5)

ZAITSEV

In the case of stationary systems, the asymptotic behavior of a system is characterized by the spectrum of the system matrix. We consider the problem on the global control of the spectrum.

Definition 1. We say that the spectrum control problem for the matrix $A + u_1A_1 + \cdots + u_rA_r$ of system (5) is solvable if, for any polynomial $p(\lambda) = \lambda^n + \gamma_1\lambda^{n-1} + \cdots + \gamma_n$ of degree *n* with real coefficients γ_i , there exists a constant control $u = \operatorname{col}(u_1, \ldots, u_r) \in \mathbb{R}^r$ that ensures the relation

$$\chi(A + u_1 A_1 + \dots + u_r A_r; \lambda) = \lambda^n + \gamma_1 \lambda^{n-1} + \dots + \gamma_n$$
(6)

for the characteristic polynomial χ of the coefficient matrix of the system.

This problem is also referred to as the eigenvalue assignment problem [12, p. 159]. For C = I, the spectrum control problem for system (4) is solvable if and only if system (1) is completely controllable [13, 14]. A survey of known sufficient and necessary solvability conditions in this problem for system (4) can be found in [12, pp. 179–181]. New solvability conditions for this problem for system (4) were obtained in [15]; in contrast to the conditions given in [12], they are both necessary and sufficient. In the present paper, the results obtained for system (4) in [15] are generalized to system (5).

Let the coefficients of system (5) have the following form: the matrix A has the Hessenberg form, and the first p-1 rows and the last n-p columns in the matrices A_l , l = 1, ..., r, are zero; i.e.,

$$A = \{a_{ij}\}_{i,j=1}^{n}, \quad a_{i,i+1} \neq 0, \quad i = 1, \dots, n-1; \quad a_{ij} = 0, \quad j > i+1; \\ A_l = \{a_{ij}^l\}_{i,j=1}^{n}, \quad a_{ij}^l = 0, \quad i = 1, \dots, p-1, \quad j = 1, \dots, n; \\ a_{ij}^l = 0, \quad i = 1, \dots, n, \quad j = p+1, \dots, n; \quad l = 1, \dots, r; \quad p \in \{1, \dots, n\}.$$

$$(7)$$

By $\lambda^n + \alpha_1 \lambda^{n-1} + \cdots + \alpha_n$ we denote the characteristic polynomial of the matrix A.

For the matrix $A = \{a_{ij}\}_{i,j=1}^n$, we construct the matrix S just as in [15]. Namely, we first construct the matrix

$$S_1 = \{s_{ij}^1\}_{i,j=1}^n, \quad s_{11}^1 := 1, \quad s_{1j}^1 := 0, \quad j = 2, \dots, n; \quad s_{ij}^1 := a_{i-1,j}, \quad i = 2, \dots, n, \quad j = 1, \dots, n.$$

Further, for each l = 2, ..., n and for the matrix $S_{l-1} = \{s_{ij}^{l-1}\}_{i,j=1}^{n}$, we construct the matrix $S_l = \{s_{ij}^l\}_{i,j=1}^{n}$ with entries $s_{11}^l := 1, s_{1j}^l := s_{j1}^l := 0, j = 2, ..., n$, and $s_{ij}^l := s_{i-1,j-1}^{l-1}, i, j = 2, ..., n$. Set $S = S_n S_{n-1} \cdots S_1$. All matrices S_l and S are lower triangular and nonsingular. Next, we construct the matrices $H_i := SA_iS^{-1}, i = 1, ..., r$, and $H := SAS^{-1}$. Then the matrices H_i , i = 1, ..., r, have the same form as $A_i, i = 1, ..., r$; i.e., the first p-1 rows and the last n-p columns of the matrices $H_i, i = 1, ..., r$, are zero. The matrix H has the following form [15, Lemma 3]: $H = J_1 + e_n \xi$, where $\xi = (-\alpha_n, ..., -\alpha_1) \in \mathbb{R}^{n*}$. We have

$$\chi(A+u_1A_1+\cdots+u_rA_r;\lambda)=\chi(H+u_1H_1+\cdots+u_rH_r;\lambda).$$
(8)

Let us construct the matrix $G := \sum_{i=1}^{n} \alpha_{i-1} J_{i-1}^{*}$, where $\alpha_0 := 1$.

Let $h_j^i \in \mathbb{R}^n$ be the *j*th column of the matrix H_i , $i = 1, \ldots, r$. For the matrices $H_i = [h_1^i, h_2^i, \ldots, h_n^i]$, $i = 1, \ldots, r$, we construct the $n \times r$ matrices $P_1 = [h_1^1, \ldots, h_1^r], \ldots, P_n = [h_n^1, \ldots, h_n^r]$. Then we construct the $n \times r$ matrix $Q = J_0 G P_1 + J_1 G P_2 + \cdots + J_{n-1} G P_n$.

Theorem 1. Let system (5) with the matrices (7) be given, and let

$$\lambda^n + \gamma_1 \lambda^{n-1} + \dots + \gamma_n := \chi (A + u_1 A_1 + \dots + u_r A_r; \lambda)$$

Then coefficients γ_i of the characteristic polynomial of the matrix $A + u_1A_1 + \cdots + u_rA_r$ can be expressed via the coefficients of system (5), (7) as follows:

$$\gamma = \alpha - Qu, \tag{9}$$

where $\gamma = \operatorname{col}(\gamma_1, \ldots, \gamma_n)$ and $\alpha = \operatorname{col}(\alpha_1, \ldots, \alpha_n)$.

DIFFERENTIAL EQUATIONS Vol. 46 No. 7 2010

Theorem 2. The spectrum control problem for system (5) with the matrices (7) is solvable if and only if the rows of the matrix Q are linearly independent; in addition, the control u bringing $\chi(A + u_1A_1 + \cdots + u_rA_r; \lambda)$ to a given polynomial $p(\lambda)$ with coefficients γ_i can be found from system (9).

Theorem 2 obviously follows from Theorem 1. Indeed, if the rows of the matrix Q are linearly independent, then for any γ the linear system (9) is solvable for u, and the solution u of this system ensures relation (6). If the rows of the matrix Q are linearly dependent, then system (9) is not necessarily solvable for any γ ; consequently, the spectrum control problem is unsolvable. It remains to prove Theorem 1.

Remark 1. It follows from Theorem 2 that the condition $r \ge n$ is a necessary solvability condition in the spectrum control problem for system (5).

Remark 2. Of the matrices P_i , i = 1, ..., n, the last n - p matrices are zero; therefore, for Q one can take the matrix $Q = J_0 G P_1 + J_1 G P_2 + \cdots + J_{p-1} G P_p$.

Proof of Theorem 1. To prove the desired assertion, we need Lemma 4 in [15].

Let system (5) be a given system with the matrices (7), and let relation (6) hold. For the matrices A and A_i , i = 1, ..., r, we construct matrices H and H_i , i = 1, ..., r. By virtue of (8), we obtain $\chi(H + u_1H_1 + \cdots + u_rH_r; \lambda) = \lambda^n + \gamma_1\lambda^{n-1} + \cdots + \gamma_n$. Therefore, by Lemma 4 in [15], we obtain the relations

$$\gamma_i = \alpha_i - \operatorname{Sp}(u_1 H_1 + \dots + u_r H_r) J_{i-1} G$$

= $\alpha_i - (u_1 \operatorname{Sp}(H_1 J_{i-1} G) + \dots + u_r \operatorname{Sp}(H_r J_{i-1} G)), \quad i = 1, \dots, n.$ (10)

Relations (10) can be represented in the vector form $\gamma = \alpha - Tu$. Here $T \in M_{n,r}$ and

$$T = \| \operatorname{Sp}(H_j J_{i-1} G) \|, \quad i = 1, \dots, n, \quad j = 1, \dots, r.$$

It remains to show that T = Q. We introduce the mapping vec : $M_n \to \mathbb{R}^{n^2}$, which "expands" the matrix $F \in M_n$, $F = \{f_{ij}\}, i, j = 1, ..., n$, by rows in the column vector

$$\operatorname{vec} F := \operatorname{col}(f_{11}, \ldots, f_{1n}, \ldots, f_{n1}, \ldots, f_{nn}) \in \mathbb{R}^{n^2}$$

Obviously, $\operatorname{Sp}(F_1^*F_2) = (\operatorname{vec} F_1)^*(\operatorname{vec} F_2) = (\operatorname{vec} F_2)^*(\operatorname{vec} F_1)$. Consider the first row of the matrix T. Then for all $l = 1, \ldots, r$, we have $\operatorname{Sp}(H_l J_0 G) = (\operatorname{vec}(J_0 G))^*(\operatorname{vec}(H_l^*))$. For the second row of the matrix T, we have the relation

$$Sp(H_l J_1 G) = (vec(J_1 G))^* (vec(H_l^*)), \qquad l = 1, \dots, r,$$

and so on; for the *i*th row of the matrix T (i = 1, ..., n), we have

$$\operatorname{Sp}(H_l J_{i-1} G) = (\operatorname{vec}(J_{i-1} G))^* (\operatorname{vec}(H_l^*)), \qquad l = 1, \dots, r.$$

Let us construct the matrices

$$L = \left\| \begin{array}{c} (\operatorname{vec}(J_0G))^* \\ (\operatorname{vec}(J_1G))^* \\ \\ \\ \cdots \\ (\operatorname{vec}(J_{n-1}G))^* \end{array} \right\| \in M_{n,n^2}, \qquad N = \left\| \operatorname{vec}(H_1^*), \dots, \operatorname{vec}(H_r^*) \right\| \in M_{n^2,r}.$$

Then T = LN.

DIFFERENTIAL EQUATIONS Vol. 46 No. 7 2010

Consider the matrices J_iG . We have

$$J_0 G = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ \alpha_1 & 1 & 0 & \dots & 0 \\ \alpha_2 & \alpha_1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{n-1} & \alpha_{n-2} & \alpha_{n-3} & \dots & 1 \end{vmatrix} ,$$

$$J_1 G = \begin{vmatrix} \alpha_1 & 1 & \dots & 0 \\ \alpha_2 & \alpha_1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \alpha_{n-1} & \alpha_{n-2} & \dots & 1 \\ 0 & 0 & \dots & 0 \end{vmatrix} , \qquad J_{n-1} G = \begin{vmatrix} \alpha_{n-1} & \dots & 1 \\ 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 0 \end{vmatrix} .$$

We expand these matrices by rows in column vectors, transpose them into rows, and form the matrix L. Then one can note that the resulting matrix has the block form

$$L = \left\| [J_0G], [J_1G], \dots, [J_{n-1}G] \right\| \in M_{n,n^2}.$$

Now consider the matrix N. We have

$$\operatorname{vec}(H_1^*) = \left| \begin{array}{c} h_1^1 \\ h_2^1 \\ \vdots \\ h_n^1 \end{array} \right| \in \mathbb{R}^{n^2}, \quad \dots, \quad \operatorname{vec}(H_r^*) = \left| \begin{array}{c} h_1^r \\ h_2^r \\ \vdots \\ h_n^r \end{array} \right| \in \mathbb{R}^{n^2} \implies N = \left| \begin{array}{c} P_1 \\ P_2 \\ \vdots \\ P_n \end{array} \right| \in M_{n^2,r}.$$

Consequently, $T = LN = J_0GP_1 + J_1GP_2 + \cdots + J_{n-1}GP_n = Q$. The proof of Theorem 1 is complete.

ACKNOWLEDGMENTS

The research was supported by the Russian Foundation for Basic Research (project no. 06-01-00258).

REFERENCES

- 1. Popova, S.N. and Tonkov, E.L., Control Over the Lyapunov Exponents of Consistent Systems. I, Differential Equations, 1994, vol. 30, no. 10, pp. 1556–1564.
- Popova, S.N. and Tonkov, E.L., Control Over the Lyapunov Exponents of Consistent Systems. II, Differential Equations, 1994, vol. 30, no. 11, pp. 1800-1807.
- Popova, S.N. and Tonkov, E.L., Control Over the Lyapunov Exponents of Consistent Systems. III, Differential Equations, 1995, vol. 31, no. 2, pp. 209-218.
- Popova, S.N. and Tonkov, E.L., Uniform Consistency of Linear Systems, Differential Equations, 1995, vol. 31, no. 4, pp. 672-674.
- Popova, S.N. and Tonkov, E.L., Consistent Systems and Control of Lyapunov Exponents, Differential Equations, 1997, vol. 33, no. 2, pp. 226-235.
- Makarov, E.K. and Popova, S.N., Local Controllability of Characteristic Lyapunov Exponents of Systems with Simple Exponents, *Differ. Uravn.*, 1997, vol. 33, no. 4, pp. 495–499.
- Zaitsev, V.A., Consistency and Control of Lyapunov Exponents, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., Izhevsk, 1999, vol. 2 (17), pp. 3-40.
- 8. Popova, S.N., Local Attainability for Linear Control Systems, *Differential Equations*, 2003, vol. 39, no. 1, pp. 51–58.

DIFFERENTIAL EQUATIONS Vol. 46 No. 7 2010

1074

- 9. Zaitsev, V.A. and Tonkov, Ye.L., Attainability, Consistency and the Rotation Method by V.M. Millionshchikov, *Russian Mathematics*, 1999, vol. 43, no. 2, pp. 42–52.
- 10. Tonkov, E.L., Uniform Attainability and Lyapunov Reducibility of Bilinear Control System, Proc. Steklov Inst. Math., 2000, Suppl. 1, pp. S228–S253.
- 11. Tonkov, E.L., Lyapunov Reducibility of a Linear System, Stabilization, and Control of Izobov Exponents, Tr. Inst. Mat. Nats. Akad. Nauk Belarusi, Minsk, 2000, vol. 4, pp. 146–155.
- 12. Leonov, G.A. and Shumafov, M.M., Metody stabilizatsii lineinykh upravlyaemykh sistem (Stabilization Methods for Linear Control Systems), St. Petersburg, 2005.
- 13. Popov, V.M., *Giperustoichivost' avtomaticheskikh sistem* (Hyperstability of Automatic Systems), Moscow: Nauka, 1970.
- 14. Wonham, W.M., On Pole Assignment in Multi-Input Controllable Linear Systems, *IEEE Trans. Auto*mat. Control, 1967, vol. AC-12, no. 6, pp. 660–665.
- 15. Zaitsev, V.A., Spectrum Control in Linear Systems with Incomplete Feedback, *Differential Equations*, 2009, vol. 45, no. 9, pp. 1348–1357.

DIFFERENTIAL EQUATIONS Vol. 46 No. 7 2010